
Citation: Patel, S.A.; Yildirim, A.

Overcoming Dimensionality

Constraints: A Gershgorin Circle

Theorem-Based Feature Extraction for

Weighted Laplacian Matrices in

Computer Vision Applications. J.

Imaging 2024, 10, 121. https://

doi.org/10.3390/jimaging10050121

Academic Editor: Olivier Lézoray

Received: 11 April 2024

Revised: 9 May 2024

Accepted: 13 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Overcoming Dimensionality Constraints: A Gershgorin Circle
Theorem-Based Feature Extraction for Weighted Laplacian
Matrices in Computer Vision Applications
Sahaj Anilbhai Patel * and Abidin Yildirim

Department of Electrical and Computer, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
yildirim@uab.edu
* Correspondence: sahaj432@uab.edu

Abstract: In graph theory, the weighted Laplacian matrix is the most utilized technique to interpret
the local and global properties of a complex graph structure within computer vision applications.
However, with increasing graph nodes, the Laplacian matrix’s dimensionality also increases accord-
ingly. Therefore, there is always the “curse of dimensionality”; In response to this challenge, this
paper introduces a new approach to reducing the dimensionality of the weighted Laplacian matrix
by utilizing the Gershgorin circle theorem by transforming the weighted Laplacian matrix into a
strictly diagonal domain and then estimating rough eigenvalue inclusion of a matrix. The estimated
inclusions are represented as reduced features, termed GC features; The proposed Gershgorin circle
feature extraction (GCFE) method was evaluated using three publicly accessible computer vision
datasets, varying image patch sizes, and three different graph types. The GCFE method was com-
pared with eight distinct studies. The GCFE demonstrated a notable positive Z-score compared to
other feature extraction methods such as I-PCA, kernel PCA, and spectral embedding. Specifically, it
achieved an average Z-score of 6.953 with the 2D grid graph type and 4.473 with the pairwise graph
type, particularly on the E_Balanced dataset. Furthermore, it was observed that while the accuracy of
most major feature extraction methods declined with smaller image patch sizes, the GCFE maintained
consistent accuracy across all tested image patch sizes. When the GCFE method was applied to the
E_MNSIT dataset using the K-NN graph type, the GCFE method confirmed its consistent accuracy
performance, evidenced by a low standard deviation (SD) of 0.305. This performance was notably
lower compared to other methods like Isomap, which had an SD of 1.665, and LLE, which had an
SD of 1.325; The GCFE outperformed most feature extraction methods in terms of classification
accuracy and computational efficiency. The GCFE method also requires fewer training parameters
for deep-learning models than the traditional weighted Laplacian method, establishing its potential
for more effective and efficient feature extraction in computer vision tasks.

Keywords: Gershgorin circle theorem; complex graph structure; dimensionality reduction; weighted
Laplacian matrix; convolution neural network; feature extraction

1. Introduction

Over the years, graph theory has expanded and gained significant advancements in
various fields, such as chemistry, biology, and computer science [1–3]. Likewise, in machine
learning, many problems can be modeled as a graph, where nodes represent pixels or
regions, and edges describe relationships between nodes. The graph-based methods can
capture and exploit an image’s spatial values and relational structures, offering a rich and
flexible framework for image analysis and classification tasks [4]. Graph theory allows us
to represent any graph in matrix form. The Laplacian matrix is one of the standard matrix
forms used in graph representation. It conveniently represents a graph’s local and global
properties. The Laplacian matrix can be formed in several ways; the most conventional

J. Imaging 2024, 10, 121. https://doi.org/10.3390/jimaging10050121 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10050121
https://doi.org/10.3390/jimaging10050121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-2014-8283
https://doi.org/10.3390/jimaging10050121
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10050121?type=check_update&version=2

J. Imaging 2024, 10, 121 2 of 15

matrix formation is by finding the adjacency matrix and its respective Degree matrix. Note
that the Laplacian matrix grows larger in size with the increasing size of the image. This
can lead to increasing computational time in postprocessing algorithms. Therefore, feature
or dimensionality reduction is often a critical step when working with a large dataset.
Additionally, it is vitally important to have a feature extraction algorithm that consumes
less computational time.

In the past, the Laplacian Eigenmap (LE) was the most utilized nonlinear feature
extraction method for the Laplacian matrix [5]. In LE, Belkin and Niyogi first compute
the eigenvalues of the Laplacian matrix of a graph, and then, corresponding to their
eigenvectors, the smallest non-zero eigenvalues are selected. In contracts to the LE method,
He and Niyogi [6] proposed an algorithm called Locality Preserving Projections (LPP) that
learns the linear mapping of data rather than a nonlinear mapping. Note that the LPP
might not perform well on nonlinear structural data.

Besides calculating simple eigenvalues for feature extraction, Roweis and Saul [7]
introduced Locally Linear Embedding (LLE), a manifold learning algorithm to project high-
dimensional data into low-dimensional space. The fundamental principle of LLE involves
selecting a predetermined number of nearest neighbors for each data point, typically
referred to as the “k-number”. After identifying these neighbors, LLE calculates the local
geometric structures by determining the best linear combination of these k-neighbors to
reconstruct each data point. When transforming to a low-dimensional space, LLE ensures
that these data points maintain their original proximities, staying as close together (or
as far apart) as they were initially, preserving their relative distances and relationships.
The drawback of LLE is that the user must define the “k-nearest neighbors” in it, which
is not ideal for non-supervised operations. Moreover, the LLE is sensitive to noisy data
and outliers.

The Isometric Feature Mapping (Isomap) [8] proposed by Tenenbaum et al. is another
significant feature extraction method that finds the path with the shortest distance (also
called geodesic distance) between all data point pairs in the local neighborhood. The
geodesic distances help to capture the intrinsic manifold structure within the data. Similarly,
He et al. [9] presented the “Laplacian score”, where the initial nearest neighbor graph is
constructed and converted into a weighted Laplacian matrix. After that, the Laplacian
score is calculated by deducting one from the feature variance and dividing by its degree,
i.e., the number of connected nodes. Both LPP and LLE require a particular nearest neighbor
graph and the Laplacian matrix.

Besides the feature extraction methods that are mentioned so far, several other feature
extraction methods have been proposed that can be directly implemented on the Laplacian
matrix. For instance, the Principal Component Analysis (PCA) [10] is the most commonly
used linear feature extraction method in machine learning. In PCA, the data points are
transformed orthogonally, and a new set of coordinates is generated, also known as prin-
cipal components. The users select the number of principal components according to the
data point’s total variance. However, increasing the number of data points increases the
computation time for feature extraction. Another version of the PCA is called “kernel
PCA” where the data points are mapped into higher dimensional space using the “kernel
function”. After the data points are mapped, the principal components are computed.
Then, as in standard PCA, the user selects the number of principal components according
to the data point’s variance. Different types of kernel functions can be used for “kernel
PCA”, such as the Radial Basis Function (RBF) [11] or the polynomial kernel function [12].
Note that the kernel PCA requires more computational time compared to the traditional
PCA. Another alternative way to reduce computational time is by taking a smaller size
of the dataset and reducing it to lower dimensions. Later, “dot-product” is used with the
rest of the dataset to reduce the features. However, it might result in low classification
performance. Another alternative way to reduce computational time is to reduce the dataset
to smaller batches, such as Incremental PCA (I-PCA) [13], and then apply feature extraction
techniques. However, it remains a critical step to determine the optimal batch size that

J. Imaging 2024, 10, 121 3 of 15

balances computational efficiency with the enhancement of classification performance in
feature reduction.

Additionally, addressing the computational efficiency in processing high-dimensional
matrices remains a considerable challenge in developing feature extraction algorithms.
The feature reduction methods reviewed in the preceding sections suggest an increase in
computational demands proportional to the expansion of dataset sizes and dimension-
alities, as exemplified by a dataset comprising 100,000 images, each with a resolution of
150 × 150 pixels. Motivated by this issue, the current study introduces an innovative
approach to mitigate the ‘curse of dimensionality’ and low computational time without
significantly compromising classification accuracy. This paper presents the development
and application of a novel dimensionality reduction algorithm that surpasses various
established feature extraction techniques in terms of classification accuracy while also
demonstrating a noticeable decrease in computational time requirements. Furthermore,
this research shows how the performance of these feature extraction algorithms is influ-
enced by variations in image patch sizes.

The proposed algorithm utilizes the Gershgorin circle (GC) theorem for dimension-
ality reduction or feature extraction. The GC theorem was developed by mathematician
S. A. Gershgorin [14] in 1931. The GC theorem estimates an eigenvalue inclusion of a
given square matrix. The GC theorem has been used in several diverse applications,
such as stability analysis of nonlinear systems [15], graph sampling in Graph theory [16],
and evaluating the stability of power grids [17]. Over time, several extensions of the
GC theorem have provided a better close estimation of eigenvalue inclusion of matri-
ces [18,19]. The GC theorem is more time-efficient in computation than other eigenvalue
inclusion methods [19]. However, none of the inclusion methods have been used for feature
extraction tasks.

Once features are effectively extracted through any method, the subsequent pivotal
step is to classify them by selecting an appropriate classification algorithm. The extracted
features help not only to reduce computation time but also to reduce the number of training
parameters that are required for the classification algorithms. In the fields of machine
learning (ML) and deep learning (DL), many algorithms have been developed that provide
state-of-the-art performance. In the field of ML, algorithms like Support Vector Machines
(SVM) [20] and Decision Trees [21] are most commonly used, while in DL, algorithms such
as artificial neural networks (ANN) [22] and convolution neural networks (CNN) [23] are
some of the few algorithms that are commonly used.

This paper introduces a novel feature extraction method for the graph-weighted Lapla-
cian matrix by utilizing a mathematical theorem known as the Gershgorin circle theorem.
Figure 1 shows the complete overview process of the proposed GCFE algorithm. The
proposed algorithm modifies the weighted Laplacian matrix by converting it into a strictly
diagonally dominant matrix termed a modified weighted Laplacian (MWL) matrix. Later,
applying the GC theorem, the matrix’s P × N × N feature is reduced to P × N × 2 features,
where P = no. of patches; N = no. of nodes, or total pixel size, accordingly. Finally, the
reduced features are fed into the classification algorithm. For performance comparison, two
classification algorithms, 1D-CNN and 2D-CNN, were utilized in this study. Detailed expla-
nations of the proposed method, along with descriptions of the datasets used, are provided
in Section 2. Section 3 discusses the results of the proposed methods, focusing on GCFE’s
computational efficiency and performance accuracy compared to other feature extraction
studies. This paper concludes with a summary of the findings and their implications in
Section 4.

J. Imaging 2024, 10, 121 4 of 15J. Imaging 2024, 10, x 4 of 15

Figure 1. An overview of the GCFE methodology from image preprocessing to classification using

the modified weighted Laplacian approach.

2. Materials and Methods

2.1. Datasets

This study utilizes three well-known and publicly available computer vision datasets

with different image types, instances, and features. Table 1 presents the properties of each

dataset.

Table 1. Different properties of dataset.

Datasets Instances Classes Type Distribution of Classes

EMNIST

E_Balanced 131,600 47 1D Balanced

E_ByClass 814,255 62 1D Imbalanced

E_ByMerge 814,255 47 1D Imbalanced

E_Digits 280,000 10 1D Imbalanced

E_Letter 145,600 26 1D Imbalanced

E_MNIST 70,000 10 1D Imbalanced

CVD 25,000 2 3D Balanced

MC 27,558 2 3D Balanced

2.1.1. Extended MNIST (EMNSIT) Dataset

“The EMNIST” dataset is an extension of the original MNIST dataset that includes

letters of the alphabet compared to the traditional digit classes. It was created by the Na-

tional Institute of Standards and Technology (NIST) Special Database 19 [24]. The dataset

includes seven sets, with digits, letters, and balanced and unbalanced sets, providing a

variety of challenges for machine learning models. Each set has a 28 × 28 grayscale image

with different numbers of classes and instances, as shown in Table 1.

2.1.2. Cats Vs. Dogs (CVD) Dataset

The “Cats Vs. Dogs” dataset consists of 25,000 color images of 37 different breeds of

dogs and cats. The dataset was created for the 2013 Kaggle competition [25]. All the

Figure 1. An overview of the GCFE methodology from image preprocessing to classification using
the modified weighted Laplacian approach.

2. Materials and Methods
2.1. Datasets

This study utilizes three well-known and publicly available computer vision datasets
with different image types, instances, and features. Table 1 presents the properties of
each dataset.

Table 1. Different properties of dataset.

Datasets Instances Classes Type Distribution of Classes

EMNIST

E_Balanced 131,600 47 1D Balanced
E_ByClass 814,255 62 1D Imbalanced
E_ByMerge 814,255 47 1D Imbalanced

E_Digits 280,000 10 1D Imbalanced
E_Letter 145,600 26 1D Imbalanced

E_MNIST 70,000 10 1D Imbalanced

CVD 25,000 2 3D Balanced

MC 27,558 2 3D Balanced

2.1.1. Extended MNIST (EMNSIT) Dataset

“The EMNIST” dataset is an extension of the original MNIST dataset that includes
letters of the alphabet compared to the traditional digit classes. It was created by the
National Institute of Standards and Technology (NIST) Special Database 19 [24]. The dataset
includes seven sets, with digits, letters, and balanced and unbalanced sets, providing a
variety of challenges for machine learning models. Each set has a 28 × 28 grayscale image
with different numbers of classes and instances, as shown in Table 1.

2.1.2. Cats vs. Dogs (CVD) Dataset

The “Cats vs. Dogs” dataset consists of 25,000 color images of 37 different breeds of
dogs and cats. The dataset was created for the 2013 Kaggle competition [25]. All the images
are resized to 100 × 100 × 3. While it has different objects in the background images, the
target objects are in the foreground.

J. Imaging 2024, 10, 121 5 of 15

2.1.3. Malaria Cell (MC) Dataset

The “malaria cell images” dataset was released by the National Institute of Health
(NIH) [26], which consists of 27,558 instances equally divided between two classes. The
dataset comprises parasitized and uninfected cells from segmented cells’ thin blood smear
slide images. The dataset has RGB color images with a solid black color on the background.
In our study, all images of the data sets were resized to 100 × 100 × 3 size.

2.2. Methodology

The proposed feature extraction algorithm consists of four principal steps—image
preprocessing, formation of a MWL Matrix, GCFE, and classification. Figure 2 illustrates a
detailed flowchart of GCFE formation with a sample image of 4 × 4 size.

J. Imaging 2024, 10, x 5 of 15

images are resized to 100 × 100 × 3. While it has different objects in the background images,

the target objects are in the foreground.

2.1.3. Malaria Cell (MC) Dataset

The “malaria cell images” dataset was released by the National Institute of Health

(NIH) [26], which consists of 27,558 instances equally divided between two classes. The

dataset comprises parasitized and uninfected cells from segmented cells’ thin blood smear

slide images. The dataset has RGB color images with a solid black color on the back-

ground. In our study, all images of the data sets were resized to 100 × 100 × 3 size.

2.2. Methodology

The proposed feature extraction algorithm consists of four principal steps—image

preprocessing, formation of a MWL Matrix, GCFE, and classification. Figure 2 illustrates

a detailed flowchart of GCFE formation with a sample image of 4 × 4 size.

Figure 2. Flowchart of the proposed matrix transformation (pairwise graph) and GCFE for sample

image size.

2.2.1. Preprocessing

The size of the input images was in M × N format, where M represents no. of row-

pixels, and N represents no. of column-pixels, respectively. As shown in Figure 2, the

sample image has M = 4 and N = 4. All the input image (pixel) intensities are initially

scaled down from 0–255 to 0–1 by implementing min–max normalization, which is also

known as feature scaling. After scaling, the input images are segmented into smaller patch

(P) sizes. The images with smaller patches are called partition matrices with size P × M ×

N. The purpose of smaller patch sizes was to examine the performance of feature extrac-

tion algorithms on different patch sizes. The criteria for patch size selection were based

on multiplying factors of the input image. For instance, if the input image size is 28 × 28,

multiplying factors would be all numbers that they can divide evenly with the patch size,

such as 2, 4, 7, 14, and 28, accordingly. For example, in Figure 2, the patch size = 2 for the

sample image (i.e., 2 × 2); then, the 4 × 4 image is converted into a 4 × 2 × 2 partition matrix.

In other words, the image will have 4 sub patches (P), each with 2 × 2 pixels. Similarly, if

patch size = 28, the output partition matrix would be 1 × 28 × 28. The next step is converting

each partition matrix into a graph (G). During image-to-graph conversion, image pixels

are converted into a set of vertices or nodes (V) (represented by red circles in Figure 2).

The connections between sets of nodes are called edges (E) (represented by green lines

in Figure 2). For this operation, any graph conversion method can be used. In this study,

Figure 2. Flowchart of the proposed matrix transformation (pairwise graph) and GCFE for sample
image size.

2.2.1. Preprocessing

The size of the input images was in M × N format, where M represents no. of row-
pixels, and N represents no. of column-pixels, respectively. As shown in Figure 2, the
sample image has M = 4 and N = 4. All the input image (pixel) intensities are initially
scaled down from 0–255 to 0–1 by implementing min–max normalization, which is also
known as feature scaling. After scaling, the input images are segmented into smaller
patch (P) sizes. The images with smaller patches are called partition matrices with size
P × M × N. The purpose of smaller patch sizes was to examine the performance of feature
extraction algorithms on different patch sizes. The criteria for patch size selection were
based on multiplying factors of the input image. For instance, if the input image size is
28 × 28, multiplying factors would be all numbers that they can divide evenly with the
patch size, such as 2, 4, 7, 14, and 28, accordingly. For example, in Figure 2, the patch
size = 2 for the sample image (i.e., 2 × 2); then, the 4 × 4 image is converted into a
4 × 2 × 2 partition matrix. In other words, the image will have 4 sub patches (P), each with
2 × 2 pixels. Similarly, if patch size = 28, the output partition matrix would be 1 × 28 × 28.
The next step is converting each partition matrix into a graph (G). During image-to-graph
conversion, image pixels are converted into a set of vertices or nodes (V) (represented
by red circles in Figure 2). The connections between sets of nodes are called edges (E)
(represented by green lines in Figure 2). For this operation, any graph conversion method
can be used. In this study, three different graph conversion methods have been used.
These are called “2D-grid lattice”, “pairwise graph”, and “K-nearest neighbors (K-NN)
graph”, accordingly. The three graph methods are utilized to justify the performance of the
proposed feature extraction on different graph structures. In Figure 2, each 2 × 2 partition
matrix is converted to a graph using a pairwise graph. Each edge is weighted according to

J. Imaging 2024, 10, 121 6 of 15

the “Manhattan distance” between any two given nodes. Equation (1) presents the formula
to calculate the weighted edge (Wij) of any given pair of nodes in a graph representation of
an image.

Wij = |value2 − value1| (1)

where
Wij = weight of the edge between the node ith and jth;
value1 = the pixel value at the coordinates (x1, y1) for ith node inside image.
value2 = the pixel value at the coordinates (x2, y2) for jth node inside image.

2.2.2. Modified Weighted Laplacian (MWL) Matrix

Graphs are generally transformed into matrix forms to facilitate interpretation or
processing. The most common way is the weighted or unweighted adjacency matrix.
The weighted adjacency matrix (A) is the Z × Z square matrix, where Z represents the
total number of nodes. The total number of nodes in matrix A is equal to the number of
rows multiplied by the number of columns in the image patch size. The elements of the
undirected graph weighted adjacency matrix are formed using Equation (2).

Aij =

{
Wij, if(i, j) ∈ E,
0, otherwise,

(2)

where
Wij = weight of the edge between nodes i and j;
E = the set of edges in the graph such that (i, j) is an edge connecting node i and j;
Aij =

(
i, j)th entry of the weighted adjacency matrix A.

In Figure 2, it can be depicted that the 4th patch of the sample image is converted into
a 4 × 4 weighted adjacency matrix from a 2 × 2 partition matrix pairwise graph. Each entry
in the matrix represents the weight of the edge according to Equation (1). Note that the
matrix is symmetric for undirected graphs. To construct the modified Laplacian matrix, it
is essential to compute the Degree matrix. Typically, the Degree matrix (D) is calculated
by taking the row summation of the weighted adjacency matrix. Instead, we computed
the elements of the unweighted adjacency matrix (S) using Equation (3). In unweighted
adjacency, the matrix represents the presence or absence of edges between nodes in the
graph. The entries of the S matrix are typically binary, where “1” indicates that there is
an edge between nodes i and j, and “0” indicates that there is no edge between nodes i
and j. Then, the Degree matrix (D) is computed as described in Equation (4), where each
diagonal entry Dii represents the degree of the ith node.

Sij =

{
1, if(i, j) ∈ E,
0, otherwise,

(3)

where
Sij =

(
i, j)th entry of the unweighted adjacency matrix S,

E = the set of edges in the graph, where (i, j) are edge-connecting nodes i and j.

Dii =

{
∑Z

j=1 Sij, if i = j,
0, otherwise,

(4)

where
∑Z

j=1 Sij = the summation of the ith row of matrix S, which is the number of edges
connected to node i, also known as the degree of the node.

Next, the MWL matrix (L) is computed by taking the difference between the Degree
matrix (D) and weighted adjacency matrix (A), as shown in Equation (5). The elements
of matrix L are calculated using Equation (6). This modification helps the MWL matrix
remain a strictly diagonally dominant matrix and ensures Positive Semi-Definite (PSD)

J. Imaging 2024, 10, 121 7 of 15

properties. The final size of the MWL matrix is P × N × N. For instance, the MWL matrix L
of the sample image 4th patch in Figure 2 is strictly diagonally dominant. In this matrix, the
absolute summation of off-diagonal values in each row is less than 3, which corresponds to
the diagonal values of L.

L = D − A (5)

Lij =

{
Dii, if i = j,
−Aij, if i ̸= j,

(6)

2.2.3. Gershgorin Circle Feature Extraction

The GC theorem estimates the eigenvalue inclusion for a square matrix in the complex
plane [14]. The GC theorem states that all the eigenvalues of the square matrix are included
in the union GC or Gershgorin disks. Each L matrix eigenvalue inclusion consists of radius
vector R = [r1(L), r2(L), . . . , rn(L)] and center vector C = [c1(L), c2(L), . . . , c(L)]. Each GC
radius and center vector of a MWL is represented as feature reduction. The elements of
vector R and C are calculated according to Equations (7) and (8), respectively. The estimated
radius of each GC is obtained by ith row absolute summation of off-diagonal values of
the square matrix L denoted as ri(L). The center of each GC is calculated by taking the ith

row diagonal values of square matrix L denoted as ci(L). Furthermore, in Figure 2, the
representation of GC features can be illustrated for the 4th patch of the sample image.

ri(L) = ∑
j∈V\{i}

∣∣Lij
∣∣,∀i ∈ V (7)

ci(L) = Lii, ∀i ∈ V (8)

where
V = Set of all nodes in the graph, with V = {1, 2, . . . , n} .
Lij = the element of the MWL matrix at the ith row and jth column.
Lii = diagonal entry of MWL matrix for ith node.
Additionally, due to the MWL matrix being strictly diagonally dominant, all GC

features lie on the real axis of the Cartesian plane [19]. Moreover, the ri(L) also displays
a square matrix’s estimated lower and higher bounds of eigenvalues. Finally, the MWL
matrix with P × N × N is reduced to the GC features with a P × N × 2, which is equivalent
to P × { ri(L)}×{c i(L)} matrix size.

2.2.4. Classification

The GCFE algorithm performance was evaluated using the 1D and 2D-CNN models
for feature extraction and classification. Figure 3 shows the complete architecture for
both deep-learning models [27]. The model architecture was mostly similar for all the
experiments, besides a few internal layer settings, such as kernel or padding size, which
were modified. In the 2D-CNN model (Figure 3a), each convolution layer’s kernel size
is set to (1 × 3) for GCFE classification and (3 × 3) for other methods that were used for
comparison, as shown in Table 2. Similarly, each pooling layer’s kernel is set to (1 × 2) size
for the GC feature classification, while (2 × 2) is used for other methods. Since the GCFE
method results in two vectors, R and C, for each patch, the kernel sizes for convolution
and pooling layers were changed, as shown in Figure 2. In addition, both vectors for all
individual patches of a single image are stacked up in sequence. In the 1D-CNN model
(Figure 3b), all kernel and padding sizes of each convolution layer, as well as the pooling
layer, are kept the same.

J. Imaging 2024, 10, 121 8 of 15

J. Imaging 2024, 10, x 8 of 15

all kernel and padding sizes of each convolution layer, as well as the pooling layer, are

kept the same.

Figure 3. Representation of deep-learning architectures utilized in this study for feature classifica-

tion. (a) 2D-CNN model. (b) 1D-CNN model.

Table 2. Overview of GCFE comparison approaches across diverse datasets and graph structures

using different classification architectures and performance metrics.

Approach

No.
Dataset Type of Comparison

Type of

Graph

Classification

Architecture

Performance

Metric

1

E_Balanced,

E_ByClass,

E_ByMerge,

E_Digits,

E_Letter,

E_MNIST,

CVD, MC

Comparison between GCFE of all da-

tasets with different image patch sizes.
2D-Grid 2D-CNN Accuracy

2

E_Balanced,

CVD,

MC

Comparison between GCFE, Laplacian,

I-PCA, Kernel-PCA, and spectral em-

bedding with different image patch

sizes.

2D-Grid,

pairwise

2D-CNN, 1D-

CNN

Accuracy, Z-

Score

3 E_MNIST

Comparison between GCFE, Isomap,

LLE, MLLE, and Hessian Eigenmap

with different image patch sizes.

K-NN 1D-CNN Accuracy

Initially, the GC features are fed into the input layer. The input layer for 2D-CNN

was structured as (batch size, (P × {ri(L)}), (P × {ci(L)}), channels), such as (1000, (1 × 784),

(1 × 784), 1). For the 1D-CNN, the input layer was organized as (batch size, (P ×

{ri(L)} × {ci(L)}), channels), e.g., (1000, (1 × 784 × 784), 1). Following the input layer, the

data proceed into a convolution layer. Each convolution layer for both models is config-

ured with 32 filters, also known as a feature map. The feature maps extract different pat-

terns from input data while training the deep-learning model. Each filter slides convo-

luted with input data to produce a feature map, to capture spatial hierarchies. After each

convolution layer, the ReLU (Rectified Linear Unit) activation function is applied. The

ReLU helps to handle the vanishing gradient problem by introducing nonlinearity to the

model. After ReLU, the data are passed to the pooling layer. Each pooling layer extracts

the dominant spatial features from feature maps and reduces the size of the feature map.

The “average pooling” method is employed on pooling layers in both models, which cal-

culate the average value for each patch on the feature map. Furthermore, each model has

two more sets of convolution layer + ReLU + pooling layer sequentially connected. After

Figure 3. Representation of deep-learning architectures utilized in this study for feature classification.
(a) 2D-CNN model. (b) 1D-CNN model.

Table 2. Overview of GCFE comparison approaches across diverse datasets and graph structures
using different classification architectures and performance metrics.

Approach No. Dataset Type of Comparison Type of Graph Classification
Architecture

Performance
Metric

1

E_Balanced,
E_ByClass,
E_ByMerge,

E_Digits, E_Letter,
E_MNIST, CVD,

MC

Comparison between
GCFE of all datasets with

different image
patch sizes.

2D-Grid 2D-CNN Accuracy

2
E_Balanced,

CVD,
MC

Comparison between
GCFE, Laplacian, I-PCA,
Kernel-PCA, and spectral
embedding with different

image patch sizes.

2D-Grid,
pairwise 2D-CNN, 1D-CNN Accuracy, Z-Score

3 E_MNIST

Comparison between
GCFE, Isomap, LLE,
MLLE, and Hessian

Eigenmap with different
image patch sizes.

K-NN 1D-CNN Accuracy

Initially, the GC features are fed into the input layer. The input layer for 2D-CNN
was structured as (batch size, (P × { ri(L)}), (P × {c i(L)}), channels), such as (1000,
(1 × 784), (1 × 784), 1). For the 1D-CNN, the input layer was organized as (batch size,
(P × { ri(L)}×{c i(L)}), channels), e.g., (1000, (1 × 784 × 784), 1). Following the input
layer, the data proceed into a convolution layer. Each convolution layer for both models
is configured with 32 filters, also known as a feature map. The feature maps extract dif-
ferent patterns from input data while training the deep-learning model. Each filter slides
convoluted with input data to produce a feature map, to capture spatial hierarchies. After
each convolution layer, the ReLU (Rectified Linear Unit) activation function is applied.
The ReLU helps to handle the vanishing gradient problem by introducing nonlinearity
to the model. After ReLU, the data are passed to the pooling layer. Each pooling layer
extracts the dominant spatial features from feature maps and reduces the size of the feature
map. The “average pooling” method is employed on pooling layers in both models, which
calculate the average value for each patch on the feature map. Furthermore, each model
has two more sets of convolution layer + ReLU + pooling layer sequentially connected.
After the last pooling layer of the model, the data are transformed into the 1D vector using

J. Imaging 2024, 10, 121 9 of 15

the flattening layer. It helps connect the convolution part of the model to the upcoming
fully connected layer.

The Fully Connected Neural Network is built by connecting two dense layers in
sequence with a Dropout Layer. In a Fully Connected Neural Network, each layer’s
artificial neurons are fully interconnected with all artificial neurons of the next dense layer.
Each dense layer has 512 artificial neurons and utilizes a nonlinear ReLU activation function.
The Dropout layer is set to 0.1 (equivalent to 10%) for model overfitting regularization. In
the Dropout layer, the fractions of neurons are randomly dropped out (i.e., setting to zero)
during the training of the model. Finally, the output layer is interconnected with dense layer
2. The SoftMax activation function is utilized for the output layer. The SoftMax function
normalizes the input data into a probability distribution over the target classes where the
sum of all probabilities equals one. The number of neurons in the output layer varies
according to the number of classes in the datasets. The “SpareCategoricalCrossentropy”
and “Adam” are used as “loss functions” and optimizers for both CNN models. The
detailed mathematical description of CNN can be found in [23].

3. Results and Discussion

This study compares the proposed method with seven feature reduction methods and
one non-feature reduction algorithm with identical CNN classification architecture. In ad-
dition, while keeping the same environment all over the experiment, the true performance
of the proposed method is evaluated. All the experiments were executed on a university
supercomputer server, which was configured with 24 Core and 24 GB memory per core.
The cross-validation technique is used to validate the model’s performance. Table 2 dis-
plays a comparative analysis of the proposed method in three different ways with different
datasets, graph types, classification architecture, and assessment metrics.

In the first approach, the GCFE performance was examined on different patch sizes
of images using 2D CNN, as shown in Figure 4. All the GCFE experiments in Figure 4
were based on a 2D grid graph. In this experiment, the datasets were split into training,
validation, and testing, with ratios of 70%, 15%, and 15%, respectively. The CNN models
were trained with 10 epochs. The EMNIST datasets were tested with 2, 4, 7, 14, and
28 patch sizes, while the MC and CVD datasets were experimented with 2, 4, 5, 10, and
20 patch sizes. Also, from Figure 4, it can be seen that the GCFE performance across different
image patch sizes remains almost consistent, with an average standard deviation accuracy
of ±0.4475. The average GCFE accuracy performance along with standard deviation (SD)
for each dataset are 84.53 ± 0.714, 85.01 ± 0.281, 88.30 ± 0.269, 98.86 ± 0.154, 91.18 ± 0.473,
98.12 ± 0.124, 94.54 ± 0.404, and 69.62 ± 0.157 for E_Balanced, E_ByClass, E_ByMerge,
E_Digits, E_Letter, E_MNIST, MC, and CVD, respectively (from Figure 4). Besides each
model’s accuracy, other evaluating metrics, such as the F1 score, Recall, and Precision, were
also computed, which is illustrated in Figure 4. Notably, the CVD dataset demonstrated
lower performance, which can be attributed to its inherent characteristics—specifically,
the significant presence of extraneous objects in the background as compared to the target
foreground objects (cats or dogs). Further analysis revealed that in approach 2, the CVD
dataset consistently showed lower accuracy across all feature extraction methods compared
to other datasets.

In the second approach, additional experiments were conducted to compare the
feature extraction algorithms with different graph types, their accuracy, and computational
time presented in Table 3. In addition, all the experiments in Table 3 are performed
on datasets with balanced distribution classes, which were E_Balanced, MC, and CVD
datasets. Furthermore, the number of epochs and ratios of split datasets were kept similar to
approach 1. However, due to memory resource limitations, only smaller image patch sizes
were selected. For image-to-graph transformation, GCFE and the other experiments utilize
two different graph types: 2D-grid and pairwise graphs, respectively. Each graph type had
seven different experiments for comparison: GCFE (2D-CNN); Laplacian (2D-CNN); GCFE
(1D-CNN); I-PCA (1D-CNN); kernel-PCA (1D-CNN); spectral embedding (1D-CNN); and

J. Imaging 2024, 10, 121 10 of 15

Raw Image (2D-CNN), accordingly. In Table 3, the letter “P” in the dataset name represents
the patch size. For instance, “E_balanced_P2” means an E_Balanced dataset with patch size
2. In Table 3, the experiment titled “Raw Image” is conducted to provide an approximate
performance assessment for each dataset patch size.

J. Imaging 2024, 10, x 10 of 15

Figure 4. GCFE performance metric for all datasets with different image patch sizes and 2D-grid

graph classified using 2D CNN.

In the second approach, additional experiments were conducted to compare the fea-

ture extraction algorithms with different graph types, their accuracy, and computational

time presented in Table 3. In addition, all the experiments in Table 3 are performed on

datasets with balanced distribution classes, which were E_Balanced, MC, and CVD da-

tasets. Furthermore, the number of epochs and ratios of split datasets were kept similar to

approach 1. However, due to memory resource limitations, only smaller image patch sizes

were selected. For image-to-graph transformation, GCFE and the other experiments uti-

lize two different graph types: 2D-grid and pairwise graphs, respectively. Each graph type

had seven different experiments for comparison: GCFE (2D-CNN); Laplacian (2D-CNN);

GCFE (1D-CNN); I-PCA (1D-CNN); kernel-PCA (1D-CNN); spectral embedding (1D-

CNN); and Raw Image (2D-CNN), accordingly. In Table 3, the letter “P” in the dataset

name represents the patch size. For instance, “E_balanced_P2” means an E_Balanced da-

taset with patch size 2. In Table 3, the experiment titled “Raw Image” is conducted to

provide an approximate performance assessment for each dataset patch size.

Table 3. Comparison of proposed GCFE with other methods by measuring accuracy performance

and computational time.

Datasets
GCFE

(2D CNN)

Laplacian

(2D CNN)

GCFE

(1D CNN)
I-PCA

Kernel-PCA

(RBF)
Spectral Embed.

Raw

Image

Graph type—2D-Grid

E_Bal-

anced_P2

84.329

t = ≈6
84.553

83.797

t = ≈6

76.468

t = ≈225

78.138

t* = ≈12

75.787

t* = ≈3
86.617

E_Bal-

anced_P4

83.978

t = ≈6
85.010

84.691

t = ≈6

76.499

t = ≈926

79.776

t* = ≈107

76.329

t* = ≈54
86.117

E_Bal-

anced_P7

84.117

t = ≈16
84.595

84.329

t = ≈16

78.223

t = ≈2010

80.585

t* = ≈1163

77.755

t* = ≈1136
85.659

CVD_P2
68.681

t = ≈32
71.518

66.045

t = ≈32

62.722

t = ≈10,475
~

61.318

t* = ≈1182
70.773

MC_P2
94.581

t = ≈38
93.783

92.646

t = ≈38

63.691

t = ≈6944
~

62.796

t* = ≈1256
92.186

Graph type—Pairwise

E_Bal-

anced_P2

84.744

t = ≈5
85.372

84.989

t = ≈5

78.595

t = ≈194

79.287

t* = ≈11

77.638

t* = ≈1
86.617

E_Bal-

anced_P4

84.276

t = ≈5
85.255

84.148

t = ≈5

77.297

t = ≈917

80.553

t* = ≈111

95.86

t* = ≈55
86.117

Figure 4. GCFE performance metric for all datasets with different image patch sizes and 2D-grid
graph classified using 2D CNN.

Table 3. Comparison of proposed GCFE with other methods by measuring accuracy performance
and computational time.

Datasets GCFE
(2D CNN)

Laplacian
(2D CNN)

GCFE
(1D CNN) I-PCA Kernel-PCA

(RBF)
Spectral
Embed. Raw Image

Graph type—2D-Grid

E_Balanced_P2 84.329
t = ≈6 84.553 83.797

t = ≈6
76.468

t = ≈225
78.138

t* = ≈12
75.787
t* = ≈3 86.617

E_Balanced_P4 83.978
t = ≈6 85.010 84.691

t = ≈6
76.499

t = ≈926
79.776

t* = ≈107
76.329

t* = ≈54 86.117

E_Balanced_P7 84.117
t = ≈16 84.595 84.329

t = ≈16
78.223

t = ≈2010
80.585

t* = ≈1163
77.755

t* = ≈1136 85.659

CVD_P2 68.681
t = ≈32 71.518 66.045

t = ≈32
62.722

t = ≈10,475 ~ 61.318
t* = ≈1182 70.773

MC_P2 94.581
t = ≈38 93.783 92.646

t = ≈38
63.691

t = ≈6944 ~ 62.796
t* = ≈1256 92.186

Graph type—Pairwise

E_Balanced_P2 84.744
t = ≈5 85.372 84.989

t = ≈5
78.595

t = ≈194
79.287

t* = ≈11
77.638
t* = ≈1 86.617

E_Balanced_P4 84.276
t = ≈5 85.255 84.148

t = ≈5
77.297

t = ≈917
80.553

t* = ≈111
95.86

t* = ≈55 86.117

E_Balanced_P7 83.237
t = ≈8 84.074 83.808

t = ≈8
78.755

t = ≈1912
79.351

t* = ≈1122
79.595

t* = ≈1182 85.659

CVD_P2 69.684
t = ≈27 70.773 69.025

t = ≈27 ~ ~ 63.954
t* = ≈1337 70.773

MC_P2 92.597
t = ≈33 92.938 92.670

t = ≈33 ~ ~ 63.570
t* = ≈1407 92.186

“~” = Out of Memory; “t” = total time computational for all samples; “t*” = total time computational for all
samples by extracting a small bundle of samples and the rest of samples dot product (all computational time
in seconds).

J. Imaging 2024, 10, 121 11 of 15

Furthermore, similar to the findings in Figure 4 regarding GCFE performance across
different image patch sizes, Table 3 also indicates similar accuracy performance trends
for the GCFE method using the 2D-grid graph and the 1D-CNN model. In addition, for
the E_Balanced patch size experiments, the accuracy deviated by merely ±0.4497 SD. In
contrast, the accuracy performance for other feature extraction methods like PCA, kernel-
PCA, and spectral embedding increased with increasing patch size. For instance, the
accuracy increases from 76.468% to 78.223% with SD ± 1.0044 for I-PCA, 78.138% to
80.580% with SD ± 1.2467 for kernel-PCA, and 75.787% to 77.755% with SD ± 1.0166 for
spectral embedding as the patch size varied from 2 and 4 to 7. Also, similar trends can be
observed for the pairwise graph type for the E_Balanced dataset.

In the “Laplacian” experiment, the standard weighted Laplacian matrix was con-
structed and applied either as input data for various feature extraction methods or fed
directly into the classification model. The feature extraction algorithms, such as I-PCA,
kernel-PCA, and spectral embedding, were configured to produce the same quantity of
features as the GCFE output. This configuration ensures a real performance comparison
between the methods. For a detailed examination, configurations and associated code for
all methods are available at Supplementary Materials [28]. Figure 5 shows each feature ex-
traction method’s mean accuracy (ACC), utilizing both graph and 1D-CNN. It also displays
the average Z-score between GCFE and other individual feature extraction methods. Both
average, ACC, and average Z-score were computed for E_Balanced and patches P2, P4, and
P7, accordingly. As can be seen in Figure 5a, b, GCFE consistently outperforms all other
methods across both graph types, as indicated by its predominantly positive Z-score values.
The only exception is the spectral embedding with the pairwise graph, which has a Z-score
of −0.01 in Figure 5b. Additionally, the GCFE method ACC on CVD_P2 and MC_P2 is
also much higher compared to other feature extraction methods for both graph types. For
instance, when considering the 2D-grid graph type, the percentage difference between
GCFE (1D-CNN) and I-PCA for CVD_P2 and MC_P2 was 5.16% and 37.04%, respectively.

J. Imaging 2024, 10, x 12 of 15

graph types) was lower than the GCFE. Still, with the increasing patch size of the image,

the small batch and dot-product method for computational time increased more than the

GCFE method. For instance, the spectral embedding method with 2D-grid and pairwise

graph—E_Balanced_P4, E_Balanced_P7, CVD_P2, and MC_P2 shown in Table 3.

Figure 5. Comparison of mean ACC performance across feature extraction methods along with av-

erage Z-score for two graph types on E_Balanced dataset. (a) with 2D-grid graph. (b) with pairwise

graph.

In the third comparison approach, the GCFE was compared with additional feature

reduction, which included Isomap, LLE, Modified LLE (MLLE) [29], and Hessian

Eigenmap [30]. In this approach, the feature reduction methods were compared by their

accuracy and total computational time (generating graph till feature reduction), as shown

in Figure 6. The K-NN graph type is utilized to convert images to graphs. During these

experiments, the “K” value for the graph was selected to match the image’s patch size for

LLE, MLLE, and Isomap, while for the Hessian Eigenmap, K was set to 300. A total of 300

components (no. of reduced features) were chosen for the LLE, MLLE, and Isomap meth-

ods and 20 components for the Hessian Eigenmap method. Similarly, in approach 2, the

LLE, MLLE, Isomap, and Hessian Eigenmap methods were applied to a small subset of

the dataset comprising 1000 samples (100 samples for each E_MNIST class). Later, the rest

of the datasets are transformed into reduced features by the dot product between the re-

duced feature of the small subset and the entire dataset. In Figure 6, similar trends were

noticed in approach 2, where the accuracy performance of LLE, MLLE, and Isomap de-

creased with a decrease in the patch size of the image, while the GCFE and Hessian

Eigenmap did not have a major variation in accuracy performance. Moreover, the GCFE

outperformed the LLE, MLLE, and Isomap in classification accuracy. The GCFE and Hes-

sian Eigenmap methods showed only minor differences in accuracy performance. How-

ever, Figure 6 indicates that the Hessian Eigenmap had a higher computational time com-

pared to GCFE. Additionally, LLE and MLLE had lower computational times than GCFE

due to the smaller dataset subset selected for feature reduction.

Figure 5. Comparison of mean ACC performance across feature extraction methods along with
average Z-score for two graph types on E_Balanced dataset. (a) with 2D-grid graph. (b) with
pairwise graph.

Besides the comparison of feature extraction accuracy performance, the computational
time for the feature extraction algorithm is an important criterion. Table 3 also presents the
computation time needed to perform feature extraction on all datasets. The presented times
were in seconds. Note that Table 3 has two types of time notation: “t” and “t*”. The “t”
represents the time to compute all dataset instances simultaneously, while “t*” indicates the
time taken when processing the dataset in smaller batches, obtaining their reduced features
and subsequently implementing the dot product on the remaining instances. The GCFE
computed 131,600 E_Balanced instances for a 2D-grid graph in approximately 6 s (actual
6.044 s), 6 s (actual 5.868 s) and 16 s with patch sizes 2, 4, and 7, respectively, and took 32 s

J. Imaging 2024, 10, 121 12 of 15

and 36 s for 27,558 MC and 25,000 CVD instances with patch size 2. For the pairwise graph,
it processed the same E_Balanced instances in approximately 5 s (actual 5.765 s), 5 s (actual
5.714 s), and 8 s and took 27 s and 33 s for the MC and CVD instances, all with patch size 2.
Thus, the computational time for both graph types of GCFE is much lower compared to
other methods, such as I-PCA, kernel-PCA, and spectral embedding. However, considering
the small batch and “dot-product” method for feature extraction, the computation time for
a spectral embedding patch size of 2 (both graph types) was lower than the GCFE. Still,
with the increasing patch size of the image, the small batch and dot-product method for
computational time increased more than the GCFE method. For instance, the spectral
embedding method with 2D-grid and pairwise graph—E_Balanced_P4, E_Balanced_P7,
CVD_P2, and MC_P2 shown in Table 3.

In the third comparison approach, the GCFE was compared with additional feature
reduction, which included Isomap, LLE, Modified LLE (MLLE) [29], and Hessian Eigen-
map [30]. In this approach, the feature reduction methods were compared by their accuracy
and total computational time (generating graph till feature reduction), as shown in Figure 6.
The K-NN graph type is utilized to convert images to graphs. During these experiments,
the “K” value for the graph was selected to match the image’s patch size for LLE, MLLE,
and Isomap, while for the Hessian Eigenmap, K was set to 300. A total of 300 compo-
nents (no. of reduced features) were chosen for the LLE, MLLE, and Isomap methods and
20 components for the Hessian Eigenmap method. Similarly, in approach 2, the LLE, MLLE,
Isomap, and Hessian Eigenmap methods were applied to a small subset of the dataset
comprising 1000 samples (100 samples for each E_MNIST class). Later, the rest of the
datasets are transformed into reduced features by the dot product between the reduced
feature of the small subset and the entire dataset. In Figure 6, similar trends were noticed
in approach 2, where the accuracy performance of LLE, MLLE, and Isomap decreased
with a decrease in the patch size of the image, while the GCFE and Hessian Eigenmap did
not have a major variation in accuracy performance. Moreover, the GCFE outperformed
the LLE, MLLE, and Isomap in classification accuracy. The GCFE and Hessian Eigenmap
methods showed only minor differences in accuracy performance. However, Figure 6
indicates that the Hessian Eigenmap had a higher computational time compared to GCFE.
Additionally, LLE and MLLE had lower computational times than GCFE due to the smaller
dataset subset selected for feature reduction.

J. Imaging 2024, 10, x 13 of 15

Figure 6. Accuracy vs. total computational time (generating graph to feature reduction) in log scale

between various feature reduction methods on E_MNIST dataset with different image patch sizes.

Figure 7 illustrates the number of training parameters of the 2D-CNN model for dif-

ferent patch sizes of the E_Balanced dataset—standard Laplacian (2D-CNN) features and

GCFE (2D-CNN) in approach 2. In Figure 7, each circle represents the number of training

parameters, which are scaled down to 10−6. The number of required training parameters

for all standard Laplacian features is 3.51 for patch 2, 3.54 for patch 4, 9.93 for patch 7,

38.84 for patch 14, and 157.65 for patch 28. Comparatively, the GCFE has only 3.5 training

parameters with an average percentage difference of only 0.684% (for 2D-grid type) and

0.952% (for pairwise type) compared to the standard weighted Laplacian method. Note

that the number of training parameters for GCFE will remain the same for different patch

sizes.

Figure 7. Number of training parameters (scaled by a factor of 10−6) of 2D CNN model for GCFE

and standard Laplacian (SLap) features.

Additionally, the results demonstrate that the GCFE method offers robust and relia-

ble feature extraction, with minimal variability in performance as indicated by its low SD

and higher ACC across different datasets and graph types. This consistency is crucial for

Figure 6. Accuracy vs. total computational time (generating graph to feature reduction) in log scale
between various feature reduction methods on E_MNIST dataset with different image patch sizes.

Figure 7 illustrates the number of training parameters of the 2D-CNN model for
different patch sizes of the E_Balanced dataset—standard Laplacian (2D-CNN) features

J. Imaging 2024, 10, 121 13 of 15

and GCFE (2D-CNN) in approach 2. In Figure 7, each circle represents the number of
training parameters, which are scaled down to 10−6. The number of required training
parameters for all standard Laplacian features is 3.51 for patch 2, 3.54 for patch 4, 9.93 for
patch 7, 38.84 for patch 14, and 157.65 for patch 28. Comparatively, the GCFE has only
3.5 training parameters with an average percentage difference of only 0.684% (for 2D-grid
type) and 0.952% (for pairwise type) compared to the standard weighted Laplacian method.
Note that the number of training parameters for GCFE will remain the same for different
patch sizes.

J. Imaging 2024, 10, x 13 of 15

Figure 6. Accuracy vs. total computational time (generating graph to feature reduction) in log scale

between various feature reduction methods on E_MNIST dataset with different image patch sizes.

Figure 7 illustrates the number of training parameters of the 2D-CNN model for dif-

ferent patch sizes of the E_Balanced dataset—standard Laplacian (2D-CNN) features and

GCFE (2D-CNN) in approach 2. In Figure 7, each circle represents the number of training

parameters, which are scaled down to 10−6. The number of required training parameters

for all standard Laplacian features is 3.51 for patch 2, 3.54 for patch 4, 9.93 for patch 7,

38.84 for patch 14, and 157.65 for patch 28. Comparatively, the GCFE has only 3.5 training

parameters with an average percentage difference of only 0.684% (for 2D-grid type) and

0.952% (for pairwise type) compared to the standard weighted Laplacian method. Note

that the number of training parameters for GCFE will remain the same for different patch

sizes.

Figure 7. Number of training parameters (scaled by a factor of 10−6) of 2D CNN model for GCFE

and standard Laplacian (SLap) features.

Additionally, the results demonstrate that the GCFE method offers robust and relia-

ble feature extraction, with minimal variability in performance as indicated by its low SD

and higher ACC across different datasets and graph types. This consistency is crucial for

Figure 7. Number of training parameters (scaled by a factor of 10−6) of 2D CNN model for GCFE
and standard Laplacian (SLap) features.

Additionally, the results demonstrate that the GCFE method offers robust and reliable
feature extraction, with minimal variability in performance as indicated by its low SD
and higher ACC across different datasets and graph types. This consistency is crucial for
applications in computer vision, where the precision of feature extraction can significantly
impact the accuracy of subsequent tasks such as image classification. In this study, the
GCFE method exhibited an average SD of 0.3202 using the 2D-grid graph type across all
datasets and an SD of 0.305 using the K-NN graph type on the E_MNIST dataset. These
SD results demonstrate the method’s consistent ACC performance across different image
patch sizes, reducing uncertainty in the GCFE method’s performance.

4. Conclusions

This work demonstrated a new feature extraction method for a weighted Laplacian
matrix using the GC theorem. The proposed GCFE method was compared against various
feature extraction algorithms while utilizing an identical CNN architecture. With only a
few exceptions, the GCFE method outperformed other feature extraction methods, having
a positive Z-score on both graph types. In addition, the performance accuracy of GCFE was
consistent with different patch sizes of images. The GCFE method also required a much
lower number of training parameters for classification models without any substantial
change in accuracy compared to the standard weighted Laplacian method. This makes
GCFE a good alternative solution for resource-constrained environments. Beyond accuracy,
the GCFE method is computationally time efficient compared to other methods. However, it
is essential to consider that GCFE is an irreversible feature reduction technique. This means
that once features are extracted, they cannot be transformed back to their original state. This
method is constrained by the inherent limitation that it extracts a fixed number of features
from any given image, which has dimensions P × M × N, ultimately producing a reduced
output of P × N × 2. Unlike parametric methods such as Principal Component Analysis

J. Imaging 2024, 10, 121 14 of 15

(PCA), which allow for the adjustable output of dimensionality through parameters, GCFE
is a non-parametric approach. Despite this limitation in feature extraction capacity, the
performance of the GCFE method is not compromised. This is because the GC theorem
effectively estimates the complete inclusion of all eigenvalues for a given image, ensuring
that the essential features are retained even with reduced dimensionality.

In the future, the proposed GCFE method could be applied to diverse fields, such as
biomedical signal analysis. Additionally, enhancing the method by incorporating more
mathematically precise eigenvalue inclusion techniques could further improve the classifi-
cation accuracy of the reduced features.

Supplementary Materials: All codes related to this work are available at https://github.com/sahaj4
32/Image_GCFE.git, accessed on 12 February 2024.

Author Contributions: S.A.P. developed the approach for this research and drafted this manuscript.
A.Y. helped revise the drafted manuscript and provided valuable advice for this research. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the image data used to support the findings of this study are from
previously reported studies and datasets. These prior studies and datasets are cited at relevant places
within the text as references [24–26].

Acknowledgments: We are grateful to Smith, Rachel June, for her invaluable guidance and expertise
throughout this research. Additionally, we thank our reviewers for their constructive feedback, which
greatly improved this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81. [CrossRef]
2. Balaban, A.T. Applications of graph theory in chemistry. J. Chem. Inf. Comput. Sci. 1985, 25, 334–343. [CrossRef]
3. Majeed, A.; Rauf, I. Graph theory: A comprehensive survey about graph theory applications in computer science and social

networks. Inventions 2020, 5, 10. [CrossRef]
4. Norcliffe-Brown, W.; Vafeias, S.; Parisot, S. Learning conditioned graph structures for interpretable visual question answering. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31,
pp. 1–10.

5. Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of the Advances
in Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; Volume 13, pp. 1–7.

6. He, X.; Niyogi, P. Locality preserving projections. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, BC, Canada, 8–13 December 2003; Volume 16, pp. 1–8.

7. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
[PubMed]

8. Tenenbaum, J.B.; Silva, V.D.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science
2000, 290, 2319–2323. [CrossRef] [PubMed]

9. He, X.; Cai, D.; Niyogi, P. Laplacian score for feature selection. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 5–8 December 2005; Volume 18, pp. 1–8.

10. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci.
1901, 2, 559–572. [CrossRef]

11. Schölkopf, B.; Smola, A.; Müller, K.-R. Kernel Principal Component Analysis. In Proceedings of the International Conference on
Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 583–588.

12. Chapelle, O.; Weston, J.; Schölkopf, B. Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res.
2002, 3, 1–48.

13. Ross, D.; Lim, J.; Lin, R.-S.; Yang, M.-H. Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vis. 2008, 77, 125–141.
[CrossRef]

14. Gershgorin, S.A. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. SSSR 1931, 6, 749–754.

https://github.com/sahaj432/Image_GCFE.git
https://github.com/sahaj432/Image_GCFE.git
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1021/ci00047a033
https://doi.org/10.3390/inventions5010010
https://doi.org/10.1126/science.290.5500.2323
https://www.ncbi.nlm.nih.gov/pubmed/11125150
https://doi.org/10.1126/science.290.5500.2319
https://www.ncbi.nlm.nih.gov/pubmed/11125149
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1007/s11263-007-0075-7

J. Imaging 2024, 10, 121 15 of 15

15. Bejarano, D.; Ibargüen-Mondragón, E.; Gómez-Hernández, E.A. A stability test for non linear systems of ordinary differential
equations based on the gershgorin circles. Contemp. Eng. Sci. 2018, 11, 4541–4548. [CrossRef]

16. Wang, F.; Wang, Y.; Cheung, G.; Yang, C. Graph sampling for matrix completion using recurrent Gershgorin disc shift. IEEE Trans.
Signal Process. 2020, 68, 2814–2829. [CrossRef]

17. Xie, X.; Huang, J.; Tan, E.; He, F.; Liu, Z. Stability Criterion and Stability Analysis of Three-Phase Grid-Connected Rectifier System
Based on Gerschgorin Circle Theorem. Electronics 2022, 11, 3270. [CrossRef]

18. Varga, R.S.; Krautstengl, A. On Geršgorin-type problems and ovals of Cassini. Electron. Trans. Numer. Anal. 1999, 8, 15–20.
19. Varga, R.S. Geršgorin and His Circles; Springer: Berlin/Heidelberg, Germany, 2010; Volume 36.
20. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
21. Song, Y.-Y.; Ying, L.U. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry

2015, 27, 130. [PubMed]
22. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.
24. Cohen, G.; Afshar, S.; Tapson, J.; Schaik, A.V. EMNIST: Extending MNIST to handwritten letters. In Proceedings of the 2017

International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017; pp. 2921–2926.
25. Kaggle Dogs vs. Cats. Kaggle 2013. Available online: https://www.kaggle.com/c/dogs-vs-cats (accessed on 1 February 2024).
26. Rajaraman, S.; Antani, S.K.; Poostchi, M.; Silamut, K.; Hossain, M.A.; Maude, R.J.; Jaeger, S.; Thoma, G.R. pre-trained convo-

lutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ
2018, 6, e4568. [CrossRef]

27. Patel, S.A.; Yildirim, A. Non-stationary neural signal to image conversion framework for image-based deep learning algorithms.
Front. Neuroinform. 2023, 17, 1081160. [CrossRef] [PubMed]

28. Patel, S.A. Image_GCFE[Sourecode]. 2023. Available online: https://github.com/sahaj432/Image_GCFE.git (accessed on
12 February 2024).

29. Zhang, Z.; Wang, J. MLLE: Modified locally linear embedding using multiple weights. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 4 December 2006; Volume 19.

30. Donoho, D.L.; Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad.
Sci. USA 2003, 100, 5591–5596. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.12988/ces.2018.89504
https://doi.org/10.1109/TSP.2020.2988784
https://doi.org/10.3390/electronics11203270
https://www.ncbi.nlm.nih.gov/pubmed/26120265
https://doi.org/10.1038/323533a0
https://www.kaggle.com/c/dogs-vs-cats
https://doi.org/10.7717/peerj.4568
https://doi.org/10.3389/fninf.2023.1081160
https://www.ncbi.nlm.nih.gov/pubmed/37035716
https://github.com/sahaj432/Image_GCFE.git
https://doi.org/10.1073/pnas.1031596100
https://www.ncbi.nlm.nih.gov/pubmed/16576753

	Introduction
	Materials and Methods
	Datasets
	Extended MNIST (EMNSIT) Dataset
	Cats vs. Dogs (CVD) Dataset
	Malaria Cell (MC) Dataset

	Methodology
	Preprocessing
	Modified Weighted Laplacian (MWL) Matrix
	Gershgorin Circle Feature Extraction
	Classification

	Results and Discussion
	Conclusions
	References

