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Abstract: Computer vision (CV), a type of artificial intelligence (AI) that uses digital videos or a
sequence of images to recognize content, has been used extensively across industries in recent years.
However, in the healthcare industry, its applications are limited by factors like privacy, safety, and
ethical concerns. Despite this, CV has the potential to improve patient monitoring, and system
efficiencies, while reducing workload. In contrast to previous reviews, we focus on the end-user
applications of CV. First, we briefly review and categorize CV applications in other industries (job
enhancement, surveillance and monitoring, automation, and augmented reality). We then review the
developments of CV in the hospital setting, outpatient, and community settings. The recent advances
in monitoring delirium, pain and sedation, patient deterioration, mechanical ventilation, mobility,
patient safety, surgical applications, quantification of workload in the hospital, and monitoring for
patient events outside the hospital are highlighted. To identify opportunities for future applications,
we also completed journey mapping at different system levels. Lastly, we discuss the privacy, safety,
and ethical considerations associated with CV and outline processes in algorithm development and
testing that limit CV expansion in healthcare. This comprehensive review highlights CV applications
and ideas for its expanded use in healthcare.

Keywords: healthcare; hospital; computer vision; artificial intelligence; system

1. Introduction

The use of technology to address inefficiencies within the healthcare system and
optimize patient safety has an extensive history of development, starting with the doc-
umentation and recording of patient care events. The concept of the electronic health
record (EHR) emerged in the 1970s with the first official EHR built in 1972 by the Regen-
strief Institute at Indiana University and has grown expediently over several decades [1,2].
The EHR provides a historical record of the patient care that was ordered and completed,
making the EHR inherently retrospective. While this historical record is necessary for
legal, administrative (billing), and diagnostic confirmation (post-test probability), it is
cumbersome to use for real-time clinical decision-making like predictions, detection, and
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prognosis. This limitation leads to the inability to anticipate the healthcare needs of the
patient, as well as the disease process that may be occurring; this is otherwise known as
pre-test probabilities [3]. An opportunity to obtain more granular, real-time data is to use
ambient sensors such as CV. CV mimics human vision that integrates and interprets visual
information and could be potentially used to create sophisticated algorithms in real-time.

We recognize that much can be said about CV in terms of development trends and
internal causal relationships of the overall and individual application of this technol-
ogy. However, the purpose of this manuscript is to provide a high-level, comprehensive
overview of the application of CV in healthcare settings based on other industries. First,
we will briefly review the use of CV in industries outside of healthcare and categorize its
application into themes. Following these themes, we review in greater detail how CV has
been applied and/or developed for the hospital setting, and then we review outpatient
and community settings. To identify future opportunities for the application of CV, we
completed journey mapping at the patient, clinician, and system levels. Lastly, we discuss
the privacy and safety considerations and ethical implications for the use of CV in the
healthcare setting.

2. Overview of Computer Vision

CV is a type of artificial intelligence (AI) that uses digital videos or sequences of
images. The goal of CV is to train computers to extract information from the images,
essentially enabling computers to “see” and recognize content [4]. The foundations of CV
were established during the 1980s; they were marked by the development of algorithms
like optical flow and edge detection [5,6]. The advancement of machine learning and
statistical techniques in the 1990s empowered computer applications to acquire the ability
to understand and process more intricate patterns within visual scenes [7,8]. During the
2000s, the application of CV manifested in more practical domains, including the analysis
of medical images and the detection of faces. The use of Convolutional Neural Networks
(CNNs) significantly advanced the field of CV in 2012 when CNNS demonstrated high
performance in the ImageNet Large Scale Visual Recognition Competition [9], emerging as
the predominant learning method in CV. CNNs showed expert-level performance in image
classification, object detection, and semantic segmentation across diverse fields, including
medicine, surveillance, and autonomous driving [10–16]. As machine learning models
advanced, obtaining a sufficient quantity of labeled data became a challenge. In response
to this obstacle, unsupervised techniques like clustering and dimensionality reduction
were developed. These approaches delve into the inherent structure of data without
relying on explicit guidance to address the scarcity of labeled data [17–19]. However, the
adoption and therefore application of CV into hospital settings has been slow. Its utilization
in healthcare comes with limitations, as ethical and privacy concerns take precedence
when involving humans, particularly humans in a vulnerable state (i.e., patients). As CV
continues to develop, including the potential to assist in many aspects of patient care (e.g.,
documentation, recognition of a deteriorating patient, etc.), it is important to revisit how
CV could be utilized for the benefit of patients and providers.

CV encompasses a multidisciplinary domain integrating advanced machine learning
techniques, pattern recognition, and image processing to empower computers to compre-
hend the visual content present in images and videos [16,20–22]. Typically, CV algorithms
start with the acquisition of data through cameras or sensors, followed by preprocessing
and image enhancements. CNNs play a pivotal role in automatically learning the repre-
sentations of visual scene content and contribute significantly to various CV tasks. Due
to the CNNs’ robust feature representation capabilities, CNNs have found widespread
application as an effective method for extracting meaningful patterns and features [23–25].
Despite the complexity of training CNNs due to their numerous layers, the artificial in-
telligence field addresses these challenges by adopting transfer learning and fine-tuning
techniques to enhance model efficiency and representation power [26–28]. Object detection,
crucial in applications like medical diagnostics and autonomous driving, heavily relies on
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CNNs, where a CNN backbone network extracts image features, and candidate regions
determine target category and location information. CNNs also find applications in object
classification across medical imaging, security, and agriculture, among other industries.
For instance, in medical imaging, CNNs extract relevant features for categorizing structures
such as tumors, aiding in diagnostic processes [29–31]. By means of parallel processing,
Graphics Processing Units (GPUs) (i.e., computer chips) enhance the efficiency of managing
extensive matrix operations essential for the processing of CNNs. This parallel approach
substantially diminishes training times, thereby streamlining the implementation of real-
time applications utilizing CNNs [32]. The evolution and implementation of CV have
undergone notable transformations in the utilization of deep learning models and the
expansion of machine learning methods. These deep learning models and methods are
outlined further in Table 1.

Table 1. Display of different types of machine learning models used in computer vision.

Approach Supervision Machine Learning Model Description

Deep
Learning

Supervised

Convolutional Neural Network

Mostly used for classification and
segmentation. It includes wide
range of model architectures such
as ResNet, VGG-net, and AlexNet.

Mask-region-based Convolutional
Neural Network

CNN type primarily employed for
detecting objects in input images.

YOLO
CNN types primarily employed
for image segmentation
or classification.

U-net Type of CNN mainly used for
image segmentation.

Gated recurrent unit Type of recurrent neural network
tailored for modeling time
dependent data to address
long-range dependencies in
sequential data.

Long short-term memory (LSTM)

Vision transformer

Novel category of CNNs. Adopts
transformer architecture
commonly used in NLP and
shows high performance in image
classification benchmarks.

Unsupervised

Convolutional Deep Belief
Network (CDBN)

Type of deep generative models
that is constructed by stacking
max-pooling Convolutional
Restricted Boltzmann
Machines (CRBMs).

Autoencoder

A type of neural network that
specializes in learning to convert
data into a compact and efficient
representation, often employed
for the purpose of
dimensionality reduction.

Traditional Supervised

k-nearest neighbors

Assigns class labels or values
according to the distance of the
input data to the k-nearest
neighbors in the training data.

Binary Tree

Decision-making algorithm that
navigates the tree from root to leaf
to make decisions based on
specific features or attributes.

Naïve Bayes

Probabilistic machine learning
algorithm that classifies data
based on the conditional
independence between every pair
of features.
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Table 1. Cont.

Approach Supervision Machine Learning Model Description

Support vector machine (SVM)

It uses the kernel trick to find a
linear decision boundary to
separate input data in the
transformed space.

Fuzzy Inference System

A computational model that uses
fuzzy logic to perform reasoning
on uncertain or
imprecise information.

Fisher’s linear
discriminant analysis

Classifies input data based on
linear combination of features that
represent items in each class.

Linear Mixed Model

An extension of simple linear
models that allow fixed and
random effects, useful for
complex data

Logistic/linear regression
This is a statistical model that uses
the logistic function to predict the
probability of a specific class.

Supervised
and

Unsupervised

Random forest

Ensemble learning method that
comprises multiple trees trained
on random subsets of data.
The final prediction is aggregated
from all trees.

Neural network

It is a conventional machine
learning model employed for
classification and regression.
In comparison to existing deep
methods, it exhibits
lower accuracy.

Singular Value
Decomposition (SVD)

It decomposes the input feature
space into 3 generic and
familiar matrices.

Unsupervised

Fuzzy C-means

A computational model that uses
fuzzy logic to perform reasoning
on uncertain or
imprecise information

Gaussian Mixture Model
Segmentation

It uses Gaussian distribution to
partition pixels into
similar segments

Table 1 outlines the types of machine learning models used in CV algorithm development. As computer vision
has progressed over the years, the use of deep supervised models has increased. This innovation includes the use
of the transformers and autoencoders listed above.

3. Application of Computer Vision in Industry Outside of Healthcare

The use of CV was identified in 24 major industries including agriculture, engineering
and manufacturing, retail, and education, among many others. The application of CV
largely fell into four different themes or categories: job enhancement, surveillance and
monitoring, automation, and augmented reality. These themes are outlined in Table 2 and
provide insight into how CV could be applied in healthcare. Examples of job enhancement
include the use of CV to analyze sporting events to inform referee calls [33], the scoring
of diving competitions [34], and insurance appraisals to assist with claim reporting [10].
The use of CV in surveillance included the detection of forgery in artwork [35–37] as well as
other industries, the prevention of cheating in academic and educational settings, and the
enforcement of speed limits [14]. The theme of monitoring was the largest, including the
use of CV to monitor agricultural crops for disease or insect infestations [15,38,39], detect
restocking needs in warehouses or retail stores [40], and identify defective products on
assembly lines [41]. The final category of augmented reality included technology such as
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Apple Vision [42], the ability to try clothes on virtually [43–45], and tools to assist people
with vision impairment and blindness [46–48].

Table 2. Uses and categorizations (themes) of computer vision in industry outside healthcare.

Industry Themes

Job Enhancement Surveillance (S)
Monitoring (M) Automation Augmented Reality

Agriculture Monitor crops (M) [15,38,39]

Weed detection
and elimination

https://weedbot.eu/,
acessed on 1 July 2023

Animal control
Wildlife monitoring (M) [49]

Farm animals monitoring
(M) [50]

Art security Forgery detection (S)
[35–37,51]

Automotive Parking lot analysis (M) [52]
Self-driving cars

https://tesla.com/,
accessed on 15 July 2023

Digital design
Video enhancement [53]

Image/video
deblurring [54]

Education Cheating prevention (S) [55]

Engineering
Importing real life objects

into modeling
software [56]

Food service Reduce food waste in
restaurants (M) [57]

Robotic food delivery
https://starship.xyz/,

accessed on 15 July 2023

Gaming Xbox Kinect [58]
Gesture based gaming [59]

Government Control traffic lights [60] Detecting natural disasters
(M) [61]

Insurance Insurance appraisals
[10,62,63]

Law enforcement Forensic analysis[64]

Facial recognition
in large crowds (S) [65]

Identity verification (S) [66]
Detect dangerous situations (S)

[67]

Speeding enforcement [14]

Manufacturing Defective products on an
assembly line [68]

Manufacturing Workplace inspection [69]

Medical See Table 3

Military Terrain Reconnaissance (S) [70] Automate military
drones [71]

Movie Film movie
restoration [72]

Retail

Customer behavior
analysis (Traffic volume

heatmaps)
https://n-ix.com/,

accessed on 1 July 2023
Staff demand for optimal

shift assignments
https://n-ix.com/,

accessed on 1 July 2023

Detecting defective products
(M) [73]

Floor-cleaning robots [74]
Detecting restock [75]

Identifying retail products
at sale

https://n-ix.com/,
accessed on 1 July 2023

Trying on clothes virtually
[43–45]

Virtual testing and
visualization of products

in their intended
space [76]

https://weedbot.eu/
https://tesla.com/
https://starship.xyz/
https://n-ix.com/
https://n-ix.com/
https://n-ix.com/
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Table 2. Cont.

Industry Themes

Job Enhancement Surveillance (S)
Monitoring (M) Automation Augmented Reality

Robotics

Helping robots move
around environment
https://inbolt.com/,

accessed on 1 July 2023

Social media Social media
recommendation [77]

Inappropriate content
detection [78]

Space Tracking asteroids and debris
(M) [79] Landing spacecraft [80,81]

Sports

Finding game highlights
in videos [82]

Sport performance
analysis [33,34]

Ball tracking in sports
[83,84]

Refereeing
automation [33]

Table 2. Cont.

Industry Themes

Job Enhancement Surveillance (S)
Monitoring (M) Automation Augmented Reality

Tech Facial recognition personal
mobile devices (M) [85]

Language translation of
video and images [86]

Azure Kinect [87]
Apple vision

https://apple.com/apple-
vision-pro/, accessed on

15 July 2023

Table 2 outlines the use of computer vision across different industries (first column) and how that use is categorized
into identified themes. This is not an exhaustive list. This table was created to illustrate how other industries use
computer vision to improve efficiencies across systems and could provide insight into how computer vision could
be used in healthcare.

4. Computer Vision Application in Hospital Settings

Current medical applications of CV largely focused on monitoring (detection and
measurement) and were mostly in the development and testing phases. The application
or use of CV in the hospital included several commercial companies that specialized in
patient monitoring for falls (Artisight: https://artisight.com/, accessed on 18 January
2024, CareAI: https://www.care.ai/sensors.html, accessed on 18 January 2024, Inspiren:
https://inspiren.com/solutions/, accessed on 18 January 2024, Ocuvera: https://ocuvera.
com, accessed on 18 January 2024, VirtuSense: https://www.virtusense.ai/, accessed on
18 January 2024) [88–92], Magnetic Resonance Imaging (MRI) and Computed Tomogra-
phy (CT) support (Philips: https://www.philips.com/a-w/about/artificial-intelligence/
ai-enabled-solutions, accessed on 18 January 2024; Silo AI: Europe’s largest private AI
lab|Silo AI, accessed on 18 January 2024) [93,94], and patient and protocol monitoring
including hand sanitation (CareAI). CareAI also advertises automated natural language
processing [88]. Published peer-reviewed literature on the effectiveness of these models or
documentation of the implementation process into clinical care is scarce. Ocuvera includes
an overview of pre- to post-implementation fall data with significant differences in fall
rates [90]. Inspiren and Virtusense provide case studies and white papers that overview the
technology [91,92]. Philips outlines the science behind the algorithms in a series of research
articles [93]. Outside of these companies, we identified several studies reporting on the
development and application of CV to assist with radiology exams (i.e., X-rays, MRIs, CTs,
and PET scans) for abnormalities signaling a disease process such as breast cancer [95–97].
The use of CV in radiology and histology is discussed next as these tools are either applied

https://inbolt.com/
https://apple.com/apple-vision-pro/
https://apple.com/apple-vision-pro/
https://artisight.com/
https://www.care.ai/sensors.html
https://inspiren.com/solutions/
https://ocuvera.com
https://ocuvera.com
https://www.virtusense.ai/
https://www.philips.com/a-w/about/artificial-intelligence/ai-enabled-solutions
https://www.philips.com/a-w/about/artificial-intelligence/ai-enabled-solutions
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in practice or are closer to application. Table 3 emphasizes key domains of CV advancement
in healthcare, detailing the types of images and deep learning models used.

Table 3. CV applications in healthcare.

Areas Citations Image Type Deep Model Application

Medical imaging and
diagnosis

[98–103] CT, F-FDG PET/CT, Chest
X-rays

Mask-RCNN, CNN,
Transformer, SVM, random
forest, k-nearest neighbor

Lung cancer, tuberculosis

[104–106] Iris, cellular
retinal, fundus

Binarytree, Random Forest,
SVM, neural network, CNN

Changes in vision related
to diabetes

[107–109] HD microscope Vision transformer, CNN Cervical cancer

[97,110–119]
Mammogram, whole

slide images,
hematoxylin, eosin

YOLO, CNN, random forest,
SVM, decision tree, Naïve

Bayes, Logistic linear classifier,
Linear discriminant classifier,
Fischer’s Linear Discriminant

analysis, k-nearest
neighbor, Autoencoders

Breast cancer,
data augmentation

[120–123] Dermoscopic image CNN, Gated recurrent unit Skin cancer
detection/segmentation

[124–127]
Endoscopic images,

hematoxylin & eosin,
whole-slide images

CNN, transformer, U-net Colorectal,
gastrointestinal cancer

[128–133] Chest X-rays CNN, transformer,
logistic regression

COVID-19 diagnosis
Age estimation in

unidentified patients

[134] Whole slide images Vision transformer Subtyping of papillary
renal cell carcinoma

[25,29,30,98,127,135–151] MRI, Histogram,
CT, X-ray, ultrasound, PET

CNN, Naïve Bayes, Random
Forest, Neural

Networks, SVM, k-nearest
neighbor, Decision Tree,

logistic function, Naive Bayes,
Fuzzy k-means

Cancers (brain, bladder,
breast, liver, lung,

pancreas, prostate, other),
CT reconstruction,

Alzheimer’s Disese,
intracranial hemorrhage

[152–155]
Dual energy X-Ray

absorptiometry (DEXA)
X-ray

SVM
YOLOv8.0, Detectron2, several
others (see systematic review)

Lumbar spine fractures
Pediatric fractures

Overall fracture
identification

Delirium [156] Surveillance images CNN, k-nearest neighbors Delirium monitoring

Pain, Agitation, Stress,
Level of sedation [157–180]

Surveillance images,
depth image, face images,

pain datasets

YOLO, Mask-RCNN, CNN,
CDBN, SVM, LSTM, LMM,

Neural Network

Activity recognition,
detection of pain and

discomfort, stress,
automated facial analysis
for grimacing, agitation,

eye localization,
depression, anxiety, stress

levels, AU

Patient deterioration [181,182] Color videos Logistic/linear Regression Deterioration prediction
using AUs

Mechanical
ventilation [183–185] Chest X-rays, ICU videos U-net, YOLO, TL,

Feature descriptor

Need for mechanical
ventilation, detect and
recognize ventilation

objects and positioning,
estimate lung volume

Mobility [186,187] ICU video images CNN, YOLOv2 Patient mobilization
activities in ICU, NIMS

Patient safety [188–195] Surgical videos, depth
images, video recordings

OpenPose, Yolo, CNN,
Mask-RCNN

Surgical team behavioral
analysis, patient

mobilization activities,
hand hygiene, ICU staff
monitoring, assessing
situational awareness

Surgical assistance [194,196–199] Surgical activity images,
OR videos CNN

Robot-assisted surgery,
situational awareness

in OR
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Table 3. Cont.

Areas Citations Image Type Deep Model Application

Neurological,
neurodevelopmental,
psychiatric disorders

[142,162,174,178,200–209],
Whole-body video

recording, MRI, PET,
patient images

Detectron2, OpenPose, CNN,
k-nearest neighbor, SVM,

K-SVD, Bayesian Networks

Analysis of gain
synchrony, balance, Infant

neuromotor risk,
neurodegenerative
disease, behavioral

analysis in ASD and
ADHD, facial expression

in depression, facial
weakness

Remote monitoring,
telemedicine [210,211] Surveillance images Deep reinforcement

learning, CNN
In-home elbow
rehabilitation

Data security and
privacy [114,212–214] X-rays, MRI CNN, Fuzzy CNN

Privacy protections for
deep learning algorithms
containing medical data

Fall detection [215–219] Surveillance images
Gaussian Mixture Model,

CNN Segmentation,
AlphaPose, OpenPose, LSTM

Human fall detection

Hospital scene
recognition [192,220–226]

Indoor images of ICU,
hospital, nursing home;

pediatric ICU videos
YOLO, CNN, SVM, CATS

ICU and hospital indoor
object detection, hand

hygiene, ICU
activity measurement

Table 3 describes the varying uses of CV technology in healthcare and outlines the image captures, machine
learning models used, and the focus area. This is not an exhaustive list. Abbreviations: AU: action unit;
ASD: autism spectrum disorder; CATS: Clinical Activity Tracking System; CNN: Convolutional Neural Network;
NIMS: Non-Invasive Mobility Sensor; OR: operating room.

4.1. Radiology

The use of CV in radiology has gained increased attention as it can support timely
intervention and enhanced efficiencies within clinical workflows. For example, a recent
study demonstrated how CV could support surgeons in diagnosing wrist fractures in
pediatric patients [154]. The motivation for this type of CV application is to expedite
surgical care in low-resource environments where specialized radiologists are not readily
available. Another example of a clinical application is notification software (AIDOC),
which is used to detect intracranial hemorrhage [141]. Teleradiology networks can employ
this software to expedite stroke workups in critical access hospitals or lower trauma
centers. Other CV radiology applications concern detecting anomalies within medical
images. A recent study by Lakhani et al. (2017) [99] employed deep models such as 2D-
CNN, AlexNet [9], and GoogleNet [227] in their CV approach to detecting tuberculosis
in chest radiographs and pulmonary tuberculosis in chest radiographs. Other studies
applied ensemble learning for the diagnosis of Alzheimer’s Disease using MRI brain
images [139,140,142]. The typical image types utilized for radiology segmentation include X-
rays, CT scans (i.e., liver tumor, [138]), MRIs (i.e., brain tumors [149]), and 4D-CT (i.e., brain
tissue for stroke workup [148]). While the utilization of deep learning has resulted in precise
detection rates in the field of radiology, these approaches require extensive, well-annotated
datasets. Without such datasets, deep learning methods may experience overfitting, leading
to a reduction in their generalizability [228]. There are a multitude of other examples of CV
applications in radiology as shown by recent reviews including emergency radiography,
stroke workup, and workflow efficiencies [228–230]. The implementation and use of these
algorithms have been slower than expected and may be due to a lack of standard user
interfaces and differing expectations among clinicians and administrators as reported in a
recent study [231].

4.2. Histology

The examination of histological images by pathologists provides diagnostic informa-
tion crucial for influencing a patient’s clinical outcome. Traditional histological image
representation involved extracting texture and color features and employing conventional
machine-learning approaches. However, the CV landscape has evolved with the exten-
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sive representational power offered by Convolutional Neural Networks (CNNs) [127,134].
For example, Bejonrdi et al. (2017) [112] demonstrated that the application of CNNs for
detecting lymph node metastases in breast cancer outperformed eleven pathologists in a
simulated time-constrained setting. Tellez et al. (2018) [113] developed a CNN-based CV
approach capable of effectively detecting mitosis in Hematoxylin and Eosin whole-slide
images . Additionally, Kather et al. (2019) [136] showcased that microsatellite instable
tumors in gastrointestinal cancer could be directly predicted from H&E histology using
CNNs to classify tumors versus normal tissues. The present challenge involves handling
high-resolution histological images, requiring substantial computational resources and
extensive training sets. Employing transfer learning and knowledge distillation approaches
may partially mitigate this challenge [232].

5. Development and Testing of Computer Vision in the Hospital Setting

Several CV-based tools were identified that had been shown to be effective in the
testing and development phases; however, they were not yet put into practice at scale.
These include the detection of behaviors and signs related to delirium, pain detection and
monitoring, monitoring of sedation depth and signs of patient deterioration, mechanical
ventilation, and monitoring of the care setting aimed at improving patient safety and
quantifying workload. We provide an overview of these studies in this section.

5.1. Detection and Monitoring of Brain Health

Delirium, a type of acute brain dysfunction, occurs in 50–80% of critically ill pa-
tients [233]. An observational pilot study reported that delirious patients had significantly
different expressions of facial action units, head pose movement, and other environmental
factors such as visitation frequency measured by CV (n = 22) [156]. A different study exam-
ining the frequency of caregiver actions reported that delirious patients had more caregiver
activity overall, which was most concentrated from 8:00 p.m. to 12:00 a.m. [195]. These
observational differences between non-delirious and delirious patients can be automated
to aid in the recognition of early warning signs of delirium, the measurement of delirium
severity, and aid in subtyping and phenotyping efforts.

5.2. Detection and Quantification of Pain, Agitation, and Level of Sedation

CV has been used to detect pain in a variety of patient populations (infants to aging
adults), specific disease states (lung cancer, dementia, chronic back pain, shoulder pain),
and after procedures (procedural pain in infants), mostly in community or outpatient
settings. A recent scoping review identified one study that tested the feasibility of an
automated approach to pain assessments using a deep-learning method in a population
of critically ill patients [176,177]. The study tested the accuracy of models to dichotomize
pain and rate pain on three levels (0–2), reporting >0.85 accuracy for dichotomized models
compared to 0.56 for the three-level model [176].

Automated pain recognition and monitoring have been widely explored in neonatal
populations. Several reviews report on CV developed over the past two decades aimed at
the recognition of pain, monitoring, and the measurement of intensity [159,163,171,179].
These feasibility studies and developed models have cumulated into a point-of-care mobile
health application for procedural pain named PainChek Infant [172]. In a feasibility study
of forty infants (age range 2.2–6.9 months), the mobile health application significantly
correlated (r = 0.82–0.88, p < 0.0001) with clinician-administered pain scales (Neonatal
Facial Coding System and Observer administered Visual Analogue Scale) and demon-
strated high interrater reliability (ICC = 0.81–0.97, p < 0.001) and high internal consistency
(alpha = 0.82–0.97) [172]. This type of technology could be applied to adult hospitalized
patients to improve pain monitoring and assist clinicians with follow-up pain assessments
after the administration of analgesics, especially in patient populations that are not able to
verbalize their discomfort and pain level. Furthermore, this type of state-of-the-art technol-
ogy was emphasized by a recent narrative review that discussed the updated definition of
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pain from the International Association for the Study of Pain and how multidimensional
technologies are needed to improve the identification and monitoring of pain [234]. Un-
treated pain can result in delirium, agitation, hostility, and other adverse consequences such
as impaired healing and increased mortality risk [235–237]. The use of CV, paired with other
artificial intelligence modalities, clinicians, and patients within a model, could improve the
proactive recognition and monitoring of pain in hospital environments across populations.

Proof of concept CV models have been developed to recognize and monitor facial and
body movements associated with agitation during sedation, such as grimacing. One study
used a volunteer to simulate agitation through different levels of grimacing, developing a
proof-of-concept algorithm that can be tested in critically ill patients [158]. Another study
used a volunteer to simulate limb movement during agitated episodes and then tested this
model on five ICU patients. The results of the model were correlated over time with a nurse-
administered Riker Sedation Agitation Scale and physiologic signs including heart rate,
heart rate variability, systolic blood pressure, and blood pressure variability [157]. Lastly, a
study on young children and infants used eye movements to facilitate the measurement of
sedation and consciousness levels in young children and infants [168].

5.3. Patient Deterioration

The facial action unit is a comprehensive system that conveys facial movements,
subsequently utilized for detecting emotions such as anxiety, stress, fear, or pain [164,166,
173]. As presented in reference [175], Giannakakis et al. (2022) illustrated that facial action
units are associated with stress levels. This implies that during stressful situations, specific
action units, such as cheek raising, lid tightening, and upper lip raising, intensify.

The early warning signs of an impending acute patient deterioration are often subtle
and overlooked by busy clinical staff leading to a delay in the escalation of care [238].
To address this limitation, a recent feasibility study examined how subtle changes in
facial expressions were associated with a future admission to the intensive care unit.
This study used CV to identify facial action units and reported that combinations of the
upper face, head position, eye position, lips and jaw, and the lower face were associated
with the increased likelihood of admission to the intensive care unit (n = 34 patients) [181].
This algorithm could be used to proactively identify patients at risk of acute deterioration
and support early intervention [181]. In a post hoc analysis of these data, a decrease in
the number of facial expressions (per time unit) and an increase in the diversity of facial
expressions predicted admission to the ICU (AUC = 0.81) [182]. Numerous opportunities
exist to expand on this CV algorithm and investigate how other signs, such as the frequency
of clinician visits to the patient’s room or the presence of certain respiratory devices [183],
could improve early recognition of impending acute deterioration.

5.4. Mechanical Ventilation

CV has been applied to the field of mechanical ventilation to estimate regional lung
volumes using light to reconstruct the motion of the lungs and measure the regional
pressure distribution [184]. This proof-of-concept model was developed by Zhou et al.
using a mannequin that measured and monitored chest expansion with a light projector
and cameras. They utilized surface reconstruction of regional chest expansion for their
model, which showed good accuracy with an error of 8 mL under 600 mL tidal volume.
They compared their methods with other frequently used computational models and
reported a 40% reduction in computational costs paired with improved accuracy in their
new model. This work needs to be clinically tested and validated.

5.5. Mobility

The use of CV to monitor and document physical activity and early mobilization
in critically ill patients was reported in two studies. CV was used in a recent study to
develop a tool for real-time patient mobility monitoring in the ICU [187]. Yeung et al.
(2019) reported a mean sensitivity of 87.2% and specificity of 89.2% with an AUROC of
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0.938 for detecting mobility activities (i.e., get out of bed, get into bed, get out of chair, get
into chair). The CV had an accuracy of 68.8% for quantifying the number of healthcare
personnel involved in each activity [187]. Another study by Reiter et al. (2016) developed
an automated mobility sensor to support the monitoring of patient activity in the surgical
ICU. They compared the algorithm’s performance with clinician performance on the
identification of physical activity and reported high inter-rater reliability with a weighted
Kappa score of 0.86 [186]. These types of models could automate documentation of physical
activity in hospital patients, decreasing clinician documentation burden and increasing the
accuracy of electronic health records.

5.6. Patient Safety

Several studies have developed models focused on improving patient safety using
CV as a monitoring tool. One focus is hand hygiene, an essential component of infection
prevention. While compliance is critical for patient safety, monitoring clinician performance
is time-consuming. It can be inaccurate as it requires human observation of care proce-
dures both inside and outside the patient room. CV provides an opportunity to automate
monitoring. This use case has been demonstrated using depth sensors in a hospital unit
and video and depth images in a simulated hospital room [192,220]. Both models achieved
sensitivity and specificity greater than 90% in detecting hand hygiene dispenser use and
performed better than human observers. In addition to monitoring, future studies could
explore how the model could provide real-time feedback to clinicians, or reminders of hand
hygiene, leading to further opportunities to improve patient safety.

Surgical procedures and operating rooms (ORs) are the focus of a recent review that
highlights how CV could improve patient safety and system efficiencies [198]. A recent
study used off-the-shelf camera images to measure the level of situational awareness of
surgical teams during timeout procedures in the OR. The model distinguished between
teams with good and poor situational awareness, substantiating existing studies in the OR
on the use of CV to augment traditional human-based observation assessments [194,198].
Other CV-based models have aided in surgical phase recognition, robot-assisted surgeries,
surgical skill assessment, detection of instruments or lesions during surgery, enhanced
visual displays in surgeries, and navigation during surgical procedures [194,198,199].

5.7. Quantification of Workload in the ICU

A few studies have demonstrated the feasibility of ambient monitoring of caregiving
activities in the ICU using CV. The first study completed a task recognition of caregiving
activities over 5.5 h with an accuracy of 70% in a pediatric ICU [226]. The recognized
tasks included documentation, observation, and procedures, among others [226]. These
tasks were then examined over time for trends. The second study recognized and then
categorized patient and caregiver movement (i.e., workload) over the course of 24 h in
an adult ICU [195]. The study reported significant differences in patient and caregiver
movement throughout the 24 h period, between intubated and non-intubated, delirious and
non-delirious, and settings (high dependency unit vs. ICU). Another study developed and
validated a Clinical Activity Tracking System (CATS), testing its use in both a simulated
and actual ICU room. Like the previous study, more caregiving activity was reported
between 7:00 a.m. to 11:00 p.m. compared to 11:00 p.m. to 7:00 a.m. [221]. This system was
validated against manual observation with a correlation of r = 0.882 [222]. Improving the
quantification and understanding of caregiver workload and function throughout a time
period was the focus of these studies as existing monitoring systems are resource intensive
and subjective [195,222,226].

6. Computer Vision in Outpatient and Community Settings

CV has been developed in the community and outpatient settings to detect, mea-
sure, and monitor patient symptoms, signs of underlying illness or disease, and patient
events such as falls. A recent survey identified over thirty different CV models developed
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to automatically detect underlying symptoms related to medical diagnoses [162]. These
include monitoring vascular pulse, pain, facial paralysis, neurologic conditions, neurode-
velopmental disorders, psychiatric disorders (i.e., attention deficit hyperactivity disorder
(ADHD), autism, depression), and mandibular disorders, among others [162]. This type of
computer-assisted diagnosis ranges from the detection of facial shape, facial features, and
facial muscular response to voluntary emotion and facial motion analysis. In this section,
we briefly overview the subject areas with the highest level of development.

6.1. Pain Detection and Monitoring in Community Settings

The automatic recognition and monitoring of pain in the community and outpatient
setting is well-established. A systematic review in 2021 (n = 76 studies) reported on the
use of CV to diagnose and treat chronic lower back pain [167]. Also, in 2021, a survey of
automated detection of pain summarized studies and CV across populations, providing an
in-depth overview of datasets, learning approaches, spatial representations, and machine
learning methods used [170]. A narrative review highlighted the state-of-the-art technology
published on pain detection and monitoring [234]. Lastly, a scoping review reported
on several community and outpatient models to detect and monitor pain using CV [177].
A recent study used recent developments in CV automated segmentation and deep learning
along with the updated definition of pain from the International Association for the Study
of Pain to develop a sentiment analysis system within a Smart Healthcare System for pain
monitoring [180]. This CV model and most models mentioned in the reviews need to be
prospectively tested [170].

6.2. Neurologic, Neurodevelopmental, and Psychiatric Disorders

Autism spectrum disorder, a neurodevelopmental disorder, is increasingly prevalent in
pediatric populations [239,240]. Time to diagnose and receipt of needed care and resources
can be delayed by months, leading to deficiencies in care. To address this gap in clinical
care, an interactive, mobile health technology was developed through a series of studies
that uses CV in a closed-loop system to automatically code signs and behaviors associated
with autism [202]. The intent is for parents to use this technology at home to improve the
early recognition of autism and access to needed resources and care. This use case and
framework could be expanded to include additional neurodevelopmental disorders with
similar impact. A different study developed a CV model that could differentiate between
individuals with autism spectrum disorders, ADHD, and healthy controls [200]. Head
motion and facial expression were used to distinguish between these disorders [200].

The detection and severity of depression have been automated using CV in a few
studies [174,178]. Depression is one of the most common psychiatric disorders and is often
underrecognized, leading to delays in patient care and decreased quality of life. The appli-
cation of CV to detect and measure depression could have widespread implications and
lead to the early detection and allocation of resources to improve patient care. For example,
such an algorithm could be applied in telehealth outpatient visits where depression may
not otherwise be discussed or during a hospitalization where situational depression can
increase patient stress and lead to prolonged hospitalization and readmissions. In addition
to depression, one study explored the accuracy between clinician-rated and computerized
recognition of blunted facial affect [209,241].

To detect facial weakness, Zhuang et al. (2020) developed CV using images and videos
of people collected from Google Images and YouTube videos [203]. Six neurologists used
a rating scale (likelihood of facial weakness) to label the images. Following model devel-
opment, the authors concluded that the combination of landmark and intensity features
led to the highest accuracy. The ability to detect the shape (i.e., landmark) and texture (i.e.,
gradient intensity) was contributed by the neurologists who labeled the images [203]. Facial
palsy detection has been the focus of several studies. Guarin et al. (2018) retrained a CV
facial landmark detection model that was previously trained using healthy individuals with
facial palsy patients to develop a more accurate model [201]. Ruiter et al. (2023) studied
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the use of facial recognition software to identify patterns of facial weakness, and a deep
learning model was trained for classification and disease severity in a cohort of myasthenia
gravis patients [204]. The images used for training were collected in the outpatient setting.
The area under the curve for diagnosis of myasthenia gravis was 0.82 and 0.88 for disease
severity [204]. Another recent study assessed the intensity of facial weakness in patients
with facial palsy. The intensity was classified into three levels by focusing on specific facial
landmarks. The accuracy of detecting palsy patients was 95.61%. The accuracy for class
assignment (intensity level) was 95.58% [205].

To improve virtual interactions and patient education efforts, a CV algorithm detected
changes in facial expressions indicative of confusion and compared its accuracy to forty
medical students [189]. The accuracy of the human raters in identifying confusion was
41% compared to 72% accuracy by the CV algorithm using four different facial action units
(lowered brow, raised cheek, stretched lips, and lip corner pulled).

6.3. Falls

With the increasing population of aging adults and their preferences to live at home,
falls at home have contributed to a significant increase in the risk of morbidity and mortality
in the population [242]. To address the increasing incidence of falls, CV technology has
been developed to detect and monitor for risks and signs of falls in the home environment.
A literature review completed in 2023 surveyed the use of ambient sensors to detect falls in
the home environment. While some studies have used CV to detect falls, other systems are
a combination, or hybrid, of wearable and ambient sensor technologies [216]. One example
of CV fall detection was developed by Joshi et al. (2017) [215]. A single camera was used
to detect four different movements indicative of a fall event, and notifications were sent
via email to the designated individual if a fall was detected. The CV model achieved an
accuracy of 91.8% [215]. This model, and the majority identified by the recent review,
focused on the detection of falls and not on the prediction or identification of early warning
signs [216].

7. Journey Mapping and Future Computer Vision Application

To investigate how CV could be applied in the hospital setting, the temporal journeys
of the clinician and patient through the healthcare system were mapped and analyzed for
opportunities. The overview of the journey map is illustrated in Figure 1. Many identified
opportunities to incorporate CV into patient care and the healthcare system overlapped.
These identified opportunities are displayed in Figure 2. For example, the use of facial
recognition technology to automate patient check-ins in the outpatient and inpatient set-
tings improves the efficiency of the system while also providing a smoother process for the
patient. The monitoring of parking lots for available patient parking and the use of interac-
tive displays to provide directions to clinic or hospital appointments benefit the system and
the patient. Individuals who were responsible for patient check-in could instead meet, greet,
and accompany a patient on their clinic or hospital journey to improve the coordination of
care. The integration of CV into clinic and hospital rooms could improve the monitoring of
patient conditions, resulting in early detection of acute deterioration or patient discomfort,
assist with diagnostic testing, provide real-time feedback on the effectiveness of interven-
tions to ameliorate patient discomfort, and complete auto-documentation of patient care
procedures. These examples benefit the clinician, patient, and efficiency of the system.
When taking ideas such as these from concept to development, it is crucial to identify who
the end-user is, who benefits from the model or service (which may be different than the
end-user), what efficiencies are improved, and what unintended consequences may result
once the algorithm is in production. Additionally, the privacy, safety, and ethical principles
and values must be considered. These are discussed next.
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the literature. Overlap between categories is shown. The non-bold text highlights potential uses of computer
vision that are either in development/testing stages or need proof-of-concept work to be completed.
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8. Summary and Implications for Computer Vision Use in Healthcare

This rapid review identified a few applications of CV in the hospital setting. Most of
the CV in hospitals is still in the feasibility and proof-of-concept stage, lagging behind
other healthcare settings and industries. This gap in CV application in hospital settings
is likely due to the availability of public datasets to train and develop models, data pri-
vacy and security needs, ethical considerations, and barriers inherent within a complex
system. We will discuss these limitations, including ethical and economic considerations.
Our journey mapping exercise identified many future opportunities for CV in the hospital
and outpatient settings. As future opportunities are considered, it is critical to understand
what problem the CV aims to solve, the stakeholders involved in using it, how privacy,
safety, and ethical concerns are addressed, and the potential unintended consequences of
its use in these settings.

9. Data Privacy and Safety Considerations

Before using a CV model in the hospital setting, it is crucial to consider the data
privacy and patient safety requirements. Privacy has multiple meanings that depend
on the stakeholder’s perspective [243]. A recently published meta-synthesis highlights
perspectives patients and health professionals share on the benefits and risks of artificial
intelligence (AI) in healthcare [244]. A theme identified by patients and clinicians involved
the importance of data security and use. Both stakeholder groups shared how the storage
and protection of these data were essential to prevent records from being hacked and/or
leaked. Further, the meta-syntheses reported that the unwarranted use of these data for
commercial purposes was a significant concern [244]. These concerns are related to overall
AI use in healthcare and are not specific to CV.

Privacy and data management concerns unique to CV center on the nature of ambient
intelligence, how it is applied, and what information is captured in the video images [245].
As a recent perspectives article highlighted, it is important to collect the minimum amount
of information needed to train and use the model [246]. This could mean using black
and white images instead of color or blurring or removing unnecessary pieces that do not
contribute needed information. It is also important to consider the inclusion of individuals
who are not the focus of the model. For example, the patient may be the focus of data
collection, but clinicians and visitors in the hospital room may also be included in the
video capture. Everyone and everything within the image field is included in the data
collection. It is important that all individuals who may enter the room are either consented
(i.e., patient) or informed (i.e., clinician) of the data collection and what privacy protections
are in place [246]. If the collected data are being considered for other purposes and the
bystanders are reidentified, there should be a process in place to notify and gain consent of
those individuals. These concerns emphasize the importance of data management (storage
and use) within research studies, production teams, and the healthcare system.

Informed consent or assent of data collection detailing the why, how, and when behind
the collection and the privacy protections in place is imperative to complete, particularly
when capturing images of patients in a very vulnerable state. Decision points can be built
into the consent process, allowing the patient to opt in to use their image data for other
purposes. For example, an opt-in for sharing their images with external institutions or
scientists can help facilitate the development of public image datasets that may accelerate
CV development. It is important to clarify that once a model is in production, images
do not need to be retained as it can operate as a closed-loop system. This may limit the
transparency, or the ability to review the algorithm to understand the output, but it does
improve privacy protections.

Safety considerations for CV in hospitals are multi-factorial. It is essential to consider
the end-user of the model. How will the end-user use the information provided by the
model in their decision-making? Who is responsible for maintaining the model to ensure its
accuracy? CV models can improve patient and clinician safety. For example, a model could
recognize the early warning signs of workplace violence and notify clinicians to improve their
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situational awareness and implement mitigation measures to prevent verbal or physical abuse.
Another example that proof-of-concept models have demonstrated in the operating room
setting is the detection of missed care, poor situational awareness, or procedure errors. Both
examples would improve patient and clinician safety [194,198]. On the other hand, CV models
could decrease the safety of patient care. Previous studies have shown how bias is readily
introduced into models if the training data are not representative of a diverse population [247].
These biases can lead to embedded stereotypes, discrimination, and exclusion of certain
patients [248]. Current deep learning models employed in CV tasks directly derive their
knowledge from the training data. Consequently, the performance of the model is heavily
influenced by the distribution of the training data. If bias is present in the training set, the
model identifies it as a significant context, impacting the generative capabilities of the model
for unseen examples. Numerous studies in the literature have explored methods to extract
bias-independent feature embeddings, resulting in enhanced performance of neural networks
when trained on biased datasets [249–252]. These methods can be integrated into model
development along with representative sampling to minimize the risk of bias.

9.1. Ethical Considerations in Computer Vision

The use of CV in healthcare has broad ethical considerations that need to be addressed
as algorithms and models are designed, developed, tested, and deployed. Each stage of
the algorithm, including maintenance, should be considered, and continually re-evaluated
to ensure the medical ethics of autonomy, beneficence, non-maleficence, and justice are
upheld for the end-user. It is also important to define and consider who is the end-user
(i.e., patient, a decision-maker for the patient, clinicians, administration, support staff) and
proactively address ethical concerns [253]. Depending on the end-user and circumstances
concerning the use of the technology, different ethical principles or values may need to
be considered. A recent scoping review identified eleven different ethical principles and
values on the use of artificial intelligence [254]. These include transparency, justice and
fairness, non-maleficence, responsibility, privacy, beneficence, freedom and autonomy,
trust, sustainability, and solidarity [254]. Similar themes along with societal implications
were summarized in a recent narrative review by Elendu et al. (2023). Inherent within
these principles is the importance of placing the patient at the forefront and ensuring that
every patient has a fair and equitable opportunity to benefit from the technology [255].
This priority encapsulates the responsibility to ensure the model was built on a represen-
tative dataset that can be generalized broadly, i.e., any risk of bias, discrimination, and
stereotyping is minimized, and the welfare of the patient is prioritized. To accomplish these
goals, it is important to partner with a medical ethicist, sociologist, or patient-community
stakeholder group to evaluate the technology from multiple viewpoints within an ethical
framework [255]. Questions evaluating the intent of the model, who will use the model and
who will benefit from the model, how the model will be implemented and maintained, the
acceptability and usability of the model, the transparency of the algorithm and resulting
decisions, who holds the ultimate responsibility for performance, and how unintended con-
sequences will be identified, tracked, and evaluated are just a few topics that are essential
to work through prior to the inception of the project.

9.2. Economic Considerations

Job replacement and loss are significant concerns regarding the application of artificial
intelligence, including CV [256]. To ensure safety and ethical considerations are followed,
it is important to build “human in the loop” models that use CV as a tool to inform
decisions; however, the human is the critical decision maker on how to use the information
provided [257]. CV should enhance processes to improve decision-making, efficiencies
within the system, and patient outcomes. It should not replace humans. A framework for
evaluating the implications of automation in artificial intelligence was shared in a recent
working paper by the National Bureau of Economic Research [256]. This paper discusses
the balance between potential displacement and increased demand in non-automated labor
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tasks that could enhance the human experience. This type of framework is important for
healthcare systems to use as the adoption of CV is considered. A recent review studied how
artificial intelligence models could result in healthcare cost savings over several years [258].
Although they reported significant cost savings with the use of artificial intelligence for
diagnosis and treatment, they highlighted that a major disadvantage to artificial intelligence
is the prioritization of accuracy over clinical evaluation and scientific validation.

9.3. Acceptability and Readiness for Computer Vision

The implementation of artificial intelligence in healthcare is impacted by public opin-
ion. In a comprehensive review published by Bekbolatova et al. (2024), the results of Pew
Research surveys are highlighted, emphasizing the correlation between familiarity with
artificial intelligence and the expressed potential for it to benefit healthcare [259]. While
readiness for artificial intelligence is growing, the need to address specific knowledge gaps
within the community to increase familiarity with artificial intelligence tools is also growing.
Parallel efforts are needed to develop a comprehensive understanding of legislation and
guidelines for the responsible use of artificial intelligence in healthcare [259]. A recent
10-question survey focused on the use of CV in healthcare was completed by 233 providers
and 50 patients and family members. The potential for the use of CV data in lawsuits
(81% clinicians) and privacy breaches (50% patients) were major areas of concern [245].
Future work should focus on further exploring provider, patient, and public perceptions
and knowledge needs on CV.

9.4. Data Needs and Considerations

Despite the impressive performance of deep learning models on general datasets,
achieving accurate results in the medical domain remains challenging. This difficulty arises
mainly from the substantial number of parameters in each layer of CNN models. When a
sufficient amount of data is available, as found in large CV datasets like ImageNet [260]
(1 million images), the model is better able to generalize and overfitting is mitigated.
Acquiring a sufficient sample of labeled data for model training within the healthcare
system to produce models that are generalizable and statistically fit can be prohibitively
expensive. One potential solution to address overfitting is employing models with fewer
parameters [261,262]. However, these compact models often struggle to capture intricate
features of the dataset, resulting in reduced detection or classification accuracy. To cope
with the scarcity of labeled data, data augmentation is used to generate additional training
data [114,263]. While this approach partially resolves the problem, the repetition of images
may lead to overfitting. Another strategy involves utilizing transfer learning, where the
model is initially trained on a large dataset with available labels and then fine-tuned on the
smaller medical datasets [115,264]. This approach aims to leverage pre-existing knowledge
from the larger dataset to enhance the performance of the medical data. Each of these
solutions is a trade-off in model performance and must be weighed in the development
and testing stages. Another option to scale the development of CV models in medicine is to
use available deep-learning techniques to classify, segment, and detect specific structures
or abnormalities. Detectron2 [265], developed by Facebook AI Research (FAIR), offers a
high-quality implementation of state-of-the-art object detection and segmentation models.
MMDetection [266], another open-source PyTorch library, facilitates the utilization of pre-
trained state-of-the-art models and their training on medical datasets. Torchvision, an
official PyTorch library, provides general models that can be tailored for use with medical
domain datasets. OpenPose [267] stands out as one of the initial open-source and real-time
multi-person models designed to identify human body structures, body key points, as
well as facial and hand features in visual footage. These are a sampling of available deep
learning techniques, and it is important to consider their development and validation prior
to use to develop subsequent CV models. Lastly, the training of CV models demands
significant computing resources and expertise, including GPUs and AI specialists, which
may not be readily available at every institution due to resource constrained- environments.
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In light of these challenges, many clinician-scientists opt to use traditional machine learning
methods, like logistic regression, that limit model development. Future CV studies may
explore how federated learning could expand datasets and computational resources [268].

9.5. Computer Vision Datasets

Object detection datasets typically consist of images with annotated bounding boxes
and segmented areas depicting objects of interest. The Pascal Visual Object Classes
(VOC) [269] dataset stands out as a well-known benchmark, featuring 5000 images across
20 object classes with 12,000 annotations. Another widely used benchmark, the Common
Objects in Context (COCO) [270] dataset, offers a substantial dataset of 164,000 images cov-
ering 80 object classes, accompanied by 897,000 annotations, encompassing both indoor and
outdoor environments. However, in the context of hospital environments, there is currently
a lack of sufficient datasets capturing diverse objects under various conditions. For exam-
ple, the MCIndoor2000 [223] dataset includes 2055 images of three object classes including
doors, stairs, and hospital signs. The MYNursingHome [224] dataset focuses on object
classification and detection in nursing homes, containing 37,500 images featuring objects
commonly found in elderly home care centers, such as toilet seats, tables, and wheelchairs.
The Hospital Indoor Object Detection (HIOD) dataset comprises 4417 images covering
56 object categories, including items like surgical lights, IV poles, and bedside monitors,
with a total of 51,869 annotations. On average, the images in this dataset contain 10 objects
spanning 6.8 object categories [225]. There are several datasets available for medical imag-
ing purposes. The website https://www.cancerimagingarchive.net/browse-collections/,
accessed on 16 February 2024, holds several publicly available datasets.

This dearth of public datasets is illustrated best by examining the large amount of
literature and models developed in neonatal populations. The cumulation of this work
over the past two decades has led to a point-of-care mobile application for procedural pain
that has passed the feasibility stage [172]. This type of technology could greatly improve
pain management not only in neonatal populations but also in adult populations. Several
studies aimed at identifying chronic or outpatient pain have used the UNBC-McMaster Pain
Archive [160,161,165]. While these images have aided in the development of automated
models for pain detection and monitoring in adult outpatient populations, they have not
facilitated the expansion of such models into the acute care setting. Public datasets of
hospitalized patients across age groups to facilitate this type of modeling are needed [172].

9.6. Limitations of This Review

This review used a broad search strategy. That being said, a systematic review ap-
proach was not used, and it is possible that studies involving CV were not included. The CV
field is rapidly expanding. Due to that expansion, this review is limited in scope and strove
to highlight advances in CV for healthcare clinicians and clinician-scientists (i.e., end-users
of technology).

10. Conclusions

This review summarizes the application of CV in healthcare, and we highlight impor-
tant considerations for the use of CV in healthcare including privacy, safety, and ethical
factors. The overall goal is to improve the patient and clinician journey within the industry.
There continues to be a paucity of data to train CV and for it to catch up to other indus-
tries in its application; substantial work is needed to overcome to barriers of privacy and
safety considerations.
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