
Citation: Lin, Y.-W.; Chiu, C.-F.; Chen,

L.-H.; Ho, C.-C. Real-Time Dynamic

Intelligent Image Recognition and

Tracking System for Rockfall Disasters.

J. Imaging 2024, 10, 78. https://

doi.org/10.3390/jimaging10040078

Academic Editor: Elena Casiraghi

Received: 25 January 2024

Revised: 12 March 2024

Accepted: 25 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Real-Time Dynamic Intelligent Image Recognition and Tracking
System for Rockfall Disasters
Yu-Wei Lin 1, Chu-Fu Chiu 2, Li-Hsien Chen 2 and Chao-Ching Ho 1,*

1 Department of Mechanical Engineering, National Taipei University of Technology, Taipei City 10608, Taiwan
2 Department of Civil Engineering, National Taipei University of Technology, Taipei City 106344, Taiwan
* Correspondence: hochao@mail.ntut.edu.tw

Abstract: Taiwan, frequently affected by extreme weather causing phenomena such as earthquakes
and typhoons, faces a high incidence of rockfall disasters due to its largely mountainous terrain.
These disasters have led to numerous casualties, government compensation cases, and significant
transportation safety impacts. According to the National Science and Technology Center for Disaster
Reduction records from 2010 to 2022, 421 out of 866 soil and rock disasters occurred in eastern
Taiwan, causing traffic disruptions due to rockfalls. Since traditional sensors of disaster detectors
only record changes after a rockfall, there is no system in place to detect rockfalls as they occur. To
combat this, a rockfall detection and tracking system using deep learning and image processing
technology was developed. This system includes a real-time image tracking and recognition system
that integrates YOLO and image processing technology. It was trained on a self-collected dataset of
2490 high-resolution RGB images. The system’s performance was evaluated on 30 videos featuring
various rockfall scenarios. It achieved a mean Average Precision (mAP50) of 0.845 and mAP50-95 of
0.41, with a processing time of 125 ms. Tested on advanced hardware, the system proves effective in
quickly tracking and identifying hazardous rockfalls, offering a significant advancement in disaster
management and prevention.

Keywords: deep learning; rock detection; rock tracking; geology; machine vision

1. Introduction

In recent years, the world has faced persistent extreme weather events, leading to
significant economic losses and serious impacts on human safety. In 2015, a 7.8 magnitude
earthquake in Nepal resulted in 449 deaths and widespread devastation, with nearly 90%
of buildings in the worst-hit districts damaged. The economic impact amounted to losses
equivalent to Nepal’s annual GDP, necessitating at least USD 5 billion for reconstruction [1].
In 2013, in Colorado, USA, a tragedy occurred when massive boulders, some exceeding
100 tons and similar in size to cars, unexpectedly tumbled from a cliff at an elevation
of 4267 m on Princeton Mountain, causing casualties [2]. On 31 August 2013, heavy
rainfall led to a rockfall disaster in Badouzih, Keelung [3]. The impact of rockfall on the
retaining structures of a mountain road in Taiwan was assessed in a case study, revealing
significant damage to the retaining structures of a mountain road (Miao 62 Line) in Miaoli
County, Taiwan [4]. These incidents underscore the necessity for effective management
and prevention strategies for rockfall. Further exploration on these topics can be found in
studies from Geoenvironmental Disasters and Social Sciences [5,6], with innovative approaches
to rockfall monitoring and early warning systems detailed in a Scientific Reports article [7–9]
and strategies for mitigation, especially in Colorado’s mountainous terrain, provided by
the Colorado Geological Survey [10,11].

Given that mountainous slopes constitute a significant portion, approximately three-
quarters, of Taiwan’s land area [12–14], Taiwan faces a high occurrence rate of rockfall
disasters. This has resulted in numerous casualties and an increase in national compen-
sation cases. Moreover, rockfall disasters significantly impact transportation safety, with
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approximately one-third of travel time disruption in Taiwan’s eastern region being at-
tributed to rockfall incidents. For instance, in Taroko National Park, the estimated annual
loss in tourism revenue amounts to around TWD 20 billion due to frequent rockfall in-
cidents, leading to temporary closures or visitors refraining from visiting due to safety
concerns. These circumstances highlight the urgency of enhancing rockfall prevention,
detection, and warning capabilities. The occurrence of these events underscores the threats
posed by climate change globally and emphasizes the importance of prevention and miti-
gation measures against extreme weather events [1,5]. To minimize the impacts of disasters
on society and the economy, governments and relevant organizations worldwide need
to strengthen disaster risk management, promote climate change adaptation measures,
and enhance public awareness and response capabilities. These efforts will help reduce
the irreversible consequences of future disasters. Therefore, this paper proposes a rockfall
hazard identification system. The system is expected to be deployed on roadside cameras.
Images from cameras along roads prone to disasters will be fed into a computing system
for real-time monitoring. When a disaster occurs, the system can quickly issue alerts by
sending notifications through LINE messenger and email, along with photographs from the
current monitoring footage to facilitate subsequent assessment. One-dimensional sensing
data such as tilt and vibration will be presented on the Grafana information platform. If a
suspected rockfall impact on protection nets is detected, a trigger value will be activated,
prompting a red alert to notify monitoring personnel. The system could enhance rockfall
disaster prevention, detection, and warning capabilities.

This rockfall hazard identification system contributes to multiple United Nations Sus-
tainable Development Goals (SDGs). By quickly identifying and providing early warning
for rockfall disasters, it helps improve the disaster resilience of road and transportation
infrastructure (SDG 9), reduce risks of disruptions, and enhance overall infrastructure
resilience. Rockfall disasters pose threats to the safety of urban populations and trans-
portation systems. The application of this system can mitigate such risks, facilitating the
creation of inclusive, safe, resilient, and sustainable cities and communities (SDG 11). More-
over, extreme weather conditions exacerbated by climate change often trigger rockfall and
other disasters. This system enhances capabilities to respond to climate-related disasters,
strengthening disaster prevention and management related to climate change impacts. This
advancement positively contributes to taking urgent action to combat climate change in
line with SDG 13. Therefore, this rockfall monitoring system supports the realization of key
sustainable development targets centered on resilient infrastructure, sustainable cities and
communities, and climate action.

In the past, due to hardware limitations, complex deep learning algorithms such as
neural networks were not widely supported for object detection and tracking, leading
to a reliance on traditional image processing techniques. It is important to note that
rock texture patterns present similar challenges for image recognition across different
environments. The intricate and irregular surface features of rocks, along with varying
lighting conditions and backgrounds, make it challenging to accurately detect and identify
rock formations from visual data. This complexity is consistent across various settings,
highlighting the universal difficulty in processing and analyzing rock textures and forms
through visual data. Methods based on polygonal Haar-like features were employed [15].
For rock detection, a Random Forest (RF) model using Support Vector Machine (SVM) and
Histogram of Oriented Gradients (HOG) features was utilized [16]. Kalman filtering was
applied for expanded space Multi-Criteria Evaluation (MCE) aggregation in slope sliding
monitoring [17], while a combination of photogrammetry and optical flow was used for
rockfall slope monitoring [18].

These techniques required manual feature design and were sensitive to factors such
as lighting and background, resulting in subpar detection and tracking performance. In
the past, object detection and tracking heavily relied on these traditional image processing
techniques. However, with advancements in hardware and technology, modern approaches
increasingly incorporate complex deep learning algorithms to achieve more accurate and ef-
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ficient object detection and tracking. With the continuous advancement of hardware devices
and artificial intelligence technology, we no longer rely solely on computers and central
processing units (CPUs) for complex computing tasks. Specifically, Nvidia’s Cuda [19]
has opened up a new era by enabling computations on graphics processing units (GPUs),
further driving the development of computer vision, machine learning, and deep learning.
These significant advancements have not only propelled research progress in various fields
but have also laid a solid foundation for the study of rockfall recognition systems. As
for specific application examples, machine learning and deep learning models have been
widely applied in various domains. In a research study related to machine learning, re-
searchers employed classification and regression methods for rockfall prediction tasks [20].
The study develops a warning system integrating various sensors with a logistic regression
model to predict rockfall occurrences along a mountainous road. It classifies hazard levels
into low, medium, and high based on rockfall occurrence probabilities, aiming to enhance
traffic safety by providing dynamic alerts. In another research report, researchers utilized
the XGBoost [21] algorithm from gradient boosting methods, specifically designed for rock
classification tasks. In the field of object detection, despite the successes achieved by deep
learning models such as Faster-RCNN [22], SSD [23], and RetinaNet [24], directly applying
these models to tracking tasks may not always yield satisfactory results. Especially in
complex and dynamic backgrounds, such as branches, leaves, and everyday structures,
they can generate significant amounts of noise, posing significant challenges for object
tracking and recognition tasks.

To address these issues, we have made a series of improvements and optimizations to
the existing algorithms. Firstly, we combined the popular image detection model MobileNet
with SSD [25]. This combination not only enables the effective tracking and detection of
targets but also exhibits highly efficient characteristics. Secondly, we integrated Faster-
RCNN with OpenCV’s CSRT [26] for improved tracking results. Lastly, we enhanced
RetinaNet by optimizing the feature extraction layer and adjusting the size and quantity of
detection boxes, further enhancing the model’s detection performance. By implementing
these strategies and techniques, we can effectively improve the tracking and detection
performance of the models in the presence of complex and dynamic backgrounds. This
has significant academic and practical value for our research work. These studies not only
demonstrate the power of these advanced computational methods but also reveal their
wide applicability across various domains, including research and applications in rockfall
recognition systems.

This study focuses on enhancing rockfall detection by optimizing existing algorithms
and integrating deep learning models for superior tracking, along with adjustments for
improved detection in complex scenes. Key objectives include surpassing target frame rates
for real-time recognition, increasing accuracy in tracking the trajectories of falling objects,
and pioneering the use of RGB images for rockfall recognition. These efforts contribute
significantly to both academic research and practical disaster prevention applications.

2. Methods

In our study, we developed an innovative object tracking technique that integrates
deep learning with motion analysis and data association methods. Initially, we use the
Motion History Image (MHI) [27] algorithm to capture motion trajectories of objects in
videos. Next, we apply YOLO, a deep learning-based object detection system, to identify
targets and evaluate their confidence levels. Our model, trained on the COCO dataset
and further refined with our unique dataset of falling rocks, undergoes 300 training cycles,
optimizing for minimum loss. Utilizing the Nvidia 4090 GPU, we enhance the processing
speed for image analysis, overlaying the results with MHI for accurate detection. Target
positions in successive frames are estimated using the Kalman filter and the Hungarian
algorithm, with the Euclidean distance aiding in ID assignment [28]. Finally, the Perceptual
Hash Algorithm and template matching techniques are employed to boost tracking and
detection reliability.
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2.1. Optimization of Motion History: Enhancing Image Change Effectiveness through Internal
Parameter Optimization

In the process of image analysis, we first convert the images to grayscale, which
effectively reduces computational complexity and accelerates subsequent processing. When
analyzing motion history trajectories, we select four frames as a processing unit and perform
image differencing analysis. Specifically, we add the first F1st and second frames F2nd to
obtain preliminary image changes FSum

1 . Then, we overlay the third frame F3rd with the
previous two frames in an 8:2 ratio to obtain FSum

2 . Subsequently, we perform differencing
between this overlaid image FSum

2 and the fourth frame F4th to obtain further image changes.
α, β, γ, and ω represent the i. The equation is as follows:

FSum
1 = α × F1st + β × F2nd (1)

FSum
2 = γ × FSum

1 + ω × F3rd (2)

δFD =
∣∣∣(FSum

2 − F4th
)∣∣∣ (3)

The next step involves the binarization of the images, which helps us to differentiate
and label the regions of interest more clearly. In grayscale images, 0 represents full black,
while 255 represents full white. We choose a threshold of 32 for binarization, meaning
that we label regions with grayscale values greater than 32 as 255 (full white) and regions
with grayscale values less than or equal to 32 as 0 (full black). The threshold value of
32 is experimentally determined and effectively distinguishes motion trajectories from
the background. Igray

Initial is the initial gray image and Igray
Binary is the image after the binary

preprocess. The equation is as follows:

Igray
Binary =

{
255, i f Igray

Initial > 32
0, i f Igray

Initial ≤ 32
(4)

After obtaining the binarized image, to better observe and analyze the motion trajecto-
ries, we choose to retain the history of the previous five frames. This step helps us to better
understand the motion patterns and regularities of moving objects. Overall, this grayscale-
based method effectively reduces computational complexity and accurately extracts the
desired motion trajectory information, enabling the effective identification and tracking of
moving objects. The entire processing workflow is illustrated in Figure 1.

2.2. YOLO

YOLOv5 is an advanced deep learning model for object detection and recognition.
It introduces improvements such as the Focus module and CSP structures to enhance
detection accuracy and efficiency. It leverages FPN and PAN for feature fusion, improving
the model’s ability to handle objects of different sizes and proportions. Additionally, it
employs data augmentation techniques to increase the diversity and variability of the
training data, improving the model’s generalization and robustness. YOLOv5 is widely
used in various applications and domains.

2.3. Kalman Filter

Kalman filtering is a dynamic model for systems, such as the physical laws of motion,
that estimates the system’s change based on known sequential measurements. It is a
common sensor and data fusion algorithm. In this study, Kalman filtering is used to predict
the coordinates of falling rocks in the image. There are two main methods in the Kalman
filtering process: Predict and Correct. Below are the formulas and explanations for each
parameter in each method:

(1) Prediction Step (Predict):

In this stage, we first update the predicted value u using the state transition matrix F.
This update process can be achieved by multiplying the state transition matrix F with the
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current predicted value u, as shown in Formula (5). Next, we need to update the predicted
error covariance matrix P. The calculation involves multiplying the state transition matrix F
with the current predicted error covariance matrix P and adding the model noise covariance
matrix Q, as shown in Formula (6).

u′ = F ∗ u (5)

P′ = F ∗ P ∗ FT + Q (6)

(2) Correction Step (Correct):

In this stage, we first compute the relevant values for the observation noise covariance
matrix R and the observation matrix A, as shown in Formula (7). Then, we calculate
the Kalman gain K and use it to correct the predicted value u. This correction process is
based on the error between the observed value b and the predicted value, as shown in
Formulas (8) and (9). Finally, we update the predicted error covariance matrix P based on
the Kalman gain K and other relevant values, as shown in Formula (10).

C = A ∗ P′ ∗ AT + R (7)

K = P′ ∗ AT + C−1 (8)

u = u′ ∗ K ∗
(
b − A ∗ u′) (9)

P = P′ − K ∗ C ∗ KT (10)
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Figure 1. This figure summarizes the entire optimized motion history analysis process, including
image overlay, image differencing, binary thresholding, and the acquisition of motion trajectories
from short-term motion variations to long-term historical tracks.

2.4. Hungarian Algorithm

We utilize the Hungarian algorithm to calculate the Euclidean distance between
trajectories and detections. The Hungarian algorithm is a method for solving the assignment
problem optimally. In our research, it is employed to assign the trajectories of falling rocks
to the detected targets, determining which detections correspond to which tracking targets.
The calculation process involves three steps as follows:
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(1) Compute the cost matrix:

Given N trajectories and M detections, we first compute a cost matrix C of size N ×
M. Each element Cij represents the Euclidean distance between the predicted position of
trajectory i and detection j, as shown in Formula (11).

Cij =
√(

xi − xj
)2

+
(
yi − yj

)2 (11)

(2) Assign trajectories and detections using the Hungarian algorithm:

We create a matrix X of size N × M. When trajectory i is assigned to detection j, X[i, j]
is set to 1; otherwise, X[i, j] is set to 0. The objective function is formulated as shown in
Formula (12). Each trajectory can only be assigned to one detection, and each detection can
only be assigned to one trajectory. The constraint is represented by Formula (13).

Min f (x) =
N

∑
1

M

∑
1

C[i, j] ∗ X[i, j] (12)

∀i ∈ {1, 2, . . . , N},
M

∑
j=1

X[i, j] = 1, ∀j ∈ {1, 2, . . . , M},
N

∑
i=1

X[i, j] = 1 (13)

(3) Update the trajectory states:

For each trajectory assigned to a detection, we update its state using the Kalman filter.
If a trajectory is not assigned to any detection, its state prediction remains unchanged.

2.5. Normalized Cross-Correlation

In the process of normalized cross-correlation [29] matching, we compare the similarity
between a template image (template) and a region of the target detection image of the same
size. By calculating the correlation between the template and the image region, we can
identify the region that best matches the template. The calculation process is shown in
Formulas (14) to (18):

(1) Compute the pixel intensity difference between the template T and the image region I:

∆Iij = T(i, j)− mean(T),∆Tij = I(x + i, y + j)− mean(I(x, y)) (14)

(2) Compute the product of the differences:

∏= ∆Iij ∗ ∆Tij (15)

(3) Sum all the products:

Sum =
N

∑
i=1

M

∑
j=1

∆Iij ∗ ∆Tij (16)

(4) Calculate the product of the standard deviation of the template T and the image
region I:

σ = σT ∗ σI(x, y) (17)

(5) Combine the sum of the products with the product of standard deviation and multiply
by a constant:

R(x, y) =
(

1
N − 1

)
∗
(

Sum
σ

)
(18)
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2.6. Difference Hash Table

Differential hashing [30] is a method for computing image hash values that enables
the fast comparison of the similarity between two images. It compresses the images to a
specific aspect ratio, such as a 9 × 8 pixels matrix, calculates the grayscale intensity value
for each pixel, converts it to binary, and then computes the binary difference between
adjacent elements. Finally, it concatenates all the binary values to obtain the image hash.
The process can be summarized in three steps as follows:

(1) Resize image and convert to grayscale:

The image is resized to a specific size, such as 9 × 8, and then converted to grayscale
intensity values ranging from 0 to 255.

(2) Compute differences:

Calculate the grayscale intensity difference between adjacent pixels. If the intensity
of the first pixel is greater than the second pixel, it is assigned a value of 1; otherwise, it is
assigned a value of 0. This is represented by Formula (19).

D(x) =
{

1, i f pi,j > pi,j+1
0, i f pi,j < pi,j+1

(19)

(3) Compute the hash value:

First, convert the binary differences to decimal values to obtain the decimal hash
value hi for each row. Then, concatenate all the row hash values to generate the differential
hash value Dhash, as shown in Formula (20).

hi =
N

∑
j=1

2j−1 ∗ D(x)Dhash = [h1, · · · , hN] (20)

2.7. Overview the System

Before starting the analysis, some basic processing and calibration are applied to
the collected images. The input resolution of the images is 1920 × 1080, with a frame
rate of 30 FPS, and they are captured in RGB color mode. The images are obtained from
two lenses with different focal lengths (26 mm and 52 mm), each with a resolution of
12 million pixels. The process can be divided into two parts. Firstly, the image input
undergoes image differencing and motion history trajectory calculation, and the result
is output as the red channel. The foreground is considered as moving objects, while the
background is considered as non-moving objects. The trajectory of the target is marked
with a blue rectangular box, as shown in Figure 2. For the size of rockfalls that cause serious
damage, we define 80 × 160 as big rockfall and 40 × 40 as small rockfall, shown in Figure 3.
Secondly, YOLO is used for image prediction, and the predicted ROI objects are extracted
and output as the green channel along with their confidence scores. These confidence
scores are saved in the image information.
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Figure 3. The size definition on the image in pixel values.

Next, the red channel of the MHI and the green channel of YOLO are overlaid to
create the overlaid image. In this overlaid image, the yellow area represents the overlap
between the two channels, and we can process this yellow overlap region. Then, we obtain
the coordinates of the yellow area and use the Kalman filter to predict their next position.
Then, we assign an ID to each target using the Hungarian algorithm. This approach allows
us to effectively detect multiple targets even when they appear simultaneously, and the
results are saved in the image information.

Finally, a decision strategy is applied to interpret the image information. When the
predicted confidence score is greater than 0.9, the target is considered as a foreground falling
object. When the predicted confidence score is lower than 0.6, the target is considered as
background. When the predicted confidence score is between 0.6 and 0.9, two algorithms
are used: normalized correlation matching and the difference hash table. The difference
hash table is compressed into a 9 × 8 matrix. If the normalized correlation matching
value is greater than 0.85 and the hash value of the difference hash table is greater than
35, we update our template and output the coordinates of the target and the current time,
generating a warning in the terminal about the possibility of falling rocks. This process
demonstrates our image processing and analysis methods, utilizing mathematics and
computer vision techniques for tasks such as image calibration, target detection, trajectory
prediction, and target identification, and integrating the results into a single workflow, as
shown in Figure 4.
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Figure 4. This flowchart illustrates the process starting from the input of the initial image, which
undergoes preprocessing using the OpenCV module. It then proceeds to target detection through the
YOLO deep learning model, followed by data processing involving coordinate tracking and template
matching on the images. This process aims to achieve the final tracking and detection of rockfall,
ultimately outputting warnings based on the detection of rockfall.

3. Datasets

In our research, we conducted a simulated experiment in a small-scale field to simulate
the occurrence of falling rocks in real-life situations. By conducting such a localized and
on-site simulated experiment, we can gain a deeper understanding of real-world falling
rock scenarios and optimize our system to better adapt to these situations. Such on-
site experiments provide a practical and intuitive evaluation criterion to help assess and
improve our methods and techniques.

The optical measurement device is the iPhone 13 Pro, which has an aperture of f/2.8,
and we used two different focal lengths, 26 mm and 52 mm. To ensure the accuracy of the
test results, we maintained a distance of 2 m between the camera and the target object, as
shown in Figures 5 and 6.
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In our research, we conducted shooting and testing from various angles and back-
grounds, including scenarios where both people and rocks coexist. These shooting and
testing results were organized into a dataset that we used for pre-training YOLO to obtain
training weights for rock detection. To improve the accuracy of the training results, we
employed a data augmentation strategy.

Our training set consists of self-captured and self-annotated 1920 × 1080 RGB images.
The annotation principle we followed was to outline the edges of the target objects with
bounding boxes. To ensure our model can respond appropriately to various scenarios, our
dataset covers different situations such as single and multiple targets and moving and
stationary rocks. In the end, our dataset consisted of 2298 training images and 192 validation
images. We applied nine different image augmentation techniques, and the details of
these techniques are as follows: (1) Flip: Ho Flip: Horizontal; (2) 90◦ Rotate: Clockwise,
Counter-Clockwise; (3) Rotate: Between −15◦and +15◦; (4) Shear: ±15◦ Horizontal and
±15◦ Vertical; (5) Saturation: Between −25% and +25%; (6) Brightness: Between −25% and
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+25%; (7) Exposure: Between −25% and +25%; (8) Blur: Up to 10px; and (9) Noise: Up to
5% of pixels. The choice of parameters and settings, particularly in data augmentation, is
driven by the need to enhance the model’s generalization ability by exposing it to a wide
variety of data scenarios.

4. Results

In our research experiment, the model was trained for 300 epochs. During this process,
we set several parameters: an initial learning rate of 0.01, the first-order momentum
parameter (beta1) of the Adam optimizer to 0.937, a weight decay parameter of 0.0005, and
the number of anchors per output layer set to three. We also set the training threshold
for Intersection over Union (IoU) to 0.2. These settings aimed to optimize the learning
efficiency of our model and reduce the risk of overfitting, resulting in the stable convergence
of the training process.

4.1. Training Results

In the evaluation of the training results, we obtained an F1 score of 0.84 and a mean Average
Precision (mAP) score of 0.845 with an IoU threshold of 0.5, as shown in Figures 7 and 8. Addition-
ally, we achieved a precision of 0.82 and a recall of 0.81, as depicted in Figures 9 and 10. Lastly,
the Precision–Recall is shown in Figure 11. Overall, these evaluation results demonstrate
that our model has achieved good learning effectiveness and performance during the
training process.

J. Imaging 2024, 10, x FOR PEER REVIEW 11 of 18 
 

 

In our research, we conducted shooting and testing from various angles and 

backgrounds, including scenarios where both people and rocks coexist. These shooting 

and testing results were organized into a dataset that we used for pre-training YOLO to 

obtain training weights for rock detection. To improve the accuracy of the training results, 

we employed a data augmentation strategy. 

Our training set consists of self-captured and self-annotated 1920 × 1080 RGB images. 

The annotation principle we followed was to outline the edges of the target objects with 

bounding boxes. To ensure our model can respond appropriately to various scenarios, our 

dataset covers different situations such as single and multiple targets and moving and 

stationary rocks. In the end, our dataset consisted of 2298 training images and 192 

validation images. We applied nine different image augmentation techniques, and the 

details of these techniques are as follows: (1) Flip: Ho Flip: Horizontal; (2) 90° Rotate: 

Clockwise, Counter-Clockwise; (3) Rotate: Between −15°and +15°; (4) Shear: ±15° 

Horizontal and ±15° Vertical; (5) Saturation: Between −25% and +25%; (6) Brightness: 

Between −25% and +25%; (7) Exposure: Between −25% and +25%; (8) Blur: Up to 10px; and 

(9) Noise: Up to 5% of pixels. The choice of parameters and se�ings, particularly in data 

augmentation, is driven by the need to enhance the model’s generalization ability by 

exposing it to a wide variety of data scenarios. 

4. Results 

In our research experiment, the model was trained for 300 epochs. During this 

process, we set several parameters: an initial learning rate of 0.01, the first-order 

momentum parameter (beta1) of the Adam optimizer to 0.937, a weight decay parameter 

of 0.0005, and the number of anchors per output layer set to three. We also set the training 

threshold for Intersection over Union (IoU) to 0.2. These se�ings aimed to optimize the 

learning efficiency of our model and reduce the risk of overfi�ing, resulting in the stable 

convergence of the training process. 

4.1. Training Results 

In the evaluation of the training results, we obtained an F1 score of 0.84 and a mean 

Average Precision (mAP) score of 0.845 with an IoU threshold of 0.5, as shown in Figures 

7 and 8. Additionally, we achieved a precision of 0.82 and a recall of 0.81, as depicted in 

Figures 9 and 10. Lastly, the Precision–Recall is shown in Figure 11. Overall, these 

evaluation results demonstrate that our model has achieved good learning effectiveness 

and performance during the training process. 

 

Figure 7. Results of F1 score with scores of 0.84. 

0 100 200 300

0.0

0.4

0.8

F
1
 S

co
re  

 Validation

Epochs

 F
1
 Score

Figure 7. Results of F1 score with scores of 0.84.

J. Imaging 2024, 10, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Results of mAP at 0.5 with scores of 0.845. 

 

Figure 9. Results of precision with values of 0.93. 

 

Figure 10. Results of recall with values of 0.91. 

0 100 200 300

0.0

0.4

0.8

 

 Validation

m
A
P

@
0.

5

Epochs

 mAP@0.5

0 100 200 300
0.0

0.4

0.8

Epochs

 

 Validation

P
re

ci
si

on

 Precision

0 100 200 300

0.0

0.4

0.8

 

 Validation

R
ec

al
l

Epochs

 Recall

Figure 8. Results of mAP at 0.5 with scores of 0.845.



J. Imaging 2024, 10, 78 12 of 17

J. Imaging 2024, 10, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Results of mAP at 0.5 with scores of 0.845. 

 

Figure 9. Results of precision with values of 0.93. 

 

Figure 10. Results of recall with values of 0.91. 

0 100 200 300

0.0

0.4

0.8

 

 Validation

m
A
P

@
0.

5

Epochs

 mAP@0.5

0 100 200 300
0.0

0.4

0.8

Epochs

 

 Validation

P
re

ci
si

on

 Precision

0 100 200 300

0.0

0.4

0.8

 

 Validation

R
ec

al
l

Epochs

 Recall

Figure 9. Results of precision with values of 0.93.

J. Imaging 2024, 10, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Results of mAP at 0.5 with scores of 0.845. 

 

Figure 9. Results of precision with values of 0.93. 

 

Figure 10. Results of recall with values of 0.91. 

0 100 200 300

0.0

0.4

0.8

 

 Validation

m
A
P

@
0.

5

Epochs

 mAP@0.5

0 100 200 300
0.0

0.4

0.8

Epochs

 

 Validation

P
re

ci
si

on

 Precision

0 100 200 300

0.0

0.4

0.8

 

 Validation

R
ec

al
l

Epochs

 Recall

Figure 10. Results of recall with values of 0.91.

J. Imaging 2024, 10, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 11. Results of the Precision–Recall figure. 

4.2. Prediction Results 

In our experimental research, we used an Nvidia RTX 3060 laptop graphics card and 

an i7-12650H processor for computational processing. The shooting parameters were 

based on our device and experiment. We conducted tests in two main scenarios: single-

object detection and multi-object detection. For each scenario, we performed image 

capture tests with both 1× and 2× focal length se�ings. The images captured with the 2× 

focal length se�ing were not annotated. All test videos were new data that did not appear 

in the training or validation datasets, ensuring that our test results reflect the model’s 

generalization capability. The relevant parameters and se�ings for these test videos are 

detailed in Table 1. The results are shown in Table 2. 

(1) Single Object; 1×: When detecting large-sized falling rocks that are comparable in size 

to a human, the target object is effectively captured in every frame of its falling 

process. Each frame can be successfully captured. 

(2) Single Object; 2×: When detecting falling rocks with a 2× focal length, detection is 

only possible in simple background conditions and in very few cases. In complex 

backgrounds, detection is not possible at all. Our training dataset did not include 

annotations for images captured with a 2× focal length. 

(3) Multi-Object; 1×: When detecting multiple targets, the results are similar to the single-

object scenario, where falling rocks can be detected even in complex backgrounds. 

However, due to limitations in the test environment, there may be some shadows 

that affect the detection performance. 

Table 1. Testing video table. 

Task Speed (FPS) Target Focal Length Testing Videos 

System 

30 Single 26 14 

30 Single 52 7 

30 Multiple 26 6 

30 Multiple 52 3 

60 Single 52 24 

Table 2. Testing results. 

Task Speed (FPS) Target Rockfall Size Focal Length 
Undetected 

Percentage 

System 

30 Single Big 26 16/95 

30 Single Small 26 62/94 

30 Single Big 52 18/37 

30 Single Small 52 18/24 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

 Validation

P
re

ci
si

on

Recall

 Precision-Recall

Figure 11. Results of the Precision–Recall figure.

4.2. Prediction Results

In our experimental research, we used an Nvidia RTX 3060 laptop graphics card and
an i7-12650H processor for computational processing. The shooting parameters were based
on our device and experiment. We conducted tests in two main scenarios: single-object
detection and multi-object detection. For each scenario, we performed image capture
tests with both 1× and 2× focal length settings. The images captured with the 2× focal
length setting were not annotated. All test videos were new data that did not appear
in the training or validation datasets, ensuring that our test results reflect the model’s
generalization capability. The relevant parameters and settings for these test videos are
detailed in Table 1. The results are shown in Table 2.
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Table 1. Testing video table.

Task Speed (FPS) Target Focal Length Testing Videos

System

30 Single 26 14
30 Single 52 7
30 Multiple 26 6
30 Multiple 52 3
60 Single 52 24

Table 2. Testing results.

Task Speed (FPS) Target Rockfall Size Focal Length Undetected
Percentage

System

30 Single Big 26 16/95
30 Single Small 26 62/94
30 Single Big 52 18/37
30 Single Small 52 18/24
30 Multiple Big and small 26 45/87
30 Multiple Big and small 52 20/28
60 Single Big 52 12/144
60 Single Small 52 46/151

(1) Single Object; 1×: When detecting large-sized falling rocks that are comparable in
size to a human, the target object is effectively captured in every frame of its falling
process. Each frame can be successfully captured.

(2) Single Object; 2×: When detecting falling rocks with a 2× focal length, detection is
only possible in simple background conditions and in very few cases. In complex
backgrounds, detection is not possible at all. Our training dataset did not include
annotations for images captured with a 2× focal length.

(3) Multi-Object; 1×: When detecting multiple targets, the results are similar to the single-
object scenario, where falling rocks can be detected even in complex backgrounds.
However, due to limitations in the test environment, there may be some shadows that
affect the detection performance.

4.3. Field Prediction Results

To enhance the dataset’s diversity, we plan to incorporate a broader selection of
videos that encompass a variety of zoom levels. This expansion will enable the model to
more effectively learn and recognize landslide characteristics under diverse observational
conditions, thereby enhancing its generalization capabilities. The attached videos https://
youtu.be/Xq9FlsVN-A8 (accessed on 24 March 2024) and https://youtu.be/nEnuFX-QBJk
(accessed on 24 March 2024) showcase the results of field tests, demonstrating the utility of
our approach in real-world applications.

5. Discussion

Existing solutions are based on sensors deployed on rockfall protection nets, and data
analysis is performed on these sensors. However, these approaches are geared towards
analyzing data from rockfall disasters that have already occurred. Our solution focuses on
real-time detection in specific road sections.

In our experiment, considering the scenario of the roadside camera, we adopted a
single lens for shooting. Therefore, we did not perform conversions for image and distance,
relying solely on pixels.

However, among all the rockfall detection systems, it is rare to use image recognition
and tracking for identifying and tracing falling rocks. Comparing our system with others
is challenging. And it is also rare to capture birds and falling rocks in the wilderness; we
conducted experiments using manually labeled bird species and rocks in a small experi-
mental field with complex backgrounds. The experiments indicated that we can accurately
distinguish between two common objects in the mountains, falling rocks and birds, as
shown in Figure 12. In the scenario of rock falling, our system will calculate information

https://youtu.be/Xq9FlsVN-A8
https://youtu.be/Xq9FlsVN-A8
https://youtu.be/nEnuFX-QBJk
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locally in real-time. The local system is expected to be installed on-site and transmit short
messages via wireless networks to notify nearby pedestrians. The combination of short text
messages and real-time calculations enables the system to achieve the real-time notification
of falling rocks for pedestrians.
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In our dataset testing, we discovered that the detection of small rockfall targets was
not ideal. Although we chose not to apply blurring filters to the images in order to maintain
their authenticity, we found that preprocessing with bilateral filtering to remove noise
can significantly improve image recognition accuracy and reduce noise during YOLO
detection. Compared to the Distributed Acoustic Sensing (DAS) approach [8], which
utilizes fiber-optic technology for detailed analysis and monitoring, our proposed system
provides a forward-looking solution for real-time detection and disaster prevention. It
offers additional advantages, such as the capability to monitor actual rockfall locations and
assess the volume of rockfall spaces.

6. Conclusions

In this study, we have designed and implemented a rockfall detection and tracking
system tailored for cliffs. The system adeptly navigates the detection challenges posed
by complex backgrounds. Through the analysis and processing of a dataset comprising
2490 RGB rockfall images and 30 high-definition (1920 × 1080 resolution) rockfall test
videos, our algorithm exhibits strong performance in detecting large-sized rockfalls. Despite
not testing different zoom levels in the training dataset, our system showcases remarkable
generalization capabilities. Moreover, with an execution time of 12.9 FPS on a GPU, our
rockfall recognition system achieves rapid and efficient detection, given adequate data
support. However, in tests focusing on smaller targets, we identified limitations due to
the narrow scope of the annotated dataset and the suboptimal image acquisition speed,
leading to potential deformations and transparency issues in the images. To mitigate these
issues, we plan to broaden the dataset and enhance the image acquisition speed, aiming to
improve detection performance. Additionally, we aim to relocate our experimental setup
to real-world sites, like the Nine Turns Trail in Taiwan, to further refine and validate our
system. For implementation, a robust computing server, wireless transmission towers, and
cameras are necessary. This infrastructure ensures timely alerts for pedestrians and safety
personnel, facilitating emergency road closures during rockfall incidents. In the case of an
accident, instant visual data provision and streamlined post-disaster repairs are enabled by
the recorded image data.

Moving forward, we intend to utilize tools like Blender to simulate real-world scenes
in a virtual environment, thereby expanding our dataset with these simulations. We will
assess the discrepancies between Blender-generated images and actual photos, striving to
transpose the characteristics learned from real images to the Blender-generated ones using
diffusion models, thus enhancing the training dataset’s quality and diversity. The Stable
Diffusion Model will be employed to sketch a black mask along the predicted rockfall
trajectory and generate rockfall images. However, to address the temporal sequence
challenges in the rockfall trajectory, we will integrate an attention model to bolster the
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connections between sequential falling rockfall images, facilitating dataset generation.
Moreover, we plan to manually establish a small experimental field for collecting diverse
scale rockfall image data. Our research, merging image recognition and deep learning,
addresses rockfall disasters with significant implications for future innovations in this
domain, applicable across intelligent disaster prevention and traffic safety. Our real-time
image recognition and detection system marks a leap towards identifying dynamic objects
in scenarios such as debris flows and avalanches, contributing to the evolution of intelligent
transportation and vehicle safety systems.
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