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Abstract: Since fast charging schemes for lithium-ion batteries are known to lead to a reduction in
battery capacity, there is a need to avoid lithium plating during the charging process. This paper
designed an anode potential observer and a plating-free charging scheme for a battery module to
avoid the risk of lithium plating for all cells in the module. The observer was designed using an
electrochemical cell model and an electrical busbar model to estimate the anode potential of all cells
within a parallel connected battery module. Due to its simplicity and low computational loads,
the observer was easy to implement in a charge management system. The results demonstrated
that the designed observer and charging scheme can accurately estimate the anode potential of all
cells in the module. The estimation results of the observer were used in the plating-free charging
scheme. Compared to conventional charging methods, the proposed scheme added an additional
stage to estimate and control the anode potential, therefore reducing the risk of lithium plating during
charging. It also reduced the peak temperature of the battery by approximately 9.8% and reduced the
overall charging time by 18%.

Keywords: electrochemical model; anode potential estimation; charging scheme; lithium plating;
Li-ion battery

1. Introduction

In response to climate change and the impact of greenhouse gases on the environment,
many industry sectors, including energy, buildings, and transportation, are decarbonizing
to ensure a low-carbon future. In transport, electric vehicles (EVs) grew rapidly in recent
years [1]. With the electrification of transport, the demand for batteries also increased [2].
The total number of electric vehicles is expected to exceed 300 million by 2030, requiring an
installed battery capacity of 3000 GWh [3,4]. Among them, lithium-ion batteries (LIBs) are
the most widely used technology due to their favorable characteristics, such as high energy
density, no memory effect, low environmental pollution, low self-discharge rate, and long
service life [5–7]. However, range anxiety and long recharging times are often cited as
major issues hindering the widespread adoption of electric vehicles compared to gasoline
vehicles [8,9]. As a result, fast charging capability became one of the main challenges for
the battery and electric vehicle industry.

Simply increasing the charging rate was validated to accelerate the degradation of
Li-ion cells, leading to a reduction in capacity and power capability, and even damaging
the battery [10–12]. On the other hand, the heat generated during fast charging is difficult
to manage uniformly and efficiently, especially in battery packs containing a large number
of cells, leading to accelerated battery degradation and safety concerns [13,14]. Due to these
restrictions, fast charging rates are typically only possible at around 80% of full state of
charge (SOC) level [15]. At high SOC or low ambient temperatures, the current needs to be
gradually reduced to avoid exceeding the maximum voltage limit of the battery, resulting
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in a longer time required to charge to full capacity [16]. Therefore, the development of
safe and efficient fast charging strategies for Li-ion cells is essential and gained increasing
attention over recent years. Many studies categorized the optimal charging mode for Li-ion
cells as a combinatorial optimization problem to solve. The literature [17] used an ant
colony system algorithm to search for the optimal fast charging pattern. The study [18]
proposed a novel algorithm combining standard genetic algorithm with evolution of a
queen bee to obtain an optimal controller for boost converters. The literature [19] proposed
a fuzzy control charging strategy based on constant-polarization to adapt the acceptance
of the charging current to the SOC stage of the battery. The article [20] used a dynamic
programming approach to solve the trade-offs concerning charging time and energy loss.
Within [21], a closed-form optimal control scheme was proposed to solve the optimal
charging problem for LIBs. Conversely, within [22], a three-objective function, i.e., charging
time, energy loss, and temperature rise, was developed and heuristics were applied to
optimize the function to obtain the optimal charging current profile. However, most of
these were designed based on certain factors to optimize the fast-charging strategies. It is
necessary to address the effects of fast charging on LIBs in terms of the electrochemical
principles of battery generation of side reactions.

In recent years, researchers found that the loss of battery capacity under different
charging rates is related to lithium plating [23]. Lithium plating is a self-accelerating
degradation phenomenon observed on graphite anodes and is a Faraday-type side reaction
that leads to irreversible capacity loss and early cell failure [24,25]. This reaction occurs
mainly during rapid charging. Plenty of research work was carried out over the last few
decades to understand the mechanism of lithium plating [26], but its mechanism was still
not fully elucidated [27]. It is basically believed that lithium plating is a parasitic process
that accompanies the lithium intercalation process [28]. During the charging process,
the vacant sites in the graphite layer decrease and, therefore, the intercalation current
is decreased. The lithium plating current is then increased as it is in competition with
the intercalation current to total charging current [29]. When the anode potential drops
below zero volt, the lithium deposition rate will exceed the intercalation rate [30]. At this
point, the lithium ions are reduced to metallic Li [31,32] and deposited on the surface of the
graphite anode, rather than intercalating into the anode crystal structure [33]. The deposited
metallic Li is generally reversible. However, during the oxidation process, the deposited
metallic Li can react with the electrolyte to form a secondary SEI layer, which isolates from
the graphite anode and forms a high impedance ‘dead’ lithium film [34]. This process is
irreversible and not only increases the internal resistance, but also leads to accelerated
capacity degradation [35]. In severe cases, the accumulated lithium plating can form lithium
dendrites that can pierce the separator and cause internal short circuits [36]. Many studies
showed that lithium plating can be localized in the presence of local inhomogeneity on the
surface of the graphite anode [37]. As a result, lithium plating can occur thermodynamically
when the local potential of the anode is below 0 V due to high charging C-rates [38] and low
temperatures [39], all of which polarize the electrode [40]. Increasing the charging current
and decreasing the ambient temperature both lead to a decrease in the anode potential [41].
Therefore, to solve the problem of lithium plating during fast charging, the current level
needs to be adjusted during the charging process, while reducing the heat generation
and avoiding the conditions where lithium plating occurs and, ultimately, which limit the
degradation of the LIB.

One of the earliest types of protocols designed specifically for fast charging was the
multi-stage constant current (MCC) protocol [42]. This method consists of two or more
constant current stages, usually followed by a constant voltage (CV) stage [43]. The earlier
constant current (CC) stage is usually chosen to have a higher current level, as the anode
potential is less likely to become negative at the beginning of the charging process. The
current level is reduced whenever the local lithium deposition reaches a predetermined
value. This method was validated to reduce the rate of degradation but requires extensive
experimentation to calibrate the charging protocol [44]. An alternative method is to control
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the anode potential directly via a reference electrode [45]. The tendency of metallic lithium
deposition at the anode interface is eliminated by limiting the anodic overpotential to
a positive value. This charging strategy was shown to be suitable for low-temperature
charging, eliminating most of the lithium plating and increasing up to seven times of its
cycle life [45]. However, this method requires the insertion of a reference electrode into a
commercial cell to rebuild the cell, which leads to a significant reduction in the practicality
of the method. As with most electrochemical energy storage systems, the internal state
of a typical commercial cell cannot be measured directly and can only be estimated and
predicted indirectly from limited signals, such as voltage, current, and temperature [46,47].

In recent years, some research began to turn attention to the estimation of anode po-
tential using cell models to detect whether lithium plating is occurring. Due to the complex
electrochemical reactions within the battery, the internal state exhibits a highly non-linear
relationship with the externally measured signals [48–50]. Many methods use equivalent
circuit models (ECMs) to estimate the state of the cell, e.g., SOC and state of health (SOH).
However, given that parameters of ECM, such as resistance and capacitance, are derived by
curve fitting to experimental training data, the resulting models were not sufficiently accu-
rate. In the absence of insight into the physics behind the state variables, it is not possible to
accurately estimate whether the battery interior is free from unwanted side reactions during
fast charging. In recent years, researchers attempted to use electrochemical-based models
for battery charging management, including the pseudo-two-dimensional (P2D) model [51],
single particle model (SPM) [52], and thermal single particle model with electrolyte (TSPMe)
model [53]. These models describe phenomena such as ion diffusion kinetics, intercalation
kinetics, and electrochemical potentials and can reproduce the dynamics of the battery
with high fidelity [11]. However, these applications are potentially limited by the complex
calculations associated with partial differential equation (PDE)-based non-linear models
and online optimization. For battery packs containing a large number of cells, the use
of electrochemical models for modelling each individual cell is not applicable. In recent
years, some research proposed a novel decomposed motor model to predict the anode
potential by splitting the classical ECM model into two parts, thus achieving the effect of a
three-electrode cell [54]. However, this approach cannot explain how lithium plating will
affect the electrochemical variables and mechanisms within the cell. Another study used a
data-driven approach to predict the anode potential by training a neural network model
to match the simulation results of the P2D model [55]. However, the data-driven model
parameters lacked physical meaning and no valid battery parameters can be extracted from
the model. Another study used a simplified electrochemical model (SEM)-based observer
for low-complexity SOC and anode potential prediction for Li-ion batteries [56]. However,
this SEM model was linear and may reduce the accuracy of the estimation as the non-linear
part was neglected. Furthermore, the above methods were designed to estimate the anode
potential of a single cell without taking into account the interactions between cells in a
battery containing dozens or even more cells. This led to doubts about the predictive
capability of these methods in practical applications.

In our previous publications, an anode potential observer was proposed using a
reduced-order electrochemical TSPMe model, to reduce the computational effort to 2% of
the full-order model to allow it to run in real-time [57]. Considering estimating states of
each cell in a battery pack, a simplified modelling approach of the busbar was proposed to
estimate the current distribution and temperature distribution within the parallel pack in
our previously work [58]. Building on the contributions of those two papers, this paper
designed an anode potential observer for a battery module and a plating-free fast charging
scheme to avoid the risk of lithium-plating of all the cells in a battery module. The observer
applied in this scheme used a TSPMe cell model as well as an electrical busbar model of
the battery pack, allowing it to estimate the anode potential of each cell in the pack with
high accuracy for use in the charge management system. The proposed charging scheme
regulated the charging current of the battery pack by estimating and limiting the drop in
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anode potential through the designed observer. The main contributions of this paper are
summarized below:

• An observer was designed to estimate the anode potential of all cells in a parallel
connected battery module with a low computational load;

• A plating-free charging scheme was developed based on the observer to avoid lithium
plating by estimating and controlling the anode potential of all cells to not fall below a
positive threshold;

• The charging scheme was validated in simulation, showing that it eliminated the
occurrence of negative anode potentials and reduced the peak temperature and overall
charging time compared to traditional CC-CV method.

The remaining parts of this paper are structured as follows. Section 2 presents
the TSPMe model and the design of the anode potential observer and charging scheme.
Section 3 shows the simulation results to validate the performance of the model, observer
and charging approach. Finally, the findings of this paper are concluded in Section 4.

2. Design of Model-Based Anode Potential Observer and Charging Scheme

To accurately estimate the anode potential of each cell in a battery pack, there is a
need to minimize the computational effort of the observer while improving the estimation
accuracy. Observers for estimating individual cells within a battery pack can use both
ECMs and electrochemical models. While ECMs are widely used for system validation
and controller design due to their simple structure, they are unable to accurately model
factors such as whether side reactions occur within the cell due to their lack of observation
of the physical behavior within the cell. As a result, electrochemical models were widely
developed to simulate the physical behavior of Li-ion cells. The most basic and commonly
used model is the Doyle–Fuller–Newman (DFN) model, which is also known as the P2D
model. The P2D model has good performance in modelling the physical behavior of the
internal dynamics of the cell. However, it is too complex and computationally expensive for
practical applications. A simplified version of the P2D model is the SPM, which uses one
particle to simulate the average behavior of each solid phase. In recent years, researchers
extended the SPM model to consider thermal effects by proposing a TSPMe derived in
a systematic way using asymptotic techniques [53]. The validation result indicated that,
compared to a thermal P2D model, the TSPMe showed high accuracy in the prediction of
the behavior of real cells with a computational cost over forty times smaller.

The battery pack used in an electric vehicle is usually a combination of hundreds or
even thousands of batteries connected in series and parallel. If each battery is modelled
individually using the TSPMe model, even though the model significantly reduced the
amount of computational load, simulating such a large number of cells at the same time is
not possible for a real battery management system (BMS) device. Therefore, this section
devises an estimation scheme to estimate the states of each cell in a parallel connected
battery module. The designed observer uses a TSPMe model to simulate the full states of
a single cell based on the average charging current. The modelled states are used as the
baseline of the battery module. Then, the busbar model is used to simulate the current,
temperature, and SOC gradients between different cells within the battery module. The
states of each individual cell can then be calculated by adding the baseline value from the
TSPMe model and the distribution gradients from the busbar model. An outline block
diagram of the observer-based charging scheme is shown in Figure 1, where I∗pack denotes
the control signal of pack current while Ipack denotes the real pack current from charger.
The observer was used to estimate the SOC and anode potential of all cells in the module,
where a 30 parallel connected cell module was considered in this paper. A charging strategy
was designed by monitoring the minimum anode potential and average SOC across all
cells and adjusting the charging current for the battery pack to allow all cells to be free
from lithium plating risk. The observer was designed using a cell model for simulating
the detailed electrochemical reactions within the cell and a busbar model for simulating



Batteries 2023, 9, 294 5 of 20

the current distribution in the module and the interconnecting currents between cells.
Therefore, the electrochemical cell model is presented first in the following subsection.
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2.1. Thermal Single Particle Model with Electrolyte

The SPM type models use the same key idea of representing the behavior of all particles
by a single particle in each electrode. The model, therefore, assumes that the cell operates
in a regime with a small deviation from the equilibrium potential, which means that the
cell operates at moderate to low C-rates. In addition to the SPM, the TSPMe model takes
into account the effects of electrolyte and thermal behavior. In the model of electrolyte,
three assumptions are used for simplifications, including quasi-steady-state electrolyte
concentration, constant electrolyte conductivity, and fast lithium diffusion. Therefore, in
the TSPMe model, we assumed that the electrolyte conductivity and the ion transport
properties in the electrolyte are constants, the diffusion coefficient in the electrolyte is not
dependent on concentration, and the electrolyte diffusion rate is much higher than the
change rate of current. In the thermally coupled model, the temperature is assumed to be
approximately homogeneous within the cell. Further details of the assumptions made in
the TSPMe cell model can be found in our previous published paper [53].

In TSPMe, the governing equation for intercalated lithium concentration are given as

∂ck
∂t

=
1
r2

∂

∂r

(
r2Dk

∂ck
∂r

)
, in 0 < r < Rk (1)

where ck is the intercalated lithium concentration, Dk is the diffusion coefficient of inter-
calated lithium, Rk is the particle radius, where k ∈ {p, n} denotes the positive (p) and
negative (n) electrodes/particles.

The concentration in electrolyte is given by

εk(x)
∂ce

∂t
=

∂

∂x

(
DeBk(x)

∂ce

∂x

)
+


(1− t+) iapp

FLn
, if 0 ≤ x < Ln

0, if Ln ≤ x < L− Lp

−(1− t+) iapp
FLp

, if L− Lp ≤ x ≤ L

(2)

where ce is the lithium-ion concentration in the electrolyte, De is the bulk diffusion coeffi-
cient of lithium ions, εk(x) and Bk(x) are the porosity and the geometry factor according
to the position of x, where the subscripts k ∈ {n, s, p} denote the values for the negative
electrode, separator and positive electrode, respectively, t+ is the transference number,
L = Ln + Ls + Lp is the total cell thickness.

The potentials of electrodes can be expressed as

Φ± = U±
(
c±s (Rk)

)
+ η±r + η±e + ∆Φ±e + ∆Φ±s (3)
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where U is the equilibrium potential to which the terminal voltage converges when no
current is applied, ηr is due to the reaction overpotentials, ηe is due to the concentration
gradients in the electrolyte, ∆Φe is due to Ohmic losses in the electrolyte, and ∆Φs is due to
Ohmic losses in the solid electrode. They can be expressed as [53]

η+
r = −2RT

F
1

Lp

∫ L
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apLp j+
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dx (4)
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+

iappLn

3σn
(11)

j± = mk

√
cec±s

(
cmax

k − c±s
)

(12)

where T is the average temperature of the cell, σp and σn are the electronic conductivity
of the positive and negative electrodes, σe is the ionic conductivity of the electrolyte, R is
the universal gas constant, j+ and j− are the reaction surface current density of positive
and negative electrodes, ak is the surface area density, F is the Faraday constant, iapp is the
applied current density, and Lk is the electrode thickness.

The output voltage, Vt, is given by

Vt(t) = Φ+(L, t)−Φ−(0, t) (13)

The thermal behavior is given by [53]

θ
dT
dt

= −hacool(T − Tamb) + Qs + Qe + Qirr + Qrev (14)

with
Qs = −iapp

(
∆Φ+

s − ∆Φ−s
)

(15)

Qe = −iapp
(
η+

e − η−e + ∆Φ+
e − ∆Φ−e

)
(16)

Qirr = −iapp
(
η+

r − η−r
)

(17)

Qrev =
iapp

L
(
Πn −Πp

)
(18)
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where θ is the lumped volumetric heat capacity of the cell, h is the heat exchange coefficient,
acool is the cooling surface area, Tamb is the ambient temperature, Qs is the electrode
heat source, Qe is the electrolyte heat source, Qirr is the irreversible heat source, Qrev is
the reversible heat source of the intercalation reaction, and Πk (k ∈ {p, n}) is the Peltier
coefficient described as the heat generated due to the entropy of the intercalation reaction,
which is defined as

Πk = T
∂Uk
∂T

(19)

The number of storage compartments in the negative electrode is considered to be
a key factor in the capacity of a LIB due to the different choice of positive and negative
electrode materials. The SOC of a LIB is, therefore, more relevant to the ionic concentration
of the negative electrode. The SOC is expressed using the average ionic concentration in
the negative electrode, c−s , as [57]

SOC(t) =
c−s (t)− c−s,min

c−s,max − c−s,min
(20)

2.2. Observer Design

To estimate the electrochemical state of each cell in a battery pack, it is necessary to
use at least one TSPMe model to accurately simulate the behavior of the cells. As the
battery modules are considered to be connected in parallel, the current input of each cell
is essentially at a similar level. However, each cell behaves differently due to current
distribution gradients caused by the busbar design of the battery modules and the uneven
heat dissipation caused by the close arrangement of the cells. In designing the observer, the
difference between cells is assumed to be much smaller than the variation in the mean value
of the battery pack/module. Based on this assumption, the difference in current between
cells can be represented using a simplified busbar model, and the difference in temperature
can be calculated using a matrix to calculate the equivalent ambient temperature of each
cell and its surrounding cells.

The SOC estimation for each cell can be expressed as

SÔC(t) = SOC +
1
Q

∫ (
Îcell −

Ipack

30

)
dt (21)

where SOC is the average state of charge estimated from the TSPMe model, Q is the
capacity of a single cell, Îcell is the estimated applied current for each cell estimated from
the busbar model, and Ipack is the real current applied to the battery module that contains
30 individual cells.

The SOC estimation is based on a hybrid calculation where the first term is obtained
from the ionic concentration estimated by the electrochemical model, and the second term
is estimated from the linear relationship between the current difference between cells and
the SOC. The sum of these two components is approximately equal to the real SOC of
each cell. Compared to modelling each cell separately using the electrochemical model,
the method not only maintains a very high accuracy rate in modelling the electrochemical
behavior, but also replaces the part with less influence with a linear model, thus reducing
the computational effort considerably. The corresponding cell resistance and open circuit
voltage (OCV) are then obtained from look-up-tables and fed back to the busbar model to
continuously calculate the current distribution among all cells.

The temperature distribution within the battery module is related to the arrangement
of the cells and their heat transfer characteristics. As the cells are arranged closely together
within the battery module, for cylindrical cells, each cell is surrounded by six adjacent
cells. Each cell exchanges heat with the other six cells surrounding it. For a single cell, the
average temperature of the six cells around it forms the ambient temperature of that cell.
For a cell at the edge of the battery module, the temperature of the cells that do not exist
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around it can be replaced by the ambient temperature of the whole module. Therefore, an
ambient temperature matrix can be designed to transform the cell temperature vector into
an ambient temperature vector. This is shown in Figure 2.
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module.

As can be seen on the left side of the figure, in the battery module, 6 cells are arranged
in a column and 5 columns of cells are staggered together for a total of 30 cells, being
numbered 1–30. The ambient temperature of the module is numbered 31. The matrix in
the middle of the figure represents the numbering of the 6 cells around each cell. In the
matrix on the right side of the figure, the vertical columns indicate the target cell numbers
and the horizontal rows indicate the surrounding cell numbers. A ‘0’ in the matrix means
that the target cell is not adjacent to it and a ‘1’ means that it is adjacent to it. Column
31 indicates how many sectors of the cell are in direct contact with the environment. The
heat transfer matrix is, therefore, a 30 × 31 matrix, with the values in each row summing
to 6. The ambient temperature vector can be calculated as the product of this ambient
temperature matrix and the cell temperature vector, multiplied by a gain of 1/6. The
estimated temperature of each cell is then derived by calculating the heat generation as
the current flows through the internal resistance using the Joule–Lenz law, and the heat
transfer between the cell itself and the ambient based on the heat transfer equation. The
average temperature of all cells is then given as input to the TSPMe model.

The final part of the observer design is to estimate the anode potential for each cell
within the battery module. As there is no more information available to estimate the anode
potential, the only way for anode potential estimation is to use the average anode potential
estimated from the TSPMe and its rate of change against the SOC. As can be seen from
Equation (3), the anode potential incorporates several components including the open
circuit voltage, the reaction overpotential, the concentration gradient and ohmic loss of
the electrolyte, and the ohmic loss of the solid electrode. Some components are related to
the applied current. The anode potential estimation is also divided into two parts when
designing the observer. The first part is the estimation of the negative open circuit voltage,
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Un, associated with the SOC, where the change rate of the Un to the SOC is calculated from
the state values from the TSPMe model. The same change rate is then multiplied by the
difference in SOC between cells to obtain the distribution of the difference in Un across the
30 cells, which is expressed as

∆Ûn =
(
SÔC− SOC

) dUn

dSOC
(22)

The other part is the estimation of the current-dependent part of the anode potential.
The rate of change of this component to current is calculated using a similar method and is
then multiplied by the difference in current between cells, which is expressed as

∆η̂n =

(
Îcell −

Ipack

30

)
Φ− −Un

Ipack/30
(23)

The two calculated parts are summed to obtain the difference distribution of the anode
potential. This is then added to the average anode potential derived from the TSPMe model
to obtain an estimate of the anode potential for each cell as

Φ̂− = Φ− + ∆Ûn + ∆η̂n (24)

A block diagram of the final design of the observer is shown in Figure 3. Two models
were used in the observer, a cell model to simulate the detailed electrochemical reactions
inside the cells and a busbar model to simulate the current distribution in the module
and the interconnection currents between the cells. The inputs to the cell model were the
average current and temperature of all cells. The outputs of cell model included the OCV,
SOC, anode potential, and OCV of negative electrode. The interconnection resistance in
the busbar model was assumed to be of constant value. The inputs to the busbar model
were the total current of the input pack, the estimated OCV, and internal resistance of each
cell. In addition to cell and busbar model, the observer was divided into three estimation
components. In order to reduce the computational load of the observer, it was assumed
that the current difference between cells was much smaller than the cell currents. The
electrical state was estimated by integrating the current difference calculated from the
busbar model to obtain the SOC difference of each cell. The OCV and equivalent internal
resistance of each cell was then obtained by a look-up-table. The temperature was estimated
by calculating the heat generation of each cell from the Joule–Lorentz law, and then, the
temperature changed for each cell by using the heat transfer matrix illustrated in Figure 2.
The anode potential was also estimated using a linear estimation method but was slightly
different from the method of electrical state estimation. The anode potential of a cell can be
divided into two parts depending on whether it is current dependent. The OCV of negative
electrode was only related to SOC and, therefore, the rate of change was calculated from
the output of the cell model and multiplied by the estimated SOC distribution of cells in
the module. The remaining part is represented by the over-potential, which was assumed
to be in proportional to the current over a small range. The over-potential distribution
was obtained by calculating its change rate and multiplying it by the current difference.
The two estimated parts were added to the reference anode potential estimated by the cell
model to obtain the anode potential distribution of all cells in the battery module.
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2.3. Charging Scheme Based on Anode Potential Estimation

Due to its simplicity and ease of implementation, the constant current constant voltage
(CC-CV) charging method became the standard charging protocol in most applications.
The early CC stage is usually chosen for higher current levels, as the anode potential is
less likely to become negative at the beginning of the charging process. Once the cell
voltage rises to a cut-off value, it switches to a CV stage to maintain the charging voltage
until the current drops close to zero. The main purpose of the CV stage is to prevent the
OCV of the battery from exceeding the maximum voltage limit. However, during rapid
charging, the high current results in a large potential difference between its OCV and
terminal voltage. Thus, when the terminal voltage reached the maximum value, the OCV
was still far from reaching the maximum voltage. Reducing the charging current at this
point will undoubtedly increase the charging time. If one investigates the electrochemical
principles within the LIB, the constant voltage aims to prevent the storage compartment
of the negative electrode from being filled with lithium and causing subsequent metallic
lithium to adhere to the surface of the negative electrode. However, if it is possible to
measure or estimate whether the negative electrode material is already fully filled by
lithium, then the overcharge problem can be avoided.

As the electrochemical model-based observer designed in the previous section can
estimate various physical properties inside the cell, it is possible to detect the intercalated
lithium concentration in the negative electrode as well as the anode potential. Based on this
idea, this paper designed a fast charging scheme with additional charging stage between CC
and CV, limiting the anode potential of cells to a non-negative level through the estimation
from the observer. This method is, therefore, named as constant current—anode potential
estimation—constant voltage (CC-APes-CV). In summary, the designed charging method
is summarized as:

• The CC stage of charging is first carried out while the anode potential estimation is
started using the designed observer;

• When the estimated anode potential is reduced to a preset value greater than zero (e.g.,
20 mV), switch to the anode potential control stage to gradually reduce the current to
keep the anode potential at a preset value;
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• When the estimated SOC is close to full charge (e.g., 95%), switch to the CV charging
stage;

• When the charging current is reduced to a preset value (e.g., C/20), stop charging.

For charging a parallel connected battery module, the controller detects the minimum
anode potential of all cells and adjusts the charging current in time to avoid the risk of
lithium plating for all cells in the module.

3. Results and Discussion

The validation of the model, the observer, and the charging scheme is in the Simulink
simscape simulation environment.

3.1. Model Validation

First, experimental data were used to validate the TSPMe model, from low to high
charging current at different C-rates. The model parameters and experimental data were
based on the test of LG M50 21700 LIB, whose operating voltage window was 2.5–4.2 V.
In the experiment, the cell was dismantled and reconstructed into a three-electrode cell
using the original positive and negative electrodes to allow the direct measurement of the
cathode and anode potentials, as described in [59]. The dimensional and electrochemical
parameters of LG M50 cell used in the TSPMe model are given in Table 1.

Table 1. The dimensional and electrochemical parameters for the LG M50 cell [53].

Symbol Description k=p k=s k=n Unites

Lk Thickness 75.6 12 85.2 µm
Rk Radius of electrode particles 5.22 - 5.86 µm
ak Particle surface area density 3.82 × 105 - 3.84 × 105 1/m
Dk Lithium diffusivity in particles 0.004 - 0.033 µm2/s
σk Electrode conductivity 0.18 - 215 1/Ωm
mk Kinetic reaction rate 3.42 × 10−6 - 6.48 × 10−7 (A/m2)(mol/m3)−1.5

εk Electrolyte volume fraction 0.335 0.47 0.25 -
ck,init Initial particle concentration 17,038 - 29,866 mol/m3

cmax
k Maximum particle concentration 63,104 - 33,133 mol/m3

F Faraday constant 96,485 C/mol
R Universal gas constant 8.314 J/K/mol
κ Thermal conductivity 1.05 W/m/K
h Heat exchange coefficient 20 W/m/K

acool Cooling surface area density 219.42 1/m
t+ Transference number 0.2594 -

ce,init Initial electrolyte concentration 1000 mol/m3

Figure 4 shows a comparison of the experimental data and the model output for the
three-electrode cell. The input current to the model was the same as the experimental
current, as shown in Figure 4a, ranging from a charging rate from 0.3 C to 3 C and constant
discharging rate of 0.5 C within a voltage range between 2.5 and 4.2 V. Figure 4b,c show
the comparison performance of cathode and anode potentials between three-electrode
experiments and model outputs. Figure 4c shows that the anode potential dropped to
less than 0 V within a short interval when the charge C rate was above 1 C. It was indeed
possible that lithium plating occurred at this point. However, the three-electrode cell
experiment can only be used to measure the anode potential and, thus, determine whether
lithium plating is possible. The test did not provide any quantitative results, such as how
much lithium was plated. Therefore, we cannot provide a more detailed picture in the
experiment to show whether lithium plating occurred. This is a generic problem with the
method of inserting reference electrode, which cannot be solved with the method provided
in this paper. This issue is also added to the Section 3 in this paper.
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The results shown in Figure 4 verify that the modelled cathode and anode potentials
matched the experimentally tested value of potentials in most charging profiles. The esti-
mation performance of charging cycles was acceptable. It can be concluded that the model
can perform well to the actual behavior of the target LIB at any C rate of charging current.

From the results above, it can also be found that the higher the charging C-rate, the
lower the anode potential can reach. However, as the C-rate mainly acts on the CC stage
of the CC-CV charging cycles, when the C-rate in the CC stage is high, the charging time
of the CC stage is shortened due to the internal resistance. The charger will then switch
it to the CV stage after the terminal voltage reaches the threshold. Therefore, from the
above results, the CC cycle of 3C charging only lasts a few seconds. If further increase
the charging C-rate, it will not see a significant reduction in the total charging time. This
can also be found in the result of the charging time and the minimum anode potential at
different charging rates, as shown in Figure 5 below.
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As the C rate increased from 1C to 3C, it can be clearly seen that the charging time
decreased due to the increase in current and the minimum anode potential decreased
inversely with the increase in C rate. However, when the C rate was increased beyond
3C, there was no significant reduction in charging time and minimum anode potential.
Furthermore, it can be noted from the results that in the conventional CC-CV charging curve,
the minimum anode potential decreased to a negative value when the C-rate increased
above 1.5C, which led to a high potential for lithium plating to occur.

3.2. Observer Performance Validation

This section aims to validate the performance of using the designed observer to
estimate the anode potential and temperature of all cells in a battery module. The results
compare the estimation performance of the observer with those of 30 individual TSPMe cell
models run in parallel in a cluster computational PC to simulate the real battery module.

The results compare the modelled and estimated states of cell current, generated heat
due to power loss and anode potentials of individual cells. To calculate the heat generation,
the TSPMe model used the product of the current and the difference between terminal
voltage and OCV of each cell, while the observer used the product of the current squared
and the equivalent resistances. The current and anode potential were obtained from the
TSPMe model and the observer for comparison. The results are shown in Figure 6.

Figure 6a shows the current response of the individual cells in the battery module
under a 1C constant current charge, while Figure 6b shows the observer-estimated current
profile for each cell. The results show the current distribution of the 30 cells in the battery
module, arranged in six rows (R) and five columns (C) in a 6 × 5 battery module. The
performance of each cell is indicated by a different color and line. For example, C1R1 in the
figure represents the cell located in the first column and the first row of the battery module.

Figure 6c,d show the model-simulated and observer-estimated power loss on internal
resistance, respectively. The power loss on the internal resistance generated heat and
affected the temperature of the cell, ultimately affecting the thermal behavior of each cell.
As the battery module was modelled using 30 TSPMe cell models, the power loss was
obtained from the product of the voltage difference between the terminal voltage (Vt) and
the open circuit voltage (U) and the charging current (i). The observed power loss was
calculated as the product of the current squared and the equivalent resistance. As the
observer used a different method to calculate the power loss, the error in the estimation
of the cell temperature distribution was more obvious compared to the estimation of the
current distribution. Figure 6e,f show the anode potential from the model and the estimates
from the observer, respectively.

In terms of the overall comparison results, the observed currents, the heat generated
due to power losses, and the anode potentials of all individual cells had a similar perfor-
mance to those from the TSPMe models. To further quantify the observed performance,
Figure 7 provides boxplots to show the observed error for each state of each cell. The result
divided the 30 cells in the battery module into five columns according to their original
positions. For example, cells 1 to 6 in the figure are the cells in the leftmost column of the
module, while cells 25 to 30 in the figure are the cells in the rightmost column of the battery
module, in numbered order.

It is clearly shown from the results that the centrally located cells had a larger average
error in observation of temperature, but a smaller error in observation of anode potential. In
Figure 7a, the average current error was less than 0.2 A for all cells, with the largest error in
column 5. Thus, if considering the current estimation of cells in columns 1 to 5, the average
observation error from the observer was less than 0.1 A, with an error of approximately
2% at an average charging current of 5 A. In Figure 7b, the temperature observation error
for all cells was less than 1.5 V. In columns 2, 3, and 4, the temperature estimation error
peaked for the centrally located cells. This was because the cell in the center of the battery
module had a higher ambient temperature and, therefore, less heat transferred from the cell
to the environment. Based on this situation, the temperature gradient of the cells within
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the battery module will be the focus in our future work. In Figure 7c, the average observed
error in the anode potential for all cells was less than 0.015 V. This error was acceptable.
The observed anode potentials can be used in the charging scheme design for the battery
modules. Therefore, the anode potential threshold can be set at 20 mV in the APes stage of
the designed charging scheme, thus avoiding negative anode potentials occurred due to
observation errors.
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3.3. Fast Charge Strategies Validation

The simulation results were used to compare the CC-APes-CV charging scheme with
the conventional CC-CV and MCC-CV charging methods. All three methods had the same
initial phase, i.e., a constant charging current at 3C, and the same end phase, i.e., the CV
stage. The difference between the three methods was the switching link between CC and CV
stages. Conventional CC-CV switched directly from CC to CV when the terminal voltage
of cells reached its maximum value. MCC-CV switched between multiple CC stages and
finally switched to CV. CC-APes-CV switched from CC to the anode potential control stage
using estimated values and switched to CV when its SOC reached a pre-defined threshold.

The results of the comparison between the three methods are shown in Figure 8. As
it was difficult to compare all curves of 30 cells simultaneously, the average cell states of
the battery module are shown in the results. The blue dashed line in the figure shows
the results of the conventional CC-CV charging method at 3C charging current, the red
solid line shows the results of the MCC-CV charging method and the green dashed line
shows the results of the proposed CC-APes-CV method. As can be seen from the terminal
voltage results shown in Figure 8b, the green dashed line is the only curve where the
terminal voltage can be higher than 4.2 V. This is because, during the anode potential
control stage, the current or voltage was not tracked but only the estimated anode potential
was controlled. It can then be seen from the comparative results of the anode potential
in Figure 8c that the CC-APes-CV method reduced the current as the estimated anode
potential was reduced to near zero, it then reduced the charging current to a lower level
than the other two methods and it slowly increased the terminal voltage over a period of
approximately from 0.1 h to 0.5 h. It reduced the charging speed in the first stage. However,
the terminal voltage of the CC-APes-CV method continued to increase above 4.2 V when
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the other two methods reached a maximum terminal voltage of 4.2 V. According to the
observer, the anode potential was still positive at this point and the intercalated lithium
concentration of the negative electrode was also greater than 0. So it was considered that
the cells were still able to accept additional charges. Ultimately, the CC-APes-CV took less
charging time than the other two methods to fully charge the LIB. In the results of the
temperature comparison, as shown in Figure 8d, it was found that the peak temperature
using the CC-APes-CV charging method was less than the other two methods.
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The charging times to reach a specific SOC using the different methods are compared
in Table 2. When charging up to 70% SOC was considered, the charging time using CC-
APes-CV was similar to that of CC-CV. When charging targeted at a higher percentage, e.g.,
80% to 100% SOC, the charging time with CC-APes-CV was much less than the other two
methods. This was because the charging current was reduced in the CC stage to reduce
the risk of negative anode potential. This makes the CC-APes-CV method slower than
the conventional CC-CV method in the initial stage of charging. However, in the anode
potential control stage, the control strategy tracked the estimated anode potential, and the
terminal voltage can reach a higher value than the set point. This allowed the CC-APes-CV
to charge faster than the CC-CV and MCC-CV methods. The overall charging period of the
proposed method was shorter than the other two methods.

Table 2. Time comparison of different fast charge strategies according to SOCs.

Charging Time CC-CV MCC-CV CC-APes-CV

70% SOC 30.3 min 37.8 min 30.6 min
80% SOC 40.3 min 48.1 min 38.8 min
90% SOC 56.9 min 64.5 min 50.5 min

100% SOC 98.1 min 105.7 min 79.9 min

The comparison between these three methods used bar charts to represent the mini-
mum anode potential, peak cell temperature, time period of anode potential being negative,
and full charging time, as shown in Figure 9. The results show that the proposed method
eliminated the risk of negative anode potential, reduced the peak battery temperature
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by 5 ◦C, approximated 9.8% of the temperature of using CC-CV, and reduced the overall
charging time to full SOC by 18% compared to the conventional CC-CV charging method.
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The design of the CC-APes-CV charging scheme was based on the current version
of electrochemical models and their parametric accuracy. The charging scheme was not
experimentally validated due to the difficulty of accurately measuring the anode potential
and lithium concentration of commercial LIBs. The reconstructed three-electrode cells not
only are costly, but it is also difficult to ensure the same parameters for all reconstituted
cells under laboratory conditions. Therefore, it is not easy to accurately compare the effects
of the proposed charging scheme on lithium plating in experiments in a short time under
current technical conditions. In our future work, we will aim to address this issue and
experimentally validate the effectiveness of the observer and the charging scheme as well
as the feasibility of applying them to practical EV charging protocols.

4. Conclusions

This paper developed an anode potential observer for a parallel-connected battery
module and a plating-free charging scheme to avoid the risk of lithium plating for all cells
in the module during charging. The designed anode observer used a TSPMe cell model
and a busbar model to simulate the internal electrochemical states of each individual cell
within the module. The results demonstrated that the designed observer not only accurately
estimated the states of cells, such as SOC and anode potential, but also significantly reduced
the computational effort for use in the charge management system. The estimated results of
the observer were used in a plating-free charging scheme. Compared with the traditional
CC-CV charging method, the proposed scheme added an extra stage to estimate and
control the anode potentials, which reduces risk of lithium plating during charging. The
results demonstrated that the charging scheme not only eliminated the risk of negative
anode potential in the battery module, but also reduced the peak cell temperature by
approximately 9.8% and reduced the overall charging time by 18%.
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Abbreviations

APes Anode potential estimation
BMS Battery management system
CC Constant current
CV Constant voltage
ECMs Equivalent circuit models
EV Electric vehicle
LIB Lithium-ion battery
MCC Multi-stage constant current
OCV Open circuit voltage
P2D Pseudo-two-dimensional
PDE Partial differential equation
SEM Simplified electrochemical model
SOC State of charge
SOH State of health
SPM Single particle model
TSPMe Thermal single particle model with electrolyte
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