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Abstract: Generative adversarial networks (GANs) and diffusion models (DMs) have revolutionized
the creation of synthetically generated but realistic-looking images. Distinguishing such generated
images from real camera captures is one of the key tasks in current multimedia forensics research.
One particular challenge is the generalization to unseen generators or post-processing. This can
be viewed as an issue of handling out-of-distribution inputs. Forensic detectors can be hardened
by the extensive augmentation of the training data or specifically tailored networks. Nevertheless,
such precautions only manage but do not remove the risk of prediction failures on inputs that look
reasonable to an analyst but in fact are out of the training distribution of the network. With this
work, we aim to close this gap with a Bayesian Neural Network (BNN) that provides an additional
uncertainty measure to warn an analyst of difficult decisions. More specifically, the BNN learns
the task at hand and also detects potential confusion between post-processing and image generator
artifacts. Our experiments show that the BNN achieves on-par performance with the state-of-the-art
detectors while producing more reliable predictions on out-of-distribution examples.

Keywords: synthetic image detection; out-of-distribution examples; Bayesian Neural Networks;
variational inference

1. Introduction

Generative adversarial neural networks (GANs) [1] and diffusion-based neural net-
works (DMs) [2,3] pushed the door wide open regarding widely available, easy-to-use, and
high-quality synthetic image generation and editing. This new technology is a powerful
tool for any type of creative user [4–6]. On the downside, this advancement also opened the
door to potentially malicious exploitation, oftentimes summarized as the threat of so-called
DeepFakes. Hence, from a forensic perspective, it is important to research robust and
reliable techniques for the detection of synthetically generated media content.

The detection of generated content can be performed at different levels of abstrac-
tion. Generators may introduce semantic issues involving inconsistencies in lighting [7,8]
or the eyes of people, etc. [9,10]. However, one may expect that such artifacts will be
gradually removed as generators progress towards modelling increasing amounts of con-
textual knowledge. Lower-level statistical traces can provide alternative cues for detecting
generated content. For example, it has been shown that GANs and DMs exhibit artificial
statistical fingerprints that can form the basis not only for distinguishing real from artificial
images but also for the attribution of synthetic images to their generator network [11–13].

The detectors for such forensic cues are typically neural networks. Such learning-based
systems implicitly assume that the training data are representative of the test inputs in the
field. If a test input differs too much from the training distribution, then the output of the
network is undefined. In such cases, neural networks have a tendency to perform erroneous
predictions with high confidence [14]. This issue is known as the training–test mismatch.

The sensitivity of learning-based methods to training–test mismatches poses a severe
challenge for multimedia forensics in general and the task of unconstrained synthetic
image detection in particular. Since blind multimedia forensics is by definition concerned

J. Imaging 2024, 10, 110. https://doi.org/10.3390/jimaging10050110 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10050110
https://doi.org/10.3390/jimaging10050110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8093-7252
https://orcid.org/0000-0002-5556-5338
https://doi.org/10.3390/jimaging10050110
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10050110?type=check_update&version=4


J. Imaging 2024, 10, 110 2 of 18

with samples from unknown origins, forensic methods need to take care of mitigating the
training–test mismatch. Such mismatches are difficult to avoid due to limits regarding the
information about the structure, the mode of operation, and the underlying training of an
image generation model just from an image itself during testing. Additionally, the potential
post-processing on the distribution channel might be unknown. While extensive data
augmentation helps to reduce the gap between training and test data [15–17], it is virtually
impossible to consider all the potential GAN and DM architectures and post-processing
operations in the training. However, even slight mismatches between training and test data
can lead to failures [18–20].

To alleviate this issue, this work aims to provide additional tools for the reliable
detection of synthetically generated images. We investigate the suitability of a Bayesian
Neural Network (BNN) as a learning-based detector with a built-in uncertainty measure.
If the network is evaluated on inputs for which it has not properly been trained, then
the result exhibits higher uncertainty. That way, an analyst can detect cases where she
cannot trust the outcome of the classifier. Moreover, we train the network with dedicated
predictors for JPEG compression and resampling, which are highly common operations
in social media and simultaneously notorious sources of out-of-distribution data. The
feature activation similarity of the predictions of these dedicated output nodes further aids
in exhibiting the out-of-distribution samples. Our experiments show that the detection
performance of the network is comparable to related work, but we show that its added
benefit of the uncertainty measure can benefit the practical use by avoiding false decisions.
In summary, our main contributions are the following:

• We propose a Bayesian Neural Network (BNN) for synthetic image detection, with
the particular benefit to detect out-of-distribution inputs.

• The network architecture particularly benefits from a multi-class approach, with
separate output nodes for real images, synthetic images, and JPEG compression.

• We additionally propose the feature activation similarity as an indicator of the failure
cases in the out-of-distribution detection.

The remainder of this paper is organized as follows. Section 2 reviews the related
work and discusses the limitations of traditional CNNs. Section 3 introduces the theory of
variational inference-based Bayesian Neural Networks and noise contrastive estimates for
classification. Section 4 details the experimental setup to assess the model’s performance
within the in-distribution as well as out-of-distribution domains. Section 5 presents the
experimental results, and Section 6 concludes this work.

2. Related Work

Early research that explored the detection of synthetically GAN-generated images
took inspiration from the classical multimedia forensics task of camera device identifica-
tion [21,22]. Marra et al. [11] show the existence of statistical GAN fingerprints similar to
camera fingerprints. In a similar spirit, Yu et al. demonstrate that fake images generated by
various traditional generation models can be attributed to their sources [12]. They reveal
the fact that these traditional generation models leave fingerprints in the generated images.
The authors also show that these fingerprints highly depend on the specific architecture
and its parameterization. Further, Wang et al. show that a CNN model is able to distinguish
between the real images and fake images generated by various types of GANs [15]. Accord-
ing to the authors, GAN-generated images share common defects, enabling their separation
from real images. Girish et al. further propose a new attribution method to deal with the
open-world scenario where the detector has no knowledge of the generation model [23].
Diffusion models are the more modern replacement of GANs. Here, Sha et al. investigate
the possibility of distinguishing real images from the images generated by text-to-image
models [24].

However, in these aforementioned works, robustness considerations such as the per-
formance on unseen postprocessing typically play a secondary role or are not investigated
at all. Corvi et al. highlight the importance of robustness [18]. In their work, it is shown
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that most detectors trained on GAN images are challenged to operate decently when con-
fronted either with DM-based images or synthetic images that have undergone unseen
JPEG compression. Probably the most widely used strategy regarding the robustness of de-
tectors is data augmentation, which has been applied and investigated in various forensics
works [15–17]. However, augmentation requires an enumeration of the expected influenc-
ing factors, which quickly leads to a combinatorial explosion of possibilities. This difficulty
is exacerbated by the fact that small deviations between the training and test data may
already deteriorate the classifier performance [18–20]. In contrast to data augmentation
that aims to avoid unseen data at all, we propose to use a Bayesian Neural Network that
produces as a byproduct an uncertainty measure. It is also very reasonable to augment the
training data of that classifier, but its uncertainty-based design acknowledges the difficulty
to fully anticipate all the data statistics that might occur in the field. An analyst can use
that uncertainty measure to either abstain from a decision or to retrain the classifier for the
specific use case.

There exist other forensic works that specifically focus on reliability. For example,
Güera et al. and Salvi et al. explicitly model reliability as an embedding distance for images
and speech [25,26]. Guillaro et al. provide a learned confidence for the case of image
manipulation detection [27]. In contrast, the uncertainty measure of the proposed BNN is
directly linked to the empirical variability of the outputs from an ensemble of classifiers
and as such seeks to achieve trust from many consistent decisions.

In the broader field of machine learning research, the question of trust in model
predictions has a long history [28,29]. One simple approach to uncertainty modelling
is to interpret the maximum output of a neural network with softmax activation as the
confidence associated with the prediction. However, standard neural networks perform
poorly at quantifying predictive uncertainty, providing misleading and overconfident con-
fidence estimates [14,30]. Nevertheless, Hendrycks and Gimpel observe that the prediction
probability for out-of-distribution examples tends to be lower than for in-distribution ex-
amples, thereby providing a baseline regarding the detection of abnormal examples based
on softmax statistics [30].

In some cases, missing or biased confidence estimates can be added or rescaled post
hoc by calibration to the true accuracy. Previous work on post hoc calibration addresses, for
example, support vector machines [31], boosted trees [32], and deep neural networks [33].

Recent efforts have focused on combining neural networks with Bayesian methods as
a principled way to reason regarding predictive uncertainty. In a Bayesian Neural Network,
each parameter is represented by a probability distribution that captures the uncertainty
regarding its value. Training a BNN involves obtaining the posterior distribution over
the parameters. The analytic integration over the whole parameter space of a neural
network is intractable, and practical methods resort to either approximation or simulation
techniques. To this end, the recent developments on variational Bayes have led to the
increasing popularity of stochastic variational inference (SVI) [34–36]. SVI has recently also
been examined on large datasets such as CIFAR-100 [37]. In this work, we investigate such
a BNN that is trained with SVI.

3. Bayesian Neural Networks for Reliable Synthetic Image Detection

This section introduces two techniques that are central for classification under uncer-
tainty. First, we describe the BNN with stochastic variational inference for quantifying
uncertainty. Second, we describe noise contrastive priors for improved representation of
the uncertainty.

3.1. Variational Inference

Traditional neural networks maximize the posterior distribution during training. In
contrast, the Bayesian formulation seeks to find the posterior distribution itself. Unfor-
tunately, it is intractable to find that posterior distribution analytically since that would
require integration over the space of all possible weight configurations of the network.
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One tractable alternative is to use an approximate solution via stochastic variational
inference (SVI) [36]. Here, the intractable posterior p(w|D) over the weights w after seeing
the data D is approximated by a tractable variational posterior q(w|θ) with parameters
θ. Variational inference then seeks optimal variational parameters θ∗ that minimize the
Kullback–Leibler (KL) divergence between the variational posterior q(w|θ) and the true
unknown posterior distribution p(w|D), which is defined as

θ∗ = argmin
θ

KL[q(w|θ) || p(w|D)]

= argmin
θ

∫
q(w|θ) log

q(w|θ)
p(w|D)

dw

= argmin
θ

KL[q(w|θ) || p(w)]−Eq(w|θ)[log p(D|w)]︸ ︷︷ ︸
variational free energy F (D,θ)

.

(1)

Here, the variational free energy F (D, θ) is also referred to as the negative evidence
lower bound (ELBO). F (D, θ) is the objective function that we seek to minimize in order
to find the optimal parameters θ∗. The variational free energy can be further decomposed
into two components, namely the complexity cost and the likelihood cost,

F (D, θ) = KL[q(w|θ) || p(w)]︸ ︷︷ ︸
complexity-cost

−Eq(w|θ)[log p(D|w)]︸ ︷︷ ︸
likelihood-cost

= Eq(w|θ) log q(w | θ)−Eq(w|θ) log p(w)−Eq(w|θ) log p(D|w)

≈ 1
Ttrain

Ttrain

∑
i=1

[
log q(w(i)|θ)− log p(w(i))− log p(D|w(i))

]
,

(2)

which can be approximated by drawing Ttrain times weights w(i) from q(w|θ). Solving the
optimization problem as defined in Equation (2) yields the optimal parameters θ∗.

Given then the variational distribution q(w|θ∗), the predictive distribution is approxi-
mated as

p(y∗|x∗,D) =
∫

p(y∗|x∗, w)p(w|D) dw

≈
∫

p(y∗|x∗, w)q(w|θ∗) dw .
(3)

The network prediction for an input is an estimator of the expectation, and the associ-
ated uncertainty is an estimator of the predictive variance. Both the expectation and the
predictive variance are obtained via sampling from the variational posterior. Specifically,
the expectation is provided by

Eq(w|D)[p(y
∗|x∗)] =

∫
p(y∗|x∗, w)q(w|θ∗) dw

≈ 1
T

T

∑
t=1

Pw(t)(y∗|x∗)

= p(y∗|x∗) ,

(4)

where Pw denotes the neural network with a set of weights drawn from the variational
posterior q(w|θ). Hence, the estimate for an unseen data point x∗ requires T draws and
evaluations from the trained network. The unbiased predictive variance, which represents
our model uncertainty, is then provided by the approximated expectation defined in
Equation (4) and the definition of the variance

Var[p(y∗|x∗)] = 1
T − 1

T

∑
t=1

(
Pw(t)(y∗|x∗)− p(y∗|x∗)

)2
. (5)
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3.2. Noise Contrastive Prior Estimation

The noise contrastive estimation (NCE) is an augmentation technique where a model
is contrasted with random noise during training. The objective is to discriminate training
data from noise data sampled from an artificial noise distribution, which is considered
out-of-distribution (OOD). Therefore, by employing NCE, a trained classifier can estimate
the probability of a data sample belonging either to the training or to the noise distribution.
This technique is therefore well-suited within a probabilistic model to obtain more reliable
uncertainty estimates. In general, obtaining OOD data is not trivial. In practice, it is often
sufficient to add noise to the training data to generate OOD samples near the boundary
of the training data distribution. According to Hafner et al. [38], this approach also yields
reliable uncertainty estimates in other regions of the OOD space, upon which the approach
of noise contrastive priors (NCPs) is based.

In this work, we follow the derivation of Hafner et al. [38] to define NCP for func-
tional uncertainty estimations. For classification, a noise contrastive prior forms a joint
distribution p(x, y) over input x and class y, which can be rewritten as the product of an
input prior p(x) and an output prior p(y|x).

We set the input prior as

pnc(x̂) =
1
N

N

∑
i=1

N (x̂ − xi|0, σ2
x) , (6)

where xi indicates the training data and x̂ = xi + ϵ describes the distribution of OOD data
corrupted by random noise ϵ ∼ N (0, σ2

x) with hyperparameter σx.
The output prior is defined such that the model shall predict the correct target y for

input x as well as for perturbed input x̂. Within our categorical classification setting, the
output prior is therefore defined as a Bernoulli distribution

pnc(ŷ|x̂) = yk · (1 − y)(1−k), (7)

where k is a hyperparameter that models the probability of success and should for OOD
input result in high prior uncertainty. To generate an output at x, we first sample from the
variational distribution q(w|θ) and then use that sample as input for Equation (7), from
which we finally sample an output value y. The predictive uncertainty is then reflected by
the variance over the output as defined in Equation (5). By minimizing the KL divergence
between the variational posterior q(w|θ) and a prior over weights p(w), we encourage
the model to express low uncertainty within in-distribution domains. Conversely, we
can enforce high uncertainty in OOD regions through comparison to an NCP. Through
parameterization of the KL divergence from the weight space into the output space, we
can obtain a convergence between expected output, epistemic uncertainty, and the mean
prior for OOD inputs. This is possible due to the variational distribution q(w|θ) inducing
a distribution q(µ|x, θ) in data space. Therefore, by replacing q(w|θ) with q(µ|x̃, θ) and
p(w) with pnc(ỹ|x̃) and using an OOD dataset x̃, ỹ derived from our training dataset x, y,
the loss function then becomes

L(θ) ≈ −Eq(w|q) log p(y|x, w, θ) + KL(q(µ|x̃, θ) || pnc(ỹ|x̃)). (8)

Equation (8) yields an approximation of Equation (2) for reasons explained in Ap-
pendix B by Hafner et al. [38]. For their experiments, the authors use the opposite direction
of the KL divergence without having found a significant difference. The concrete loss
function the authors use is defined as follows

L(θ) = −Eq(w|q) log p(y|x, w, θ) + KL(pnc(ỹ|x̃) || q(µ|x̃, θ)), (9)

which we also employ in our work. This allows an interpretation of the KL divergence as
fitting the mean distribution to an empirical OOD distribution using data augmentation.
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4. Experimental Setup

This section reports the experimental setup, the model architecture, the training
procedure, and the data generation for training and evaluation.

4.1. Model Architecture

As investigated by Corvi et al. [13], even modern and sophisticated generative models
still leave exploitable traces within the spatial as well as spectral domains. According to the
authors, a detector should therefore explore both. In line with their findings, we employ a
wavelet transform prior to the model input to exploit features within the spatial as well as
frequency domains. The input to the neural network is then the wavelet approximation
alongside the frequency parts within the spatial domain.

The proposed Bayesian Neural Network uses a convolutional architecture as a back-
bone. A visual representation of the proposed model is shown in Figure 1. As a first step,
we apply a two-dimensional discrete wavelet transform with Daubechies 5 wavelets. This
transforms the input into a joint spatio-frequency domain, losely following insights by
Corvi et al. that generative models leave traces in the spatial and frequency domains [13].
Each of the four wavelet sub-bands is passed to a separate branch of the network. One
branch consists of three convolutional blocks consisting of a 3 × 3 convolution followed by
ReLU-activation and 2 × 2 max-pooling. The three convolutional blocks use an increasing
number of kernels, namely 16, 32, and 64. Each third convolutional block is followed by
two fully connected layers within the same branch. Then, the output of all four branches
is concatenated and combined in two further fully connected layers. A final output layer
distinguishes the three classes “real”, “synthetic”, and “compressed”. In the output layer,
we use the Sigmoid activation function and therefore treat all three classes as non-exclusive.
This way, the model is not forced to decide on a single class, and it could even completely
abstain from a decision by assigning low scores to all output nodes.

Wavelet
Transform

16 25
8

258

conv1

32 12
9

conv2

64 64

conv3 1 25
6

fc5

1 12
8

fc6

1
12
8

1 32 1 3

Figure 1. Architecture of the Bayesian Neural Network. The four wavelet sub-bands are used as
separate inputs regarding a sequence of three convolutional layers followed by two fully connected
layers used as a separate input, and target classes are “real”, “synthetic”, and “compressed”.

For the initialization of the BNN’s variational posterior, we assume a normally dis-
tributed variational posterior. Hence, the BNN has approximately twice as many training
parameters compared to a traditional CNN model due to the mean and standard deviation
of each weight. The concrete implementation applies pseudo-independent weight pertur-
bations based on the Flipout method [39]. Hence, to learn probability distributions over the
weights, our implementation replaces the convolutional and fully connected layers with
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Flipout convolution and Flipout fully connected layers. The weight prior is a zero-mean
Gaussian distribution with unit variance. The weights are initialized using the He normal
weight initialization [40], as provided within the TensorFlow framework. During training,
we draw 5 samples to calculate the predictive variance according to Equation (5) by ran-
domly sampling weights from the BNN. For evaluation, we increase the sampling rate to
20 MC samples. For the comparative analysis in Section 5.2, we train our BNN model on
ProGAN-generated data and therefore adjust the input layer resolution to 256 × 256 pixels.
Within the further analysis, we use data generated by the stable diffusion model and adjust
the input layer resolution to 512 × 512 pixels.

4.2. Training Parameters

The BNN model is trained with the Adam optimizer with a learning rate of l = 10−4,
β1 = 0.9, β2 = 0.999, and ϵ = 10−7. Furthermore, we use a batch size of 64. Each model
is trained for a total of 30 epochs. The reported experimental results are based on the
best-performing model in terms of validation loss during training, which is evaluated every
epoch. For the training procedure of the BNN, we use the variational free energy loss from
Equation (2) together with the NCP prior estimation as defined in Equation (8).

4.3. Datasets for Training and Generation of Training Data

For the evaluation in Section 5.2, we train our BNN model on the dataset by Wang et al. [15].
The dataset contains 363,000 real images from the LSUN dataset [41] and 362,000 images
generated by 20 different ProGAN [42] models, each trained on a different LSUN object
category. The 20 models arise from the fact that ProGAN images are limited to the specific
image domain on which they are trained. All images have a resolution of 256 × 256 pixels.
For model validation, we use a subset of 3200 images.

In Section 5.3 and later, we explore the influence of diffusion-based models, and we
investigate the reliability on uncertainty estimates and possible confusion of generator
artifacts and compression artifacts. To this end, we use the BNN trained on synthetic
images from stable diffusion [43]. with image descriptions from the COCO dataset [44].
For real data, we use images from the COCO dataset [44]. Here, the training set consists of
118,000 synthetic and 118,000 real images. During training, we apply JPEG compression
with probability Pjpeg = 0.7 with a random quality factor between 65 and 100 using the
TensorFlow built-in JPEG compression. During evaluation, JPEG images are compressed
with Python Pillow version 9.3.0 and ImageIO version 2.31.4.

5. Experimental Results

We first examine the in-distribution detection performance for the synthetically gener-
ated images, followed by a comparison with the related work on various out-of-distribution
cases. We then show how the uncertainty measure helps to provide reliable model pre-
dictions. Last, we explore a further possibility to recognize potential failure cases by
cross-checking the results of the output nodes of the network.

5.1. In-Distribution Detection Performance

The in-distribution performance of the BNN is evaluated on a test dataset of additional
images, namely 1600 real and 1600 synthetic images that were unseen during training but
from the same data sources. These images are randomly JPEG-compressed analogously to
the JPEG augmentation during training.

The evaluation results are shown in Table 1. The BNN performs almost perfectly well
on all three tasks, namely the detection of real, synthetic, and compressed images. Overall,
the BNN achieves an average F1-score of 0.970 and an average AU-ROC score of 0.993,
which demonstrates that the BNN effectively learns the tasks at hand.
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Table 1. In-distribution evaluation of the BNN model.

Class Precision Recall F1-Score AU-ROC Score

Real 0.97 0.95 0.96 0.990
Synthetic 0.97 0.96 0.96 0.990

Compressed 0.99 0.98 0.99 0.999

5.2. Out-of-Distribution Detection Performance and Comparison to Related Work

Our primary emphasis is on the generalization ability regarding data from generators
that were unseen during training. Hence, this experiment shows the generalization perfor-
mance of the BNN to various generative models on which it was not trained. Recall from
Section 4.3 that the BNN is trained on synthetic ProGAN images and real images from the
LSUN dataset. The testing is performed on a separate test dataset that was not observed
during training. It comprises synthetic images from StyleGAN2 [45], StyleGAN3 [46],
BigGAN [47], Dall-E mini [48], Dall-E 2 [2], stable diffusion [43], latent diffusion [3], and
taming transformer [49]. For text-to-image generator models, we utilized the image descrip-
tions provided by the COCO-datset [44]. The real data for testing are also from datasets
that were unseen during training, namely COCO [44], ImageNet [50], and UCID [51].

The performance is compared to four related works for synthetic image detection,
which are briefly introduced in this paragraph. Spec is a traditional approach based on
frequency analysis [52]. PatchForensics analyzes the local image patches [53]. Wang et al.
propose a learning-based approach using a ResNet50 architecture alongside post-processing
augmentation [15]. Gragnaniello et al. refine the approach by Wang et al. by abstaining
from downsampling within the first layer and introducing additional augmentation [15,19].
The results are reported using balanced accuracy and its associated area under the receiver-
operating curve (AUC). For the comparative methods, we use the numbers as provided
by Corvi et al. [18]. To ensure a fair comparison, we carefully follow the same evaluation
protocol as Corvi et al. The only notable difference is that our testing data are smaller
by a factor of 2; hence, we use 500 synthetic images from each generative model and
2500 real images.

Table 2 shows the results for the uncompressed synthetic images. Here, the detection
only has to cope with the fact that the images come from unseen sources and generators,
but no further post-processing is applied. The first row shows the detection performance
on the in-distribution test set for the ProGAN images, and the following rows depict the
performance on the out-of-distribution data. The last row shows the average performance
of each method. The three rightmost columns depict the results of the BNN. Out of those
three columns, the leftmost shows the BNN’s performance by selecting the most likely class.
The middle column reflects the performance with an activation-based abstain threshold,
where no decision is made if all the class activations are below a threshold of 0.5. The
abstains opt out of the evaluation; i.e., the reported performance only includes the samples
from which the BNN did not abstain. The rightmost column shows the performance
with an uncertainty-based abstain threshold. Here, each sample with high uncertainty is
flagged as unreliable and analogously abstains from prediction. The uncertainty threshold
σabstain = 2 · σin = 0.182 is set based on the mean uncertainty regarding the in-distribution
test set σin = 0.091. A prediction is considered unreliable if the uncertainty exceeds the
average in-distribution uncertainty σin by a factor of two.

The results show that the performance of the BNN is comparable to related works on
in-distribution data. The performance of the BNN also decreases on out-of-distribution
data (as expected), with particularly weak spots on the StyleGAN3 and Dall-E 2 images.
However, the ability to abstain from the decision can increase the performance across all
the architectures.
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Table 2. Comparison of state-of-the-art synthetic image detectors on uncompressed images. Row-wise
best results are shown in bold.

Acc/AUC% Spec [52] PatchFor [53] Wang [15] Grag [19] Ours
Ours

(Activation
Abstain)

Ours
(Uncertain
Abstain)

ProGAN 83.5/99.2 64.9/97.6 99.9/100 99.9/100 95.4/99.1 98.8/99.7 99.5/99.9

StyleGAN2 65.3/72.0 50.2/88.3 74.0/97.3 98.1/99.9 77.9/90.8 78.5/91.8 80.4/92.0
StyleGAN3 33.8/4.4 50.0/91.8 58.3/95.1 91.2/99.5 50.0/66.8 50.9/68.6 52.2/73.0

BigGAN 73.3/80.5 52.5/85.7 66.3/94.4 95.6/99.1 78.0/90.0 78.8/90.2 81.7/89.0
Dall-E mini 80.1/88.1 51.5/82.2 51.7/60.6 70.4/95.6 82.8/93.2 86.3/94.3 88.6/94.1

Dall-E 2 82.1/93.3 50.0/52.5 50.3/85.8 51.9/94.9 50.6/51.0 50.8/54.1 51.0/55.0
Stable

Diffusion 66.8/74.7 50.8/85.0 50.9/65.9 62.1/92.9 74.4/88.6 74.5/87.5 75.6/89.1

Latent
Diffusion 72.1/78.5 51.8/84.3 51.0/62.5 58.2/91.5 70.6/79.6 72.3/85.0 72.6/86.0

Taming Tran. 79.6/86.6 50.5/69.4 51.2/66.5 73.5/96.6 53.9/64.4 59.9/75.8 62.3/78.4

AVG 70.5/75.2 51.9/83.2 59.5/78.6 75.8/92.8 70.4/80.4 72.3/83.0 73.8/84.1

Table 3 shows an analysis of the resized and compressed synthetic images, which is a
more realistic and challenging scenario. Again, for a fair comparison, we follow the same
post-processing approach of image resizing and additional JPEG compression as described
by Corvi et al. [18]. The overall structure of the results is the same as in Table 2. In this
more challenging scenario, Spec, PatchForensics, and Wang et al. drop to random guessing
for all the generators [15,52,53]. Meanwhile, Gragnaniello et al. is able to retain decent
performance for the other GAN-based generators, and it also drops to random guessing
for the diffusion-based models [19]. The BNN also takes a performance penalty. However,
it is able to retain decent performance for most of the GAN-based generators and for
most of the diffusion-based generators, which again is slightly improved by utilizing our
abstain policies. While the BNN shows on average on-par but slightly inferior performance
regarding uncompressed data compared to Gragnaniello et al., it demonstrates higher
robustness and stability within the more challenging setting [19].

Table 3. Comparison of state-of-the-art synthetic image detectors on resized and compressed images.
Row-wise best results are shown in bold.

Acc/AUC% Spec [52] PatchFor [53] Wang [15] Grag [19] Ours
Ours

(Activation
Abstain)

Ours
(Uncertain
Abstain)

ProGAN 49.7/48.5 50.4/65.3 99.7/100 99.9/100 90.2/95.6 91.5/97.4 95.8/98.2

StyleGAN2 51.8/50.5 50.8/73.6 54.8/85.0 63.3/94.8 57.1/54.0 60.9/61.8 62.3/66.2
StyleGAN3 52.9/51.9 50.2/76.7 54.3/86.4 58.3/94.4 49.2/65.0 50.6/61.2 50.0/66.2

BigGAN 52.1/52.2 50.5/58.8 55.4/85.9 79.0/99.1 66.6/77.8 66.7/80.7 68.1/85.3
Dall-E mini 59.1/61.9 50.1/68.7 51.1/66.2 62.3/95.4 77.1/86.5 78.5/90.0 80.6/87.3

Dall-E 2 62.0/65.0 49.7/58.4 50.0/44.8 50.0/64.4 50.4/52.0 50.4/53.0 51.3/54.6
Stable

Diffusion 46.5/44.5 51.1/77.2 50.7/72.9 58.1/93.7 74.4/88.6 74.5/87.6 75.6/89.2

Latent
Diffusion 47.9/46.3 50.6/65.2 50.7/69.1 52.4/89.4 70.6/79.7 72.5/84.0 72.6/85.0

Taming Tran. 49.0/49.1 50.0/64.1 50.5/71.0 56.2/94.3 51.6/49.4 51.9/52.0 53.0/54.6

AVG 52.7/52.7 50.4/69.2 55.8/75.0 61.5/90.8 65.2/72.1 66.4/74.2 67.7/76.3

5.3. Out-of-Distribution Detection via Uncertainty Estimates

This experiment analyzes the BNN-specific possibility to express uncertainty for the
detection of out-of-distribution samples and for avoiding unreliable predictions.
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The BNN’s uncertainty estimates are compared to the activation statistics as expressed
by the traditional neural network models. Therefore, we additionally train a CNN model anal-
ogously to the BNN described in Section 4. Both models are evaluated on an out-of-distribution
test set from various generators. More specifically, we include unseen in-distribution im-
ages from stable diffusion and out-of-distribution images from StyleGAN2 [45], Dall-E 2 [2],
GLIDE [54], denoising diffusion probabilistic models (DDPM) [55], and the noise condi-
tional score network (NCSNPP) [56]. Additionally, we include images from other real
datasets unseen during training, namely the LSUN dataset [41] and the unconstrained face
detection dataset (UFDD) [57].

For the BNN, we use the uncertainty estimates based on M = 20 Monte Carlo draws
for discrimination between the in-distribution and out-of-distribution samples. For the
CNN, we interpret 1−class activation as a means of uncertainty. The results are reported in
terms of the area under the receiver-operating curve (AUC).

Figure 2 shows the results, with an ROC curve for the BNN uncertainties on the left
and an ROC curve for the CNN class activation uncertainties on the right. The uncertainty-
based thresholding achieves decent results for all the unseen generative models as well as
for the unseen real images. In contrast, the CNN class activations are considerably weaker
indicators as to whether a sample is from the out-of-distribution domain.
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Figure 2. Detection of out-of-distribution examples of the BNN and CNN on the UFDD and LSUN
datasets. Left: ROC curves of the BNN model. Right: ROC curves of the CNN.

5.4. Reliability Evaluation via Compression Similarity

The three output nodes, real, synthetic, and compressed, provide another angle for
assessing the reliability of the predictions. Figure 3 shows a qualitative example that is
generated by the EG3D model. The data from this model are not used during training.
The middle plot shows the BNN’s class activation for the uncompressed version of this
image, averaged over M = 20 Monte Carlo draws. In this case, the BNN correctly shows a
high activation for the synthetic class with Psynth = 0.78 together with a high uncertainty of
σsynth = 0.32. The right plot of Figure 3 shows the BNN’s class activation after compressing
the image with a JPEG quality factor of Q = 90. The prediction notably changes. The most
likely predicted classes are now “real” alongside “compressed”, which would be a false
decision. However, the BNN’s prediction is highly uncertain and the model abstains from
a prediction as the mean activation for each class is below the threshold of 0.5, as indicated
by the dotted line. The inability to reliably operate on that input is therefore reflected by
the abstain decision, i.e., to not decide on any class together with the high uncertainties
regarding the classes.

Another telltale sign that the decision is unreliable can be found when examining the
image regions that are relevant for the BNN decision as produced by Grad-CAM [58] from
the mean feature activation over M = 20 Monte Carlo draws. Figure 4 shows the feature
activations for each class that led to the respective decision from Figure 3. The top row
shows the feature activation for the uncompressed image per output class. For each class,
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there are different regions in the image that are relevant, with a slight overlap between the
“real” and the “compressed” class. The bottom row shows the feature activation for the
JPEG-compressed image. Here, the feature activation for the “synthetic” class is weaker.
Additionally, the relevant regions for the “compressed” and “real” classes are very similar,
which is a telltale sign in terms of the unreliable confusion induced by the post-processing.

Uncompressed0.0

0.2

0.4

0.6

0.8

1.0

Real
Synthetic
Compressed

JPEG QF=900.0

0.2

0.4

0.6

0.8

1.0 Real
Synthetic
Compressed

Figure 3. (Left) image generated by the EG3D model (out-of-distribution). (Middle) class activations
for the uncompressed image. The BNN correctly shows a high activation for the synthetic class and a
high uncertainty. (Right) class activations for the images after JPEG compression with quality factor
Q = 90. Here, the model becomes highly uncertain about its decision and abstains from a prediction.
However, it can be observed that now the most likely classes are real alongside compressed.

Un
co

m
pr

es
se

d

Compressed

JP
EG

 Q
F=

90

Real Synthetic
Figure 4. Activation heatmap of the BNN for a sample image from the EG3D model. Each column
shows the activation for the corresponding class. In the top row are shown the respective activations in
the uncompressed case. Here, for each class, different image regions are dominant, with some overlap
between the real and compressed classes. The bottom row shows the respective class activations
for the JPEG-compressed case. Here, the activation for the synthetic class becomes less dominant.
Additionally, the activations for the compressed and real class share mostly the same regions, which
is a telltale sign of unreliable post-processing confusion.

To quantify this property, we evaluate the error rate of the BNN for various in-
distribution and out-of-distribution generators and datasets. For each dataset, we analyze
500 images and use M = 20 Monte Carlo samples. Table 4 shows a quantitative analysis
regarding the effectivity of the previously introduced activation-based abstain, uncertainy-
based abstain, and the now-presented SSIM-based abstain. The first two columns show the
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error rates when using the activation-based and the uncertainty-based abstain thresholds.
The third column shows the error rates for the SSIM-based threshold. Here, we abstain
from a prediction when the feature activation heatmaps achieve an SSIM score larger than
or equal to 0.9. The SSIM-based abstain is a helpful addition for several datasets, which
particularly shows in the last column where all three abstain thresholds are combined,
which considerably lowers the error rates for all the datasets.

Table 4. BNN error rate (lower is better) in dependence of the abstain threshold for various in- and
out-of-distribution data. Row-wise best results are shown in bold.

Dataset Activation-
Based

Uncertainty-
Based SSIM-Based Combined

COCO 0.006 0.002 0.006 0.002
Stable Diffusion 0.004 0.000 0.004 0.000

Dall-E 2 0.027 0.000 0.023 0.000
DDPM 0.002 0.000 0.000 0.000
Glide 0.080 0.044 0.034 0.016

NCSNPP 0.020 0.004 0.016 0.002
StyleGAN2 0.264 0.046 0.136 0.040

LSUN 0.226 0.050 0.216 0.048
UFDD 0.064 0.016 0.030 0.008

5.5. Evaluation on Real-World Social Media Data

Resizing and compression operations are applied throughout the experiments to
simulate real-world environments. To further increase the realism of the experiments,
we additionally test our architecture on out-of-distribution data, which are composed
of data from social media platforms. More specifically, we utilize the TrueFace dataset
by Boato et al. [59]. The dataset is composed of real and synthetic images, generated by
the styleGAN1, styleGAN2, and styleGAN3 architectures before and after uploading to
Facebook, Twitter, Telegram, and Whatsapp. The dataset is split into training and test data.
For our evaluation, we use 100 images from the test dataset, where the synthetic images are
generated by the styleGAN1 architecture. The images in these evaluations are severely out
of distribution: neither the pre-social real images, nor the styleGAN1 generated images,
nor the processing artifacts from real-world platforms like Facebook, Telegram, Twitter, or
Whatsapp were observed during the training.

Figure 5 shows the mean predictions of our proposed architecture and the associated
uncertainties as error bars. Our model shows high performance and confidence in its pre-
diction on the real pre-social images. Synthetic pre-social images lead to higher uncertainty
but can still be reasonably well detected. On the post-social images, our model shows, for
the real and synthetic images, decreased class activation and highly increased uncertainty
for almost every platform. One notable exception includes the synthetic images after
uploading to Twitter. Here, our model wrongly classifies these as real with high confidence.
However, at the same time, we can observe a high activation for the compressed class.

Table 5 shows the possibility to detect such unreliable false predictions. In fact, the
false predictions on the out-of-distribution data can be reliably detected. The results in
Table 5 show our model’s error rate in dependence of the abstain threshold on the TrueFace
data. By using the combined approach, we are able to significantly reduce the error rate on
the out-of-distribution data. This is especially shown for the synthetic images uploaded to
Twitter. An assessment of the compression similarity (cf. Section 5.4) greatly reduces the
initial error rate from 0.9 to 0.14 since the predictions for class “real” are rooted in confusion
between the styleGAN and compression artifacts.
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Figure 5. Mean model prediction on the TrueFace dataset [59] for real and synthetic data prior to and
after uploading to Facebook, Telegram, Twitter, and Whatsapp. Synthetic images were generated
by the StyleGAN architecture and for each evaluation we used 100 images from the test set. While
images prior to the respective platform upload are on average correctly classified, our model shows
highly increased uncertainty and abstains from predictions, rendering the post-social predictions
unreliable. One notable exception includes synthetic images uploaded to Twitter, which are falsely
classified as real images with high confidence. However, these false predictions can be detected by
our SSIM-based threshold as these highly overlap with compression artifacts.

Table 5. BNN error rate (lower is better) in dependence of the abstain threshold on the TrueFace test
dataset. Row-wise best results are shown in bold.

Dataset Activation-
Based

Uncertainty-
Based SSIM-Based Combined

Real Presocial 0.000 0.000 0.000 0.000
Synth. Presocial 0.010 0.000 0.010 0.000

Real Facebook 0.500 0.120 0.460 0.120
Real Telegram 0.140 0.040 0.120 0.040
Real Twitter 0.150 0.020 0.120 0.020

Real Whatsapp 0.160 0.060 0.100 0.030

Synth. Facebook 0.340 0.080 0.330 0.080
Synth. Telegram 0.070 0.010 0.060 0.010
Synth. Twitter 0.900 0.740 0.160 0.140

Synth. Whatsapp 0.250 0.070 0.120 0.050

5.6. Ablation Study: Accuracy vs. Abstain Tradeoff by Uncertainty Thresholding

The uncertainty threshold σabstain has a major impact on reducing the error rate, as
shown in the previous section. It also determines which predictions are deemed unreliable,
which leads to abstaining from the predictions. In this section, we report the impact of the
choice of σabstain on the error rate and abstain rate.

Figure 6 shows the tradeoff between the error rate and abstain rate of the BNN based
on the chosen σabstain. The left plot shows the error rate in dependency of the choice in
threshold, where only predictions with an uncertainty smaller than σabstain are considered
reliable. Here, lower thresholds substantially decrease the error rate. On the other hand,
lower thresholds simultaneously increase the abstain rate, as indicated in the right plot of
Figure 6.
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Figure 6. (Left) error rate as a function of the uncertainty threshold σabstain. (Right) abstain rate as a
function of the uncertainty threshold σabstain. Choosing a more conservative σabstain, the error rate is
significantly reduced. However, the abstain rate on the other hand is increasing as more predictions
are marked as unreliable. In both figures, the dotted line shows the σabstain threshold as chosen for
our previous evaluations. For most cases, a threshold of twice the in-distribution model uncertainty
shows a reasonable tradeoff between the error rate and abstain rate.

The dotted black line shows the chosen uncertainty threshold we used throughout our
previous experiments, which we specified as σabstain = 2 cot σin, twice the in-distribution
uncertainty. In our experiments, this choice yields a good tradeoff between a reduction in
the error rate and an increase in the abstain rate.

5.7. Ablation Study: Effectiveness of the Noise Contrastive Estimation

We show the effects of the noise contrastive prior on the uncertainty estimates of the
BNN in an ablation study. The BNN is trained with and without the NCP. Both models are
trained with the same protocol, as specified in Section 4.

In Figure 7, we compare the error rate of the BNN without the NCP (“BNN-noNCP”)
with the proposed BNN. The BNN without the NCP shows a higher error rate on all
four out-of-distribution datasets. The difference in error rates is particularly large for the
Glide images.
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Figure 7. Comparison of BNN error rate on different OOD datasets with and without noise contrastive
estimation (lower is better).

Table 6 further underlines these results. It shows the abstain rate of the traditional
CNN, the BNN without the NCP, and the full BNN. The CNN exhibits the lowest abstain
rates since most of the decisions are based on very large activations and hence high
confidence. BNN-noNCP shows higher uncertainty on the out-of-distribution datasets,
which is reflected by the increasing abstain rates. This behavior is amplified by the proposed
BNN with the NCP, which exhibits the highest abstain rates regarding the data it fails to
generalize to, thereby avoiding confident false decisions.
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Table 6. Comparison of the abstain rates of CNN, BNN, and NCP-BNN.

Model COCO Stable
Diffusion Dall-E DDPM Glide NCSNPP

CNN 0.01 0.00 0.17 0.01 0.01 0.00
BNN-

noNCP 0.03 0.00 0.16 0.14 0.27 0.15

BNN
(proposed) 0.05 0.03 0.29 0.57 0.84 0.49

Table 7 confirms this result by showing the proportion of confident false decisions.
In this case, we classify a decision as confident if the class prediction is ≥0.9. While the
traditional CNN approach shows a significant amount of confident false decisions on the
out-of-distribution data, the BNN without the NCP halves the proportion of false decisions,
and the BNN with the NCP again halves the proportion of false decisions.

Table 7. Comparison of confident false decisions of CNN, BNN, and NCP-BNN (lower is better). The
best results are shown in bold.

Model In-Distribution Out-of-Distribution

CNN 0.04 0.34
BNN-noNCP 0.02 0.15

BNN (proposed) 0.01 0.07

6. Conclusions

In this work, we investigate the challenge of reliably identifying the synthetic im-
ages produced by GAN models and diffusion models, with a strong emphasis on out-
of-distribution data. We propose a Bayesian Neural Network for the detection of out-of-
distribution data that cannot be reliably classified. The uncertainties of the BNN are further
enhanced in the training with noise contrastive priors. Our experiments show that the
BNN detects synthetic images comparably well to other state-of-the-art detectors, but it
comes with the added benefit of the uncertainty measure.

We investigate three specific approaches to effectively convert the BNN outputs into a
criterion for abstaining from uncertain decisions: by thresholding on the class activations,
on the uncertainty, or on the structural similarity of the Grad-CAM features. All three
criteria are effective in reducing the error rate, and a combination of these three criteria
even further reduces the error rate.

We hope that these findings will create new opportunities for robust and reliable
synthetic image detection on images from unknown sources.
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