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Abstract: A smarter city should be a safer city. Nighttime safety in metropolitan areas has long
been a global concern, particularly for large cities with diverse demographics and intricate urban
forms, whose citizens are often threatened by higher street-level crime rates. However, due to the
lack of night-time urban appearance data, prior studies based on street view imagery (SVI) rarely
addressed the perceived night-time safety issue, which can generate important implications for
crime prevention. This study hypothesizes that night-time SVI can be effectively generated from
widely existing daytime SVIs using generative AI (GenAI). To test the hypothesis, this study first
collects pairwise day-and-night SVIs across four cities diverged in urban landscapes to construct a
comprehensive day-and-night SVI dataset. It then trains and validates a day-to-night (D2N) model
with fine-tuned brightness adjustment, effectively transforming daytime SVIs to nighttime ones for
distinct urban forms tailored for urban scene perception studies. Our findings indicate that: (1) the
performance of D2N transformation varies significantly by urban-scape variations related to urban
density; (2) the proportion of building and sky views are important determinants of transformation
accuracy; (3) within prevailed models, CycleGAN maintains the consistency of D2N scene conversion,
but requires abundant data. Pix2Pix achieves considerable accuracy when pairwise day–and–night-
night SVIs are available and are sensitive to data quality. StableDiffusion yields high-quality images
with expensive training costs. Therefore, CycleGAN is most effective in balancing the accuracy, data
requirement, and cost. This study contributes to urban scene studies by constructing a first-of-its-
kind D2N dataset consisting of pairwise day-and-night SVIs across various urban forms. The D2N
generator will provide a cornerstone for future urban studies that heavily utilize SVIs to audit urban
environments.

Keywords: street view imagery; night scene; day-to-night; generative AI; nighttime perception

1. Introduction
1.1. Public Space and Safety Perception

Urban public space has significant impacts on the urban ecological environment [1],
residents’ physical and mental health [2], urban vitality [3], public life [4], personal identifi-
cation [5], and city security [6]. Notably, the urban visual appearance, as emphasized by
Lynch (1984), plays a crucial role in human perception. For example, the design and mainte-
nance of public spaces hold particular importance to the perceptions of safety, traditionally
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assessed through various methods, including site observation, questionnaires, surveys, and
cognitive mapping [7]. The data collection process involves field surveys, visual auditing
(Rossetti et al. 2019), and land use data collection via Geographical Information Systems
(GIS) [8].

There has been a notable increase in urban studies addressing urban environmental
quality, covering crucial topics including place attachment, urban heat islands, ecosystem
services, road traffic, and house prices (Figure A1). Among them, a significant subset
(280+ papers) has extensively utilized Street View Imagery (SVI) data [9] and artificial intel-
ligence (AI) models, including machine learning (ML), deep learning (DL), and computer
vision (CV) for urban-scale visual auditing [10–12]. Emerging studies [13–16] have indi-
cated that street scene qualities significantly affect human behaviors, including running [17],
walking [18], mental health [19–21], leisure activities [22], job and housing decisions [23,24],
crime [25], and carbon emissions [26].

However, most (~95%) of SVI-based studies exclusively rely on daytime SVIs. Urban
night scenes are inadequately explored due to the scarcity of night-time images. This study
draws particular attention to the biased urban image database issue. Prior studies failed to
describe night-time street environments due to how and when SVIs are collected—SVIs are
captured by a car mounted with panorama cameras running through streets during the
daytime [27]. That said, unlike the prevalence of the daytime counterpart, no urban-scale
night-time SVI dataset exists. This limitation also leads to a deficiency in understanding the
variation in day-night perception. For example, a street with high greenery and plantation
coverage during the daytime might look pleasant while being scary at night. Commercial
streets might look plain and boring during the daytime but prosperous at night. Hence, the
absence of night-time images has significantly restricted the comprehensive understanding
of urban environments.

Despite the deficits of nighttime SVI, transforming daytime images to night-time ones
is not novel in CV studies [28]. For example, CycleGAN [29] has allowed for the production
of corresponding nighttime images on a large scale for driverless car studies. Inspired by
advancements in CV studies, this study sets out to fill the research gaps.

1.2. Knowledge Gaps

First, no urban-scale image dataset exists to provide consistent (i.e., camera settings)
and pairwise day–and–night SVIs tailored for night-time street view generation from day-
time counterparts for urban studies. For example, CV researchers usually collect pairwise
images from non-professional photographs [30–32] or render pictures with inconsistent
illumination conditions [33,34]. Given the prevalence of urban environment studies using
public daytime SVIs, collecting consistent and pairwise day-and-night SVIs is crucial to
ensure the generalization ability of day-to-night (D2N) SVI generation.

Second, despite the prevailed D2N conversions in CV studies, little reference exists
regarding what models (e.g., StableDiffusion, CycleGAN, Pix2Pix) are more effective for
completing the D2N transformation for urban scenes [28,35]. We hypothesize that the
capability of pre-trained models in predicting night-time views can be characterized by
streetscape variations according to urban form differences. For instance, a transformer
model may effectively predict night scenes for low-density urban landscapes (e.g., subur-
ban) while struggles for densely developed central business districts (CBDs). That said,
how different GenAI frameworks might perform differently across divergent urban forms
is largely unknown, which can provide important references for future studies.

Third, how to consistently evaluate the accuracy of image prediction useful for urban
scene studies is unclear, especially regarding how to quantify the divergence between fake
and ground-truth nighttime SVIs according to human perceptions. We argue that human
perception is more reliable than R2, MSRE, or other common ML error measures, while
human validation is important.
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1.3. Research Design and Contributions

To fill the gaps, this study collected pairwise day–and–night SVIs across various urban
forms in four cities to train D2N models. Three popular models (i.e., CycleGAN, Pix2Pix,
and StableDiffusion) were tested, and CycleGAN was most effective for the D2N task,
a method commonly employed in the automobile industry [28,35]. Notably, streetscape
features were extracted with semantic segmentation [36,37] during model establishment for
fine-tuning to overcome the bright spot issues. The accuracy of D2N transformation was
also evaluated based on human eye preference rating [38] using online surveys to ensure
the generalization ability of the night-time scenes generated would be useful for urban
scene auditing and human perception measures for future studies. This study established a
scientific foundation for policymakers and urban designers to generate night-time scenes
for high-throughput urban auditing and management.

2. Literature Review
2.1. Urban Public Space and Human Perceptions

Urban public space refers to open places accessible to the entire public, mainly used
for citizens’ daily lives and social activities, including outdoor spaces such as urban squares,
streets, and parks [39]. Public space significantly influences the quality of life [40]. For
example, Jane Jacobs emphasizes that quality physical environments, such as well-designed
sidewalks, public spaces, and neighborhood stores, can prevent crimes by providing more
“eyes on the street” [6].

The surrounding environment can affect Night-time perceptions, e.g., the sense of
night safety. A few studies evaluated potentially threatening situations, including envi-
ronmental variables and unsafe environment information [41] and found factors such as
darkness, isolation, and desertion can increase feelings of insecurity [42–44]. One study
illustrated the perceptions of travelers in Hong Kong of the diverged day/night time street
view [45]. Another one explored the relationship between street-related elements and fear
of crime for females [46]. However, beyond these efforts, very limited studies have focused
on perception variations attributed to environmental differences between day and night at
the urban scale.

2.2. SVI Data for Urban Scene Auditing

Observation, activity notation, questionnaire survey, cognitive mapping, and GPS
tracking are commonly used in environmental behavior studies [7]. Some studies collect
user preferences by asking interviewees to select preferred pictures and explain their
subjective perceptions of public spaces [36,47]. Along this line, the introduction of SVI
data dismantled limitations on the accessibility of urban image data sources [48,49], being
able to represent characteristics of the built environment at a large scale [9]. SVIs have
received considerable attention in urban planning and design [50]. Typically, they can be
acquired from a car mounted with cameras on its roof and lidar sensors [51], making them
suitable for eye-level urban perception measures [52,53]. It has been used in measuring
urban vibrancy, comfort, and attitude towards greenery and safety [13,14,16,20].

The advancements in AI interpretation also enable researchers to decode the subtle
correlations between environments and human perception [15,54,55]. CV feature extractors
(e.g., GIST, DeCAF ImageNet) have been widely employed to predict perceptual scores
from images [56,57]. Most recently, sophisticated methods such as convolutional neural
networks (CNNs) also saw increased applications [10,58,59].

2.3. GenAI and Nighttime Image Translation

Notably, most images utilized for training originate from public photographic re-
sources. Some studies took an incentive-based method for large-scale photo collection,
albeit at the expense of being labor-intensive [32]. However, almost all urban scene studies
neglect to collect night pictures. Only certain studies involve rendering images under
varying daylight [34] and night illumination conditions. The image quality of a low-
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light environment also degrades due to color distortions and noise [60–63]. Fortunately,
technologies featuring LLIE [64] and NIR [65] can enhance the image quality in this envi-
ronment. With the development of deep learning, low-light image enhancement is based
on deep neural networks [63,66–70]. With the recent development of generative models,
GenAI is promising to allow for converting daytime SVIs into nighttime, contributing to
advancements in 24-h street environment auditing and management.

2.3.1. Generative Adversarial Networks (GANs)

Along this line, GANs [71] have emerged as a focal point of D2N research. Its architec-
ture comprises a generative model and a discriminative model. Throughout the adversarial
training process, the generative model assimilates the probability distribution of real data,
generating synthetic samples capable of deceiving the discriminative model [72]. Specif-
ically, GAN circumvents the explicit definition of pθ(x), which refers to the probability
density function (PDF) of variable x, parameterized by θ in the context of generative ad-
versarial networks (GANs), by training the generator through the binary classification
capability of the discriminator. The generator is not constrained to adhere to a specific form
of pθ(x) [73]. As the generator is typically a deterministic feed-forward network from Z
to X, GAN facilitates a straightforward data sampling process, distinguishing itself from
models employing Markov chains [74] (which are often slow in computation and imprecise
in sampling). Additionally, GAN enables the parallelization of data generation, a feature
not feasible in other autoregressive nature models [73].

2.3.2. StableDiffusion

StableDiffusion [75] entails modeling a particular distribution originating from ran-
dom noise, achieved through both a forward diffusion process and its corresponding
reverse diffusion counterpart. The framework is characterized by its emphasis on efficiency,
aiming to minimize inference time and computational workload compared to alternative
image-generative methodologies [76]. Firstly, the model excels in generating synthetic
images characterized by visual realism, effectively capturing a diverse array of conceptual
content. Secondly, the generated images serve as valuable training data, facilitating data
augmentation within machine learning applications, thereby contributing to enhanced
model generalization and robustness. Thirdly, the synthetic images generated demonstrate
efficacy in image classification tasks, with certain conceptual representations accurately
discerned by vision transformer models, underscoring the model’s discriminative prowess.
Ultimately, using synthetic data engendered enriches data diversity in supervised learning
settings. This proactive measure mitigates the dependence on labor-intensive labeling
processes, presenting a pragmatic solution to challenges associated with data scarcity [77].

However, StableDiffusion has three major cons. Firstly, there exists a challenge in
managing the variability in generation speed, where the model encounters difficulties in
reconciling disparate rates of image generation across diverse categories. Secondly, the
similarity of coarse-grained characteristics emerges as an issue stemming from the entangle-
ment of features at a global or partial coarse-grained level. This phenomenon contributes
to generating images with analogous characteristics, hindering diversity. Lastly, the pol-
ysemy of words introduces susceptibility into the model, as it incorporates semantically
complementary words to the original prompt. This process generates images featuring en-
tirely novel content unrelated to the original category, compromising the model’s semantic
fidelity [78].

2.3.3. Day-and-Night Image Translation

Recent developments have introduced a deep generative model designed to transform
images between day and night [28], which is common in the automobile industry for
vehicles to locate objects and recognize barriers [35]. CycleGAN [29], an approach tailored
for translating an image from a source domain to a target domain without the demand for
paired examples, is profound in practice. It contributes to the conversion between day and
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night images. Some researchers have also extended CycleGAN to Pix2Pix and are trying to
achieve better performance [79]. Additionally, semantic segmentation plays a crucial role
in comprehending the content of images and identifying target objects, especially in the
field of automatic driving [37]. Notably, Pix2Pix and CycleGAN are grounded in the family
of GAN models.

Pix2Pix has three pros. Firstly, it utilizes conditional GANs that incorporate a struc-
tured loss, penalizing the joint configuration of the output, thereby enhancing the realism of
generated outputs. Secondly, using a U-Net-based architecture for the generator facilitates
skip connections, directly transferring low-level information between input and output.
Thirdly, the PatchGAN discriminator in Pix2Pix focuses on high-frequency structure, result-
ing in sharper images while relying on an L1 term for low-frequency correctness. However,
discernible disadvantages include the potential for blurry results in image generation tasks
when employing L1 or L2 loss functions and the limitation of diversity in generated images
due to the dropout noise strategy.

CycleGAN comes with two distinct advantages and one limitation. Firstly, it can
learn mappings between two domains without necessitating paired training data, offering
increased flexibility in image translation tasks. Secondly, the incorporation of cycle con-
sistency loss aids in preserving the content of the input image during translation, thereby
enhancing the overall quality of generated images. Nevertheless, CycleGAN may en-
counter mode collapse, where the generator fails to capture the full diversity of the target
distribution, resulting in limited variability in generated images. Additionally, the absence
of paired data in CycleGAN training can lead to training instability and challenges in
achieving desired translation outcomes [79].

3. Data and Method
3.1. Research Design and Study Area
3.1.1. Conceptual Framework

The D2N framework (Figure 1) generates nighttime images from their daytime counter-
parts. Initially, pairwise day–night SVIs are collected. Subsequently, the model undergoes
training utilizing the generative model, followed by a validation process to assess its per-
formance. Then, by inputting an additional daytime SVI without the inclusion of pairwise
nighttime images, the D2N model can be employed to obtain nighttime images for the
analysis of environmental perception.
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The validation process contained two steps. Firstly, common metrics, including L1
distance, L2 distance, and SSIM, were employed to assess the performance of the D2N
model by quantifying disparities between real nighttime images and their transformed
counterparts [80,81]. Second, three urban designers adept at utilizing SVIs for environmen-
tal perception assessment were enlisted. They conducted a comparative analysis of both
real and transformed nighttime images, evaluating the transformation performance for
their quality.

Figure 2 illustrates the three key steps in the D2N model. Initially, the CycleGAN was
employed to generate the basic night images, and the issue of random bright patches in
the sky pixels observed in the generated outcomes was addressed by human guidance.
Subsequently, segmentation assumed a pivotal role in isolating sky components from their
corresponding daytime images. In the third step, the sky masks were combined with the
generated nighttime images to improve the overall image quality under human guidance.
Ultimately, the D2N model produced the final output of generated nighttime images.
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3.1.2. Training and Testing Area

Pairwise day–night street scene photos were sampled from four Chinese cities to
construct the training dataset. Once trained, the best D2N model was applied to predict
night scenes in New York City (NYC) based on daytime SVI inputs (downloaded from
Google Maps) to investigate the model’s viability. NYC was selected as an illustrative case
because it exhibits diverse street styles in various areas [82]. The validation of predictions
could furnish evidence regarding human perception when encountering streets of varying
high-width ratios and architectural styles.

3.2. Data
3.2.1. Training Data

The training data were gathered from Beijing, Shanghai, Wuhan, and Chengdu. These
images were primarily selected from residential areas with similar street height-to-width
and building plot ratios. We carefully controlled the environmental styles of the input
training data, striving to avoid specific areas like CBD and wilderness parks [83]. CBD
areas and parks exhibit greater variability due to distinct city developments and definitions,
lacking universality for our D2N model. In other words, the images excluded skyline
buildings and abundant tree coverage, intending to concentrate on environments where
people commonly reside.

Figure 3a displays the pairwise day–and–night SVI samples gathered in Beijing
(106 pairs) within the urban core zone. Figure 3b illustrates how SVIs were collected
from the human eye level. The perspective was further categorized into road-facing and
sidewalk-facing views. Figure 3c showcases a pairwise day/night scene in a consistent
perspective, which ensures optimal performance in training the D2N model.
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All collected pairwise SVIs are used to train and validate progress in CycleGAN.
Notably, images were captured during the summer and autumn of 2023. Throughout this
timeframe, the presence of greenery remained noteworthy.

3.2.2. D2N Model Efficacy

Daytime SVIs were sampled from boroughs of Manhattan, Brooklyn, Queens, and The
Bronx in NYC (Figure 4) and occurred at 150 m intervals along the centerlines of public
streets utilizing QGIS (Figure 4). The shapefile of the road network was obtained from
OpenStreetMap [84]. 42,306 points were sampled, and an 800-point subset was randomly
selected to request SVIs with Google Street View API [85].

Identical camera settings and image resolution were set to maintain a consistent view-
ing angle with three API parameters. The “heading” (view direction) was aligned parallel
to the street centerline, the “FOV” (horizontal field of view) was set at 90 degrees, and the
“pitch” (the up or down angle of the camera) was maintained at 0 degrees. Additionally,
the resolution was standardized at 640 × 400 pixels (Figure 4). For each SVI point, only
the view parallel to the tangent of the street centerline was downloaded—a perspective
previously employed in urban design studies [86].

Notably, even though a substantial proportion of SVIs were oriented parallel to
the street centerlines, images captured from the sidewalk perspective could still trans-
form. This capability is attributed to including this specific perspective in our training
input images.

3.3. Model Architecture
3.3.1. Generative Models

Three distinct GenAI models—CycleGAN, Pix2Pix, and Stable Diffusion—were uti-
lized, and their results will be presented in Section 4.1. Based on performance measures,
CycleGAN was selected to execute the translation process. It is not reliant on paired training
examples. It has proved versatile and applicable to a broad spectrum of image-to-image
translation tasks, especially when acquiring paired data posed challenges or incurred sub-
stantial expenses. Consequently, it found practical application in transforming nighttime
SVIs from their daytime counterparts.
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(c) View angle configurations.

3.3.2. Semantic Segmentation for Adjustment

Notably, night-time images generated by CycleGAN contained evident sporadic
bright patches, primarily concentrated in each image’s sky regions. Semantic segmenta-
tion was employed to gain a more nuanced understanding of the image. This technique,
as outlined by Zhou et al. [87,88], facilitates the partitioning of the image into semanti-
cally meaningful regions, each corresponding to a distinct object or class. By employing
this method, we could isolate the sky components within the images, allowing us to
focus on the predominant bright patches in the sky for subsequent refinement during
human-guided steps.

3.4. D2N Model Training

The model training process was fivefold (Figure 5). First, 638 pairwise day–night SVIs
were split into training and validation subsets. Second, CycleGAN [29,79] was employed
to train D2N transformation. Third, we adopted semantic segmentation to separate the
sky pixels, enabling further automatic identification of bright pixels. Finally, we corrected
the masked pixels in Adobe Photoshop using batch processing. We integrated the bright
patches into the seamlessly manipulated sky through content recognition.
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3.5. Model Performance Validation
3.5.1. Objective Judgements in Model Performance

L1/L2 distance and SSIM are metrics to explore the differences between real and fake
nighttime images. It quantified cumulative absolute disparities among corresponding
elements within two vectors. In the realm of images, when two images are articulated
as vectors of pixel values sharing identical dimensions, the computation of L1 distance
involves aggregating the absolute distinctions between their corresponding pixels. For
GANs, it frequently serves as a metric for evaluating the faithfulness of generated images
concerning content. The endeavor to minimize the L1 distance between generated and
authentic images aims to enhance the proximity of the generated images to their authentic
counterparts on a pixel-by-pixel basis. The L1 distance can be computed by

L1 distance = ∑n
i=1 | xi − yi | (1)

• n: the dimensions of vectors x and y, indicating the number of elements they contain;
• xi and yi represent the ith element of vectors x and y, respectively;
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• L1 represents the L1 distance between x and y, also known as the Manhattan dis-
tance, which is the sum of the absolute differences of corresponding elements in the
two vectors.

L2 distance (i.e., Euclidean distance) calculates the square root of the sum of squared
differences between corresponding elements of two vectors. The image domain measures
the overall dissimilarity in pixel values between two images. In GANs, it is commonly used
to evaluate generated images’ overall structure and color distribution. Minimizing the L2
distance between generated and real images helps to ensure that the generated images are
globally closer to the real ones. The L1 distance can be computed by

L2 distance =
√

∑n
i=1(xi − yi)

2 (2)

• n: the dimensions of vectors x and y, indicating the number of elements they contain;
• xi and yi represent the ith element of vectors x and y, respectively;
• L2 distance represents the L2 distance between x vectors and y, also known as the

Euclidean distance, which is the square root of the sum of the squares of the differences
of corresponding elements in the two vectors.

Structural similarity index (SSIM) is a method for assessing image quality. It involves
the computation of three key components: luminance, contrast, and structure comparison.
The luminance comparison function assesses the likeness in average luminance values,
while the contrast comparison function evaluates the similarity of contrast values. Simul-
taneously, the structure comparison function quantifies the structural similarity between
signals. Combining these components generates the comprehensive SSIM index, allowing
an overall similarity measure. This index is defined by adjusting the relative importance
of the three components through parameters, ensuring that properties like symmetry,
boundedness, and a unique maximum are satisfied. The SSIM index algorithm can be
implemented using MATLAB [89].

Inception score (IS) serves as a pivotal evaluation metric for assessing the quality
of generative adversarial network (GAN) models [90]. It emerges as a response to the
conspicuous absence of a definitive evaluation metric for GANs, aiming to furnish a
standardized yardstick for comparing the efficacy of diverse models in producing authentic-
looking images. Notably, IS demonstrates a notable alignment with the human perceptual
judgment of image fidelity, underpinned by its design to quantify the salient objects present
within generated images. Moreover, IS closely intertwines with the optimization objectives
employed during the training phase of generative models, thus manifesting as a robust
metric that aptly mirrors human evaluative criteria [90].

On the other hand, Fréchet Inception Distance (FID) represents a pivotal measure for
quantifying the dissonance between the statistical distributions of real-world samples and
their synthetic counterparts generated by GANs. FID discerns the dissimilarity between
these distributions by assessing the Fréchet distance between their respective means and
covariances. FID offers a quantifiable measure of dissimilarity, encapsulating the divergence
between the distribution of model-generated samples and real-world samples [91].

3.5.2. Human Validation

The objective of our D2N model is to inform night scenes to audit environmental
perception. During perception auditing, experimenters typically engage in subjective
observation of entire images. Consequently, relying solely on pixel-based measures proves
inadequate for evaluating the human eye and perception.

Therefore, subjective Image Quality Assessment (IQA), a method used to evaluate the
performance of image processing algorithms, is also deployed. Observers make quality
judgments on the assessed images based on predefined evaluation criteria or their own
subjective experiences, assigning quality scores according to visual effects. Ultimately, the
average subjective score of the image, known as the mean opinion score (MOS), is obtained
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by weighting the scores given by all evaluators and calculating the mean. A higher MOS
score indicates better image quality. By calculating the MOS across all 127 sets of images,
we can derive subjective values to assess the model’s performance.

Three undergraduate student research assistants participated in a 4-h training. Three
professionals who previously utilized SVIs to audit environmental perception participated
in our study. The three professionals majored in different areas, including urban design,
architecture, and technology. The raters were presented with two nighttime images ex-
hibiting subtle differences. One image was an authentic nighttime photograph captured
in the real world, while the other was generated by transforming a daytime image using
the D2N model. The observers were instructed to simultaneously observe both images
and assess whether they perceived varying degrees of environmental perception in the
two images. Figure 6 illustrates the survey interface. The response “YES” indicated a
discernible difference in perception between the two images, whereas the response “NO”
suggested that the two images appeared similar in perception.
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They participated in the experience over two days, with sessions arranged in the
morning on the first day and in the afternoon on the second. We conducted a comparative
analysis of the results from each set of images captured on both days.

The inter-rater reliability analysis, which measures the agreement rate between ob-
servers, was conducted, indicating a score of 56.69% (Table 1). Regarding the agreement
across different periods for each rater, the Intra-Rater Reliability (IRR) analysis was con-
ducted, resulting in a 90.3% average intra-rater reliability score, with observed agreement
rates of 95.3%, 81.9%, and 93.7% for the three raters, respectively.

Table 1. Reliability of human validation.

Category
IRR Average IRR ICC Values

% Agreement % Agreement Single-Measure
ICC (1,1)

Avg-Measure
ICC (1,k)

The discernible
difference in perception 56.69 90.30 0.226 0.467

Table 2 presents the Intraclass Correlation Coefficient (ICC) values, i.e., the analysis of
within-group correlation coefficients whose values range between 0 and 1. Their confidence
intervals and F-test results are also listed, illustrating the consistency and absolute agree-
ment measured by the single-measure ICC (1,1) and average-measure ICC (1,k) methods.
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Interpretation of ICC is typically as follows: <0.2 indicates poor consistency; between 0.2
and 0.4 indicates fair consistency; within 0.4 to 0.6 indicates moderate consistency; between
0.6 and 0.8 implies strong consistency; and between 0.8 and 1.0 signifies strong consistency.
This study’s poor performance of the single-measure ICC (1,1) is reasonable, primarily
because our classification is limited to two categories.

Table 2. Result of the ICC.

Within-Group
Correlation

95% Confidence Interval F-Test for True Value 0

Lower
Bound

Upper
Bound Value df1 df2 p-Value

Single Measure
ICC (1,1) 0.226 0.117 0.343 1.879 126 254 0.000 ***

Avg-Measure ICC
(1,k) 0.467 0.285 0.61 1.879 126 254 0.000 ***

Note: ***, **, * represents significance levels at 1%, 5%, and 10% respectively.

3.6. Validating D2N with NYC Street Scenes

Applying the D2N model to transform daytime SVIs in NYC into nighttime ones indi-
cates that D2N performance varied significantly across urban forms. Therefore, we aimed
to establish a connection between the streetscape features in SVIs and the model’s accuracy:
(1) Which urban styles would yield better performance in our training model? (2) What
features within the entire images significantly impact the transformation performance?
(3) How do these features influence the model’s performance?

3.7. Quantifying Impact of Streetscape Elements on D2N Accuracy Using OLS

We hypothesize that the performance of our model can be predicted by regressing the
accuracy against various component features present in the input daytime images. The
ordinary least squares (OLS) modeling consists of three steps. Initially, we employ semantic
segmentation to identify each component in our model. A view index is conventionally
construed as the proportion of a feature’s pixels relative to the total pixels within an SVI.
An illustrative example is the sky view index, denoting the percentage of sky pixels within
an SVI. These view indices inherently encapsulate the significance of visual elements
within the pedestrian’s eye-level perspective. Consequently, the quantification of various
physical features in SVIs is achieved by applying the general formula (3). We utilized a
semantic segmentation model based on the transformer to derive each component from the
images [87,88].

VIobj =
Σi=1

nPIXELobj

Σi=1
mPIXELtotal

, objϵ{tree, building, sky, etc} (3)

• n represents the total number of pixels in the object of interest;
• m represents the total number of pixels in the entire image;
• PIXELobj represents the number of pixels in the object of interest, which is the sum of

all pixels belonging to the object of interest;
• PIXELtotal represents the total number of pixels in the entire image, i.e., the sum of all

pixels;
• obj ∈ {tree, building, sky, etc.} represents the categories of the object of interest: trees,

buildings, sky, etc.

Second, we constructed a baseline model using the component rate in each SVI
and the corresponding objective metric results. The L1 and L2 distance values, approxi-
mately 100, were proportionally scaled to a range between 0 and 1 before establishing the
OLS model.
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Third, we computed the variance inflation factor (VIF) to assess variables for corre-
lation issues (VIF value > 10). Subsequently, less important variables exhibiting multi-
collinearity (VIF > 10) were removed.

4. Results and Findings

This study aims to fill gaps in urban nightscape photo data by converting daytime
photos into nighttime photos. This section will detail the results presented in Section 3.3
and present our findings.

4.1. Comparison of Three GenAI Models

Before converting day scene photos into night scene images, we established criteria
to assess the generated effects’ quality and the results’ desirability. First was a crucial
standard that ensured that all elements in the daytime scene remained intact and identifiable
following the conversion to nighttime. This is particularly pertinent for key elements such
as streets, which should maintain their original width without distortion. Similarly, other
objects, such as trees or houses, should not be significantly changed.

The second criterion is that the light, shadow, and sky generated by the night scene
need to match the real night scene. The generated nighttime scene should closely resemble
an authentic nighttime environment. We employed objective and subjective evaluation
methods to assess compliance with the criteria, as elaborated in Sections 4.2 and 4.3.

With the judgment criteria established, we initiated the generation of nighttime scenes
by experimenting with three prominent models involving image generation and conversa-
tion tasks: Pix2Pix, StableDiffusion, and CycleGAN.

The generative adversarial network (GAN) is a powerful deep learning model, demon-
strating remarkable efficacy in various tasks such as image generation, style transfer, and
image conversion. Initially, we opted for Pix2Pix, one of the variants of GAN, anticipating
that the final generated results would exhibit qualitative improvement as the dataset ex-
panded. Contrary to expectations, the qualitative leap anticipated with dataset expansion
did not materialize (Figure 7).
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(a) 32 day-night SVI pairs (b) 334 day-night SVI pairs 

Figure 7. Pix2Pix-generated results are based on different data amounts: (a) 32 pairs and (b) 334 pairs.
Note: Day scene (Day), real night scene (Night), generated night scene by Pix2Pix (Fake).

Meanwhile, we explored the StableDiffusion method, which also demonstrated profi-
ciency in preserving the elements of daytime scenes for more realistic night scenes. How-
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ever, it tended to modify certain details and introduce random lights that did not align with
real night scene photos (Figure 8). Consequently, our attention shifted to another GAN
variant, CycleGAN.
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Figure 8. Pix2Pix vs. StableDiffusion vs. CycleGAN (red line: street outline. StableDiffusion
and CycleGAN maintain consistency with elements of real scenes, while Pix2Pix distorts features.
CycleGAN’s images have lower brightness, resembling real night. Overall, CycleGAN is most
effective in retaining more night scene details).

To our surprise, with the same sample size, CycleGAN significantly outperformed
Pix2Pix regarding generation quality. Pix2Pix failed to preserve the distinct streetscape
features present in daytime scenes, generating noticeable distortions, and the boundary
outlines of houses, roads, and trees were blended. For instance, a white car visible in
the daytime scene disappeared in the night view produced by Pix2Pix, while it remained
discernible in the night scene by CycleGAN. This underscores CycleGAN’s ability to
retain the essential elements of daytime scenes when generating night scenes (Figure 8).
Moreover, as the dataset size increased, the final generation effect demonstrated continuous
improvement. This also verified the content of the research [79].

In contrast, the night scenes generated by CycleGAN were more in line with the
real-world conditions. Thus, we chose to utilize CycleGAN to train the D2N model.

4.2. Model Accuracies in Subjective and Objective Assessments

We conducted a comprehensive validation of the model’s accuracy through both
objective and subjective evaluations. For objective verification, we employed L1 distance,
L2 distance, SSIM, FID, IS, and IS_std. as metrics. Small values for L1 and L2 distances
and SSIM values closer to 1 indicated better model performance. However, as shown
in Table 3, the SSIM value did not exceed 0.5, which is below the desired threshold in
the objective evaluation system. For the metrics, FID and IS, FID was mainly aimed at
measuring the feature distance between individual samples. A low FID value means that
the generated images were of higher quality because their feature distribution was more
similar to the real images. IS was aimed at measuring the overall distribution of the real
images. A higher IS score indicates that the images generated by the D2N model were
better in terms of quality and diversity. According to the various metrics, the D2N model
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demonstrated superior performance in facilitating day-to-night transitions compared to
alternative models. Additionally, we substantiated the feasibility of the model through
subjective evaluation.

Table 3. Metrics to evaluate the models’ efficacy.

L1 L2 SSIM IS FID

Avg. S.D. Avg. S.D. Avg. S.D. Avg. S.D. Avg.

Pix2Pix 129.70 23.88 101.79 5.60 0.22 0.07 1.86 0.08 178.68
CycleGAN 123.03 25.53 100.53 5.39 0.24 0.07 2.54 0.18 115.23

Stable Diffusion 141.74 13.03 104.75 2.08 0.18 0.07 2.41 0.33 156.17
D2N (ours) 122.89 25.73 100.54 5.38 0.24 0.07 2.48 0.31 115.17

Notes: (1) Smaller L1/L2 distances, SSIM being closer to 1, lower FID, or higher IS indicate better D2N transfor-
mation performance. (2) IS_std indicates the volatility of the model.

We invited three professionals experienced in using SVI for environmental perception
auditing to compare pairwise nighttime images—one taken in real life and the other
generated from the corresponding day-scene photo using the D2N model. The evaluation
focused on discerning different levels of environmental perception within the two sets
of images. The MOS from 127 images was finally obtained at 51.18%. The subjective
assessment indicated a more favorable perception of the generated photos than the objective
evaluation results.

4.3. Divergence between Subjective and Objective Evaluations

Human perceptions are intricate, creating potential correlations among diverse per-
ceptual attributes. The subjective evaluation reveals a more positive effect in generating
photos than the objective assessment. This is reasonable because environmental perception
encompasses various factors, such as the sense of enclosure scores, greenness, etc. The
transformation of night scenes has a limited impact on these aspects, resulting in minimal
influence on the subjective level. However, because objective evaluation is judged through
pixel differences, these factors can influence the final judgment and contribute to variations
in subjective and objective assessments. Such divergences between the two measurement
systems imply that the underlying mechanism of subjective perception would be quite
different from the objective formulas. Unobserved factors cannot be captured by simply
summing up or recombining view indices of selected visual elements. The D2N model can
compensate for the gaps in night scene photos, particularly in urban areas.

4.4. Impact of Streetscape Elements on D2N Transformation

For the night scenes generated in the Bronx, Brooklyn, Manhattan, and Queens,
the ones in Queens exhibited the most favorable conversion outcome, whereas those
of Manhattan were comparatively inferior (Figure 9). In examining the similarities and
differences between these two regions, we found certain characteristics in the daytime
images—for example, the street’s architecture form or the sky’s proportion—affect the final
generation outcome.

Therefore, semantic segmentation was conducted to quantify the proportion of each
streetscape element within the input daytime SVI. An ordinary least squares (OLS) model
employed these proportions as independent variables. We utilized the L1 distance, L2
distance, and SSIM as dependent variables, representing the disparity between the gen-
erated image and the real night scene. Notably, VIF calculations indicated an absence of
collinearity when VIF < 10. We took the most tolerant criterion and removed continuous
variables with VIF ≥ 10.
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Figure 9. Manhattan vs. Queens (real day view of Manhattan and its corresponding generated
night view (left), and the real day view of Queens and its corresponding generated night view
(right)). Manhattan’s street scene is characterized by many tall buildings and a small street D/H ratio,
resulting in a subpar final generation effect. On the contrary, Queen’s street scene closely resembles
the dataset, resulting in a nighttime effect that closely mirrors reality.

As depicted in Table 4, no element significantly affected L1 distance. Fences and
sidewalks impacted the L2 distance, while buildings and the sky contributed to variation
in the SSIM. This suggests that the proportion of sky in the input photos, architectural style,
and building height are pivotal in influencing the output photo’s quality. For example, a
unit increase of sky view corresponds to a notable increase of 0.3496 units in SSIM. This
quantitative insight highlights the significant impact of the sky-related characteristics on
the perceived structural similarity of the generated night scene photos.

Table 4. OLS results between D2N error and streetscape elements.

OLS Coefficients

Variables VIF L1 Distance L2 Distance SSIM

Constant / 134.7943 0.5100 0.2755
Building 4.42 −17.5975 0.2874 −0.1753 ***

Earth 1.05 −306.7485 −0.6346 0.6700
Fence 1.10 −100.0013 1.8497 *** −0.4104**
Grass 1.25 −25.5067 −0.8303 0.3663 **
Plant 1.39 −37.3540 0.8065 ** −0.0471

Sidewalk 1.29 66.4387 0.7130 ** 0.0156
Sky 3.06 −24.9585 0.6250 *** 0.3496 ***
Tree 4.58 −14.9638 −0.3477 * −0.0675
Wall 2.84 −11.2872 0.1433 −0.0319

Note: ***, **, * denote significance level of 1%, 5% and 10%, respectively.

Figure 10 reports the influence of the sky and buildings on night scene generation.
Tables 5 and 6 present the L1 Distance, L2 Distance, and SSIM values corresponding to
three scenarios: the smallest, medium, and largest ratios for the sky and building views,
respectively. While the ratio had no obvious effect on the L1 Distance or L2 Distance,
the SSIM values indicated an improvement in generation quality with the increasing sky
ratio up to a certain threshold. When the building ratio increased, the generation effect
became worse.
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Table 5. Impact of sky view ratio on night scene generation.

Day/Real Night/Generated Night Sky View L1 L2 SSIM
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respectively. While the ratio had no obvious effect on the L1 Distance or L2 Distance, the 

SSIM values indicated an improvement in generation quality with the increasing sky ratio 

up to a certain threshold. When the building ratio increased, the generation effect became 

worse. 
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Figure 10. Impact of sky/building view ratio on SSIM and L1/L2 distances.
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4.5. Improving the Dataset 

4.5.1. Using CycleGAN to Generate and Transform Night Scenes 

After completing the dataset's organization and achieving a viable model through 

training, the transition to generating night scenes from daytime photos was initiated. 

However, within this process, we encountered and addressed a noteworthy challenge. 

The notable challenge arose when we observed a discrepancy in the number of input 

photos compared to the corresponding output during the generation process. Despite in-

putting 800 daytime scenes in each region, the generated number of night scenes was less 

than the expected 800. It became evident that certain photos were skipped in the genera-

tion process, leading to incomplete outputs. 

In response to this issue, a proactive measure was taken to address the shortfall in 

output. We sought to supplement the generated night scenes by downloading additional 

SVIs from Google Maps for the areas requiring augmentation. This approach compen-

sated for the missing outputs and enriched the dataset for further research in the future, 

fostering a more comprehensive and representative set of nighttime scenes. 

This problem, though presenting a challenge, prompted a strategic intervention that 

resolved the immediate issue and contributed to our dataset's overall robustness. By 

downloading more additional SVIs, we not only mitigated the shortfall in output but also 

expanded the diversity and inclusivity of our dataset, enhancing the efficacy and reliabil-

ity of our night scene generation process. This adaptive approach reinforces the dynamic 

nature of our methodology, ensuring its resilience and applicability across the datasets. 

In summary, improvements to our night scene generation process involved insuffi-

cient generated image data. Through strategic measures such as systematic renaming and 

increasing the number of input photos, we successfully elevated the precision and relia-

bility of our model, ensuring that the final output aligned harmoniously with the intended 

input, thereby fortifying the efficacy of our approach to generating realistic night scenes 

from daytime photographs. 

4.5.2. Ways to Make Night Scenes More Realistic 

After successfully generating night scene photos, an observation emerged concerning 

areas characterized by clouds and high daytime sky brightness. In such locations, the final 
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4.5. Improving the Dataset
4.5.1. Using CycleGAN to Generate and Transform Night Scenes

After completing the dataset’s organization and achieving a viable model through
training, the transition to generating night scenes from daytime photos was initiated.
However, within this process, we encountered and addressed a noteworthy challenge.

The notable challenge arose when we observed a discrepancy in the number of input
photos compared to the corresponding output during the generation process. Despite
inputting 800 daytime scenes in each region, the generated number of night scenes was less
than the expected 800. It became evident that certain photos were skipped in the generation
process, leading to incomplete outputs.

In response to this issue, a proactive measure was taken to address the shortfall in
output. We sought to supplement the generated night scenes by downloading additional
SVIs from Google Maps for the areas requiring augmentation. This approach compensated
for the missing outputs and enriched the dataset for further research in the future, fostering
a more comprehensive and representative set of nighttime scenes.

This problem, though presenting a challenge, prompted a strategic intervention that
resolved the immediate issue and contributed to our dataset’s overall robustness. By
downloading more additional SVIs, we not only mitigated the shortfall in output but also
expanded the diversity and inclusivity of our dataset, enhancing the efficacy and reliability
of our night scene generation process. This adaptive approach reinforces the dynamic
nature of our methodology, ensuring its resilience and applicability across the datasets.

In summary, improvements to our night scene generation process involved insufficient
generated image data. Through strategic measures such as systematic renaming and
increasing the number of input photos, we successfully elevated the precision and reliability
of our model, ensuring that the final output aligned harmoniously with the intended input,
thereby fortifying the efficacy of our approach to generating realistic night scenes from
daytime photographs.

4.5.2. Ways to Make Night Scenes More Realistic

After successfully generating night scene photos, an observation emerged concerning
areas characterized by clouds and high daytime sky brightness. In such locations, the final
output photos exhibited bright spots significantly incongruent with the intended night
scene ambiance. Recognizing the need for additional processing, we implemented a mask
code, as mentioned above, to identify and rectify these inconsistencies.

The repair involved setting a masking range and coloring the identified bright spots
in a distinct magenta for subsequent corrective measures. Configuring the threshold
to “target_th = 125” effectively blocks the brightest spots in the generated night scenes.
However, some bright spots persisted in the images despite this threshold setting.

To address the bright spot issue, we filtered out the problematic portions of the picture
and adjusted the threshold to “target_th = 100”, expanding the range of the magenta
marking. This subtle adjustment allowed for comprehensive coverage of bright spots
while minimizing the impact on other sky segments (that were not problematic). This step
corrects the bright spots in final night scenes with precision and minimal disruption to the
overall image by fine-tuning the threshold and marking range.

5. Discussion
5.1. Generating Night Scenes

Our findings indicate that the compatibility between features of the input photo and
those within the training dataset is crucial for producing favorable night scenes. The
training focused on transforming daytime photos into nighttime equivalents, bridging the
substantial gap in night scene data scarcity. This effort contributes to the enrichment of
night scene databases and potentially addresses research gaps in understanding urban
safety during nighttime for future studies.
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5.2. Model Accuracy

Judgments about model accuracy are affected by subjective and objective factors. Still,
subjective and objective judgment results differ because the intricate and all-encompassing
facets of the human sensory process often lead to subjective perceptions encompassing
variations rather than consistent coherence. Subjective perceptions sometimes have oppo-
site implications when compared to objective perceptions. Therefore, a single subjective
perception has many factors that contribute to the complexity of our understanding of
urban scenes. It can represent the subtle sensory processes through which humans interpret
urban environments more comprehensively, exhibiting heightened explanatory prowess to
many human behaviors.

The influence of the sky and buildings on the generated effect cannot be ignored.
The photo’s proportion of the sky and buildings is similar to the street H-W ratio, which
is related to preparing the dataset. A notable correlation was identified between the
generated images’ quality and the training dataset’s characteristics. It can be observed
that the urbanscape characteristics within the training images are critical to the accuracy of
the prediction.

5.3. Limitations

The data utilized in this study primarily originate from low-density urban areas,
covering street intersections, along-street pathways, and roadside trees. Most of these data
share the following characteristics: (1) inclusion of partial building structures, (2) high
vegetation coverage, and (3) presence of roadways.

Due to the similarity in the data, the night scene generation in low-density urban areas
with the mentioned features demonstrates good adaptability. However, distortions may
occur in high-density urban areas without buildings and scenes with special structures.
These areas exhibit the following characteristics: (1) excessively high or low sky proportion;
(2) low vegetation coverage; (3) absence of roadways; (4) low street height-to-width ratio;
and (5) presence of special structures such as elevated bridges.

To enhance the realism and diversity of generated night scene photos, refining the
dataset during the model training stage by including photos from high-density urban areas,
areas without buildings, and scenes with special structures is imperative.

6. Conclusions
6.1. CycleGAN Demonstrates Best Adaptability for D2N Transformation

Comparing the three models (StableDiffusion, Pix2Pix, and CycleGAN), images gen-
erated through Pix2Pix exhibited a non-negligible amount of distortion and blurriness.
In contrast, night scenes generated by CycleGAN preserved streetscape elements more
completely and clearly. Meanwhile, StableDiffusion yields high-quality images with ex-
pensive training costs. The comparison highlights the versatility of CycleGAN, which can
perform image transformations between two domains without requiring one-to-one corre-
spondence in training data pairs. Therefore, CycleGAN is more suitable for flexible image
transformation tasks like style transfer and seasonal changes without a clear one-to-one
mapping. CycleGAN does not require additional cycle consistency constraints, which are
built into the model structure as one of the inherent losses, eliminating the need for extra
constraints and aiding in maintaining consistency in image transformations.

6.2. Urban Density or the Height–to-Width (H-W) Ratio of Streets Are Crucial

The subjective evaluation data surpassed objective assessments, with photos featuring
moderate sky visibility and lower H-W ratios standing out in terms of generation effective-
ness (Table 4). This reinforces the idea that sky visibility and the H-W ratio of streets are
pivotal factors in night scene transformation. This is because we primarily sampled daytime
SVIs from low-density building areas. Therefore, the training dataset was characterized
by a moderate view ratio of sky and street and higher greenery, indicating lower street
height-to-weight ratios [84]. As a result, NYC scenes with moderate levels of sky visibility



J. Imaging 2024, 10, 112 21 of 25

and lower H-W ratios exhibited better adaptability to the generation of night scenes. That
said, one effective way to enhance the accuracy of D2N transformation for future studies is
to diversify the training dataset with SVIs from different urban densities.
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