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Abstract: Advanced driver assistance systems (ADASs) have recently gained popularity as they
assist vehicle operators in staying within safe boundaries, helping them thereby to prevent possible
collisions. However, despite their success and development, most ADAS use common and deter-
ministic warning thresholds for all drivers in all driving environments. This may occasionally lead
to the issuance of annoying inadequate warnings, due to the possible differences between drivers,
the changing environments and driver statuses, thus reducing their acceptance and effectiveness.
To fill this gap, this paper proposes adaptive algorithms for commonly used warnings based on
real-time traffic environments and driver status including distraction and fatigue. We proposed
adaptive algorithms for headway monitoring, illegal overtaking, over-speeding, and fatigue. The
algorithms were then tested using a driving simulator. Results showed that the proposed adaptive
headway warning algorithm was able to automatically update the headway warning thresholds and
that, overall, the proposed algorithms provided the expected warnings. In particular, three or four
different warning types were designed to distinguish different risk levels. The designed real-time
intervention algorithms can be implemented in ADAS to provide warnings and interventions tailored
to the driver status to further ensure driving safety.

Keywords: real-time interventions; advanced driver assistance systems; headway; over-speeding;
fatigue; illegal overtaking

1. Introduction

According to the Global status report on road safety 2018 [1], the number of road traffic
deaths continues to rise steadily, reaching 1.35 million in 2016, and ranking as the eighth
leading cause of death. The National Motor Vehicle Crash Causation Survey (NMVCCS)
conducted from 2005 to 2007 indicated that the percentage of crashes involving driver error
or impairment before the crash occurrence was as high as 94% [2]. Among them, recogni-
tion errors such as driver inattention, internal and external distractions, and inadequate
surveillance, accounted for about 41% of crashes. Decision errors, including driving too
fast in given situations (such as road design), false assumption of others” actions including
speed, and illegal maneuver and misjudgment of gaps, accounted for about 33% of the
crashes [2]. The emergence of advanced driver assistance systems (ADASs) has therefore
come to assist drivers in reducing or even eliminating driver errors, as they have been
shown to overall improve driving safety [3]. The aim is to improve safety using automated
technology, such as sensors and cameras, that can detect nearby obstacles or driver errors,
and respond accordingly. Among many warning systems, popular ones include warnings
and monitoring systems for headway, over-speeding, fatigue, and illegal overtaking.
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The headway warning uses a forward-facing device such as a radar, Light Detection
and Ranging (LiDAR), or a camera, to detect obstacles (e.g., car or pedestrian) in the path
of the vehicle in which it is installed [4]. It monitors the distance (i.e., time headway)
from the vehicle ahead, to provide alerts when the following time headway is below a
pre-defined threshold, to help mitigate rear-end crashes [5]. This assists in significantly
improving road traffic, as rear-end crashes are reported to account for more than 30% of
crashes involving vehicles [5,6]. Similarly, over-speeding warning, fatigue warning, and
illegal overtaking warning, monitor vehicle speeds, driver fatigue statuses, and overtaking
maneuvers, respectively. Generally, as in any other ADAS warning, different types of
warnings can be triggered once the predetermined thresholds have been exceeded. To
the best of the authors” knowledge, however, there is very limited literature that focuses
on the implementation frameworks of these warnings, especially for over-speeding and
illegal overtaking. Moreover, any related products in the market commonly use fixed and
deterministic warning thresholds for all drivers (regardless of their status). For instance, [7]
proposed to use 2.0 s as a cautionary threshold and set 1.5 s as a warning threshold for the
visual representation of time headway. Generally, 5 km/h, 10 km/h, 15 km/h, 20 km/h,
etc., are widely used as the thresholds for over-speeding warning in the real world or
related products. These implementations or products therefore do not consider the impact
of contributing factors, including weather, environment, types of vehicles around, risky
hours, time of the day, fatigue, distraction, and drowsiness, on the driver operation and the
traffic safety. This will occasionally lead to the issuance of annoying inadequate warnings
and further reduce the acceptance and the effectiveness levels of ADAS [8].

Therefore, this paper aims to integrate the essential contributing factors into the
warning algorithms, in an adaptive way that could automatically update them based
on real-time traffic environments and driver status (such as distraction and fatigue), to
capture driver diversity and changing parameters. This will be performed conceptually
first, and then benefiting from an existing case study of a naturalistic driving experiment,
the i-DREAMS case, in which the algorithms will be developed, tested, and validated.

The rest of this paper is organized as follows. The second section looks at related work
in relation to ADAS and warning implementation. Afterwards, the case study is presented,
including the ADAS system to be investigated, along with its sensory inputs. Thereafter,
the detailed algorithms as well as their warning visualizations are proposed and detailed.
After that, the validation of these algorithms is conducted by means of a driving simulation
test, followed by a presentation of the results. Finally, the findings are discussed with the
main insights extracted from the paper.

2. Related Work

Previous research has long used time headway as a parameter to develop forward
collision warning frameworks; still, only a few studies focus on the implementation frame-
works of headway warning and elaborate the thresholds that should be used in such
systems. Among those are the studies [9,10], which use 0.9 s, 1.1 s, 1.6 5, 2.4 s as head-
way thresholds for different warning levels, in which 2.4 s could be replaced with the
universally recommended headway of 2.0 s for dry roads. However, the thresholds of
headway warning in these studies are deterministic and cannot satisfy driver variation
and behavioral changes. Therefore, adaptive warning thresholds could come as a way to
mitigate this limitation, as such warnings could be automatically updated based on the
real-time time headway. For example, [11] proposes a forward collision warning (FCW)
algorithm that can adjust its warning thresholds in a real-time manner according to driver
behavior changes, including both behavioral fluctuation and individual differences. This
adaptive FCW algorithm overcomes the limitations of traditional FCW with fixed risk
evaluation models and fixed triggering thresholds by continuously monitoring driver
braking behaviors in multiple lanes. Ref. [12] also proposed an adaptive FCW method that
generates the warnings by continuously comparing time headway with a flexible threshold.
The core of the proposed threshold updating mechanism is a real-time monitoring of the
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driver reactions against the previously generated warnings using the available indicators
such as its braking history and driver distraction. Ref. [13] proposes the personalized
threshold that is the mean of the minimal values of time headway, using at least 10 car
following events, and ranging between 0.7 s and 2.0 s. However, some other important
factors such as weather, environment, risky hours, time of the day, fatigue, etc., have not
been considered in this updating mechanism.

As for the over-speeding warning, previous studies (e.g., [14]) have also not considered
the warning thresholds. With regard to illegal overtaking, and to the best of the authors’
knowledge, limited to no literature exists; instead, research highlights how ADAS can
provide guidance to the driver in making a safe overtaking maneuver based on the gap
available between two successive opposing vehicles ([15-17]). Regarding fatigue warn-
ings, previous studies focused on using advanced techniques such as Dynamic Bayesian
Network [18], facial recognition technology [19], and speech-adapted pattern recognition
approach [20], to detect driver fatigue. Ref. [21] proved that both truck and taxi drivers
have a positive attitude towards fatigue warning systems. For instance, ref. [22] presented
both qualitative and quantitative guidelines for designing drowsy-driver detection systems
in a probabilistic framework based on the paradigm of Bayesian networks. Ref. [23] de-
scribed a real-time online prototype driver-fatigue monitor framework that uses remotely
located charge-coupled-device cameras equipped with active infrared illuminators to ac-
quire video images of the driver. However, these studies have not discussed the thresholds
of fatigue warnings.

Therefore, filling this gap becomes crucial; in particular, developing adaptive algo-
rithms for headway warnings and over-speeding warnings and fine-tuning them based
on real-time traffic environment and driver status, considering important contributing
factors including weather, environment, risky hours, time of the day, fatigue, distraction,
and drowsiness. When it comes to illegal overtaking warning framework, this needs to
consider vehicle motion states. Finally, fatigue warnings need to consider the monitoring
metrics of driver statuses.

3. Case Study: The i-DREAMS System
3.1. Context

The integrated advanced driver assistance system (ADAS) proposed in this paper is
the one developed for the European naturalistic driving study (i-DREAMS), which included
driving simulator and on-road trials for drivers in five countries (Germany, Belgium, Greece,
Portugal, and the UK), in four modes (buses, trucks, cars, and rail), with the aim to define a
safety-tolerance-zone to keep drivers in safe boundaries, based on real-time and post-trip
interventions. For the real-time interventions, the aim was to propose a real-time algorithm
methodology for the different warnings of interest. This paper discusses the design of those
algorithms, as they were developed and implemented in the scope of this project. The data
collection system described in the following sections relies on the technology developed
in the scope of i-DREAMS and is the basis for the sensor data collected and used for the
design of the algorithms. The four above-mentioned warning algorithms (for headway
monitoring, over-speeding, illegal overtaking, and fatigue) run in parallel based on the
sensor inputs including vehicle motion monitoring, vehicle speed monitoring, weather
monitoring, distraction monitoring and fatigue monitoring. The output of these warnings
is the visual signal warnings that are displayed in-vehicle for the drivers.

The technology is comprised of different components; the central one, however, is
the gateway which gathers and centralizes information from the other components and
handles data connectivity and transmission. The vehicle motion monitoring includes the
Mobileye system, gateway accelerometer and gyroscope sensors. The Mobileye system
can extract headway monitoring information, detect vehicles ahead, trigger urban forward
collision warning, trigger involuntary lane departure warning, detect pedestrians ahead,
and trigger pedestrian collision warning [24]. Moreover, it detects traffic signs in real-
time, e.g., speed limit indication and forbidden overtaking signs. The system also reads
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information from the vehicle Controller Area Network (CAN) and produces a low visibility
indicator. The vehicle speed monitoring is based on the Global Positioning System (GPS),
and the Mobileye system. The GPS chip provides geostationary satellite localization
services (GNSS), including speed, and vehicle heading in degrees. The weather monitoring
is based on Mobileye system and web weather services (if possible). The distraction
monitoring is based on the OSeven application (O7APP), which detects mobile phone use.
During the driving, the O7APP records data via the O7SDK from the smartphone sensors,
including the distraction information caused by mobile use (e.g., talking, texting, and
internet navigation). The fatigue monitoring is based on the CardioWheel or a wristband,
that collects the driver’s electrocardiogram (ECG), which enables the computation of heart
rate variability parameters and provides an estimator for sleepiness. Figure 1 illustrates the
architecture flow diagram including the sensor input, the four algorithms described in this
paper, and the visual outputs displayed for the drivers.

Sensor input System processing Output
Vehicle motion monitoring Headway warning Visual signal warning | Headway warning
(Mobileye, Gateway) 7 algorithm | type

Vehicle speed monitoring
(GPS, Mobileye)

Visual signal warning |

algorithm '| warning type

lllegal overtaking warning lllegal overtaking ]

Weather monitoring
(Mobileye)

3 - Visual signal warning ;
Over-speeding warning Over-speeding 1
algorithm warning type

Distraction monitoring
(O7APP)

Fatigue monitoring N L
(CardioWheel, Wristband) algorithm

Fatigue warning Visual signal warning "

Fatigue warning
type

’ Driver information | i

Figure 1. The architecture flow diagram for the integrated ADAS (own illustration).

3.2. Sensor Inputs

The input data for the above-described ADAS relies on sensory technology, such as
Mobileye, Global Positioning System (GPS), CardioWheel and OSeven application (O7APP),
to detect the traffic environments, driver behavior and driver status in real time. The data
extracted from the different sensors are summarized and described in Table 1.

It should be noted that Wiper_weather refers to the weather condition (i.e., rainy, not
rainy) using wiper actions. When the wiper is non-transiently 1 (on), it indirectly shows
the weather is rainy. Conversely, when the wiper is 0 (off), it indirectly shows the weather
is not rainy.
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Table 1. List of variables in proposed ADAS.

Source Variable Description
THW Time headway (float, second)
Mobileye (AWS) Time_indicator Time of day indicator (str): day, dusk, night
Speed_limit Speed limit sign recognition
Wiper_weather Wipers indicator (bool): 1—on, 0—off
Brake Braking indicator (bool): 1—on, 0—off
Mobileye (Car) Speed Vehicle speed (int): km/h
Left_turn Left turn signal indicator(bool): 1—on, 0—off
Right_turn Right turn signal indicator(bool): 1—on, 0—off
GPS 0 Vehicle heading in degrees (float)
O7APP Distraction Distraction (via hand-held mobile phone use): 1—use, 0—not use
Karolinska Sleepiness Scale (int): —1 (invalid), 1 = extremely alert,
2 = very alert, 3 = alert, 4 = rather alert, 5 = neither alert nor
CardioWheel KSS sleepy, 6 = some signs of sleepiness, 7 = sleepy, but no effort to
keep awake, 8 = sleepy, some effort to keep awake, 9 = very
sleepy, great effort keeping awake, fighting sleep
Gateway Driving_duration Driving duration (hour)
Age Driver age (year)
Questionnaire Gender Driver gender(bool): 0—male, 1—Female

Professional_driver Professional driver (bool): 0—No, 1—Yes

4. Proposed Algorithms
4.1. Adaptive Headway Warning Algorithm

While previous studies already looked at innovative approaches combining well-
known surrogate safety measures [25], these do not particularly focus on updating the
algorithms in a more adaptive way. In this scope, this paper proposes an algorithm to
update the headway warning thresholds. The proposed Algorithm 1 is given below:

Algorithm 1. Adaptive Headway Warning Framework

At any time instant ¢:

Warning Generation Sub-System:
if THW (#) is missing then
warning_headway = —1

else if THW(t) > 2.5 then
warning_headway =0

else if Thy < THW(t) < 2.5 then
warning_headway =1

elseif 0.6 < THW(t) < Thy then
warning_headway = 2

else if THW(t) < 0.6 then
warning_headway = 3

end
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Algorithm 1. Cont.

Threshold Update Sub-System:

if warning_headway(t) == 1 & brake(t) == 1 & speed(t) > 10 then

Tht = T]’lt,1 + al(THWtbS — Thtfl)- RTRRTRRT

e ()

else if warning_headway (t) == 2 & speed(t) > 10 & 0 > ajy;,(t) > —2 then
Tht = Tht,1 — ﬁz(Tht,1 — THWm;g) e e et e (2)

End
If fatigue(t) == 1 then

At = 6,eK55®) 0y driving duration(t) + Ostime_indicator(t) + O4speed(t) + Os5web_weather (t). . ... ..(3)
Thy = Thi_1 + M — A1, (Note : Ag=0)

end

temp = Th;_4

if distraction(t) == 1 then

Thy = Maximum

else if distraction(t) == 0 then
Th; = temp

end

If Th; > Maximum then
Thy = Maximum
If Thy < Minimum then
Thy = Minimum

The headway warning has four phases:

e Normal Phase (warning_headway = 0): no warnings when the headway is greater
than 2.5 s.

e Dangerous Phase (warning_headway = 1): when the headway is between the 2.5 s and
the updated threshold, a visual warning indicating the dangerous phase is displayed.

e Avoidable Accident Phase (warning_headway = 2): when the headway is between
the updated threshold and 0.6 s, a visual warning indicating the avoidable accident
phase is displayed.

e Unavoidable Accident Phase (warning_headway = 3): It is a quite dangerous phase
once the headway is less than 0.6 s. A frequent visual warning with alerts is displayed.
The updated threshold ranges from the maximum and minimum values, which are
2.0 s and 1.0 s, respectively, to consider the reaction time of drivers which is not the
same for every driver, and it varies from less than 1.0 s to about 2.0 s [26].

It should be noted that the initialized threshold of headway for cars is set at 1.5 s, while
the initialized threshold of headway for buses/trucks is set at 2.0 s. The headway threshold
(Thy) determines the ranges of different headway warning levels and can be updated
based on the proposed algorithm. If the driver brakes and the warning is generated by
the algorithm, the driver’s normal risk tolerance is higher than the current time headway
(THW) value which causes the driver to brake.

The first situation is when the driver’s brake is not accompanied by an application
warning for the dangerous phase. In this situation, Th; needs to be updated increasingly
according to Equation (1). In Equation (1), THW;,_ is the time headway at the starting
moment of the current braking action [ty, t]. a1 is positive and plays the role of tuning
coefficients for the Th; adjustment. The condition on speed > 10 km/h is set to exclude
extreme and low speed situations (speed < 10 km/h), such as the stop-and-go and going
in and out of parking spaces, for which the adaptive warning algorithm is not useful. If
the speed reduces due to braking or the effect of releasing the accelerator pedal while the
system is generating the warnings for avoidable accident phase, which means that the
current driver’s normal risk level is lower than the present value of Th;, the threshold
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Th; should be updated according to Equation (2). In Equation (2), a; is positive while
ay, = —2m/s? is a negative constant ensuring the comfort braking deceleration [12]. The
condition on the longitudinal acceleration 0 > a5, > —2m/ s is set to exclude the hard
braking situations, since Th; should not be updated in abrupt braking as it is a temporary
driver reaction in which the driver’s normal risk level is not affected. In addition, THW sy¢
represents the average of THW (t) in [ty, ].

If the warning is not generated, the threshold can be updated according to the distrac-
tion and fatigue levels. As distraction is quite dangerous, we can set the headway threshold
as the maximum value. The headway threshold can go back to its previous value once
distraction ends. The algorithm further checks the driver fatigue level (i.e., Fatigue(t) = 1).
Some important factors including KSS score, driving duration, speed, weather, etc., are
used to fine tune the Th; adjustment. Finally, 61, 6,, 83, 04, 05, the impact coefficients for
of KSS, driving duration, time indicator (time of day), speed, and weather, respectively
can be identified based on data-driven analysis. For instance, 6; should be quite small,
like 0.00001.

4.2. Illegal Overtaking Warning Algorithm

Generally, a reasonable overtaking maneuver includes four phases, i.e., a preparation
phase, a lane-changing phase, a passing phase, and a lane-returning phase, similar to the
four phases of a car overtaking a cyclist [27]. While previous studies have looked into lane
changing behavior, particularly extreme trait behaviors [28] and disordered heterogeneous
traffic conditions [29], few if any looked at it as part of an adaptive overtaking warning
algorithm. Our proposed real-time illegal overtaking warning algorithm aims to deter
drivers from making an illegal overtaking move. The different stages are depicted in
Figure 2. Drivers changing their lanes should not influence the vehicles around them; if the
vehicles around the driver (i.e., driver A in Figure 2) take actions such as reducing speed,
avoiding operation, etc., the overtaking move would not be considered reasonable and safe.

>-

Lane changing Passing Lane returning
-« L} >4 > »

Preparation

Figure 2. The phases of overtaking move (own illustration).

(1) In the preparation phase, the left-turn signal light should be kept on for at least
3.0 s before the start of lane changing. It is important to provide enough information
and preparations for other vehicles around. Otherwise, the overtaking move would be
considered dangerous. It should be noted that this example is for driving on the right. As
for the driving on the left (such as in the UK and/or other countries), the right-turn signal
light is the relevant one for the preparation phase.

(2) In the lane-changing phase, the reasonable overtaking move should avoid the
risk of colliding with vehicle ahead. The speed v and acceleration a at any timestamp ¢
have longitudinal and lateral components, i.e., v/ o ol al o al,,. At the timestamp ¢, the

instantaneous displacements in the longitudinal and latitude directions are

1
dfong = U;ongAt + Ea;ongAtz 4

1

diut = v;utAt_F 2

aj, AP ®)
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where vfong = ov'cos(0'), vl , = v'sin(6"), afong = (v'cos (0') — vf~lcos(9'~1)) /AT,
al, = (v'sin (') — o'~ lsin (6'71)) /AT. ', 6'~! are the angles between the vehicle head
and the lane marker stripe at timestamp t and ¢ — 1, which can be calculated with the help
of the Mobileye Advanced Warning System and the GPS. o' and v'~! are the speeds at
timestamp t and t — 1. AT is the time interval between t and ¢ — 1.

Atany time, d}_ 2 should be less than the lowest safety distance between the heading

vehicles, and df it should be less than the remaining width of the target lane, which is
d— fti) vl dt, where d is the lane width and {0 is the start time of the overtaking move.
Here, the At can be considered as the safety reaction time of the driver. We can set At as
0.6 s, as a lower-bound reaction time [30].

(3) In the passing phase, the possible unsafe factor is acceleration since a too big
acceleration will cause the vehicle to slip or lose controls. According to [31], the safe
threshold curve of the acceleration is

ot \? ot
Athreshold = § (0.569 4 0.198 (100) —0.592 (100)) (6)

where o' is the vehicle speed in km/h at timestamp t and g is 9.8 m/s. If the acceleration
is higher than the threshold, the situation is considered dangerous. Additionally, this the
safe threshold curve is also used to monitor the whole overtaking move.

(4) In the lane-returning phase, firstly, the right-turn signal light should be kept on
for at least 3.0 s before the start of lane returning, and then the reasonable lane returning
should also avoid the risk of colliding the heading vehicle and rushing out of the initial
lane. For the situation of driving on the left, we consider the left-turn signal light in the
lane-returning phase.

The algorithm of illegal overtaking warning is listed below. The illegal overtaking
warning has four phases:

Normal Phase (warning_overtaking = 0);

Dangerous Phase (warning_overtaking = 1);

Avoidable Accident Phase (warning_overtaking = 2);
Unavoidable Accident Phase (warning_overtaking = 3).

If the time duration of keeping the turning light (i.e., left-turn signal light or right-turn
signal light) on is less than 3.0 s and the absolute value of the heading degree changing is
higher than 1.5°, which is dangerous, the type 1 of warnings will be triggered. If the time
duration of keeping the turning light on is less than 3.0 s and the vehicle touches the lane
marker stripe, which is more dangerous, the type 2 of warnings will be triggered. If the
acceleration is greater than the threshold, which is also dangerous, the type 2 warnings will
be triggered. If the instantaneous displacements in the latitude directions dj , are greater
than the rest width of the target lane, which is quite dangerous, type 3 of warnings will be
triggered. Additionally, the longitudinal direction ! o 1 detected and triggered according
to the headway warning strategy. The proposed Algorithm 2 is presented below.

Algorithm 2. Illegal Overtaking Warning Framework

At any time instant ¢:

Warning Generation Sub-System:
warning_overtaking = 0

if Hight on < 3 & abs(f) > 1.5° then
warning_overtaking = 1

end

if tlight_on < 3&d ==0then
warning_overtaking = 2
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Algorithm 2. Cont.

else if a! > ayyesm014 then
warning_overtaking = 2
end

ifdl  >d— [f ol dt then
warning_overtaking = 3
end

Figure 3 shows the change in max theta, latitudinal variables, and current speeds over
time in the lane-changing phases for different initial speeds (a = 0.5 m/s?) (see Equation
(5)). It is noted that the color ranking of these curves in Figure 3 is the same with that in
Figure 3a. The area between the curves and the x-axis in Figure 3a are the theta values
for safe lane changings during the overtaking move. Regarding each lane change in the
overtaking maneuver, the safe max theta has to reduce gradually over time or the latitude
distance and speeds and can even be negative for a short time. After that, the theta is
supposed to tend to zero. In addition, the higher the speed is, the lower the safe max theta
is (see Figure 3a,f).

30 (a) Max 0 4 (b) Lateral distance 4 (c) Lateral speed
0_
251 V0=30km/h
N VO=60km/h =3 .3
520 | VO=90km/h E -
o | | 0_ 3 =
5 151 V0=120km/h e o 2
() o © o
T | ®2 a
= 40l 0 S @
> 104 © T 1
] 7AW 3 o
= N 2 2
YA T 1 3
- 0
0 -
-5 0 -1
0 5 10 0 5 10 0 5 10
Time (s) Time (s) Time (s)
20, (d) Lateral acceleration . } 30({LMax 0 at the lateral location
© 15 120 25
£
= . —~20
s <100 3
= 10 £ S
© 3 & 15
g S 8o S
Q - 5
§ 5 Q | T % 10 K
3 @ 60 g
[]
s 0 40
-5 20 -5
0 5 10 0 5 10 0 1 2 3 4
Time (s) Time (s) Lateral distance (m)

Figure 3. The change in max theta, latitudinal variables, and current speeds over time in the lane-
changing phases for different initial speeds (for a = 0.5 m/s?) (own illustration).

Figure 4 shows the relationship between safe acceleration and speed. The area under
the curve is the acceleration values for a safe overtaking move. With the increase in the
speed, the acceleration threshold reduces and tends to 1.2 m/ 2. If the acceleration is too
high, the vehicle would easily skid and result in a road crash.
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Figure 4. The relationship between the safe acceleration and speed (own illustration).

4.3. Over-Speeding Warning Algorithm

Over-speeding is the driving at a speed above the posted speed limit [32] and has
bad impacts on traffic safety. Based on relevant literature (e.g., [33-35]) and traffic rules,
this paper proposes threshold values for over-speeding under ideal conditions. In a good
driving environment, we propose the different driving safety phases as follows:

Normal Phase: driving speed < 0% above legal speed limit (SL);

Dangerous Phase: driving speed = 0-5% over legal speed limit (SL);
Avoidable Accident Phase: driving speed = 5-10% over legal speed limit (SL);
Unavoidable Accident Phase: driving speed > 10% over legal speed limit (SL).

There are three thresholds, i.e., speed limit (SL), speed limit x (1 + 5%) = 1.05 SL,
and speed limit x (1 + 10%) = 1.10 SL. The threshold is used as such for the unavoidable
accident phase as in most countries it is not legal to drive at a speed 10% higher than the
speed limit. It should be noted that these thresholds are not suitable in Germany since
driving merely 3 km/h or faster above the posted or implied speed limit is considered a
punishable infraction in Germany. Therefore, similarly to this kind of situation, we can use
the speed limit x (1 — 10%) = 0.9 SL, speed limit x (1 — 5%) = 0.95 SL, and speed limit (SL)
as the thresholds.

In the unideal conditions, the thresholds of the normal phase and dangerous phase
(i.e., SL, 1.05 SL) need to be modified based on the impact factors:

The thresholds of normal phase and dangerous phase = Normal thresholds %
x Adjustment coefficient

Such unideal conditions, and the resulting adjustment coefficient, depend on factors
related to environment (i.e., weather, risky hours, and time indicator) and to drivers them-
selves (i.e., fatigue, and distraction). Firstly, the adjustment value is the weighted average
value of included factors for each of the environment and the driver, first considering equal
weights. The distribution of the three factors (i.e., human, vehicle, and environment) has
been shown to be 95.4%, 14.8%, 44.2% according to previous studies [36]. Accordingly, if
we scale these values, we obtain the following percentages of 61.79%, 9.59%, 28.63%, for the
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driver, vehicle, and environment, respectively. Therefore, the final adjustment coefficient
considers the weighted values of the environment and human drivers, whose weights are
28.63% and 61.79%. The proposed impact factors described above (and which would affect
the adjustment coefficient) are listed in Table 2. The adjustment coefficient of each impact
factor ranges from —4.5% to 0 since the updated thresholds of the dangerous phase should
not be less than the original speed limit value. Several important criteria, including the
impact of factors on traffic safety and the ranking of factors contributing to crashes, are
integrated synthetically to determine the adjustments coefficient of each factor.

Table 2. Impact factors for each one of risk factors under ideal conditions.

Items Factors Adjustment Coefficient
clear 0
Web_weather zilcr)lw _2802
frost —2.0%
Environment Wiper_weather W%per_on —3.0%
factors wiper_off 0
Risky hours driving in risky hours 00:00 a.m.—05:00 a.m. —3.0%
daytime 0
Time_indicator dusk —2.0%
night time —2.5%
No tired (KSS < 5 or Driving_duration < 4.5 h) 0
Fatigue Tired (6 < KSS <7 or (4.5 h < Driving_duration <6 h)) —2.5%
Human factors very tired (KSS > 8 or Driving_duration > 6 h) —4.0%
Distraction Not distracted 0
Distracted —4.5%

4.4. Fatigue Warning Algorithm

The proposed real-time fatigue warning algorithm includes three warning levels based
on the Karolinska Sleepiness Scale (KSS) score and the driving duration indicators. The
three levels of warning are for the normal phase, the dangerous phase, and the avoidable
accident phase. The KSS score uses three scores to determine the level of fatigue warning,
while the driving duration indicator utilizes two thresholds (i.e., T1, T2) to divide the level
of the fatigue warning. It is noted that, in this paper, fatigue is defined as the inability to
continue with a task that has been continuing for too long [37] and can be influenced by
monotony, workload, and task duration. The proposed fatigue warning strategy for drivers
is developed as follows (Algorithm 3):

Algorithm 3. Fatigue Warning Framework

At any time instant ¢:

Warning Generation Sub-System:

if KSS(t) & Driving_duration(t) is missing then
warning_fatigue = —1

end

If KSS(t) < 5 or Driving_duration(t) < T1 then
warning_fatigue =1

end

If 6 < KSS(t) < 7 or T1 < Driving_duration(t) < T2 then
warning_fatigue =2

end

If KSS(t) > 8 or T2 < Driving_duration(f) then
warning_fatigue =3

end
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Algorithm 3. Cont.

Threshold Update Sub-System:
T1=3h

T2=45h

If driver is not a professional driver
T1=T1x 09

T2=T2 %09

end

If gender == female then
T1=T1 x 0.95

end

If Age > 60 then

T1=T1 x 0.9

T2=T2 x 0.9

end

The initial thresholds (i.e., T1 and T2) are 3 h and 4.5 h, respectively, partially since
professional drivers have to take an uninterrupted break of at least 45 min after a driving
period of 4.5 h according to the European Union. These two thresholds can be further
updated according to gender and age of drivers when taking into account that older drivers
and female drivers are potentially less fit physically. Therefore, 0.95 is used to slightly
update the thresholds for female drivers and 0.9 is applied to update slightly the thresholds
for old drivers whose age is higher than 60 years.

4.5. Warning Visualizations

This paper also presents the warning visualizations for the different warning types
of proposed warning algorithms. Tables 3 and 4 listed warning visualizations for the
proposed warning algorithms. There are three levels for the fatigue warning strategy.
Auditory alarms and increased pitch auditory alarms are applied for the dangerous phase
and the avoidable accident phase to warn drivers. In addition, there are four levels for
headway warning, over-speeding warning and illegal overtaking warning algorithms.
Yellow (visual) and auditory alarms are applied for the avoidable accident phase to warn
drivers. Red and increased pitch auditory alarms are applied for the unavoidable accident
phase to warn drivers to take measures immediately, such as reducing speed, and reducing
the heading degree.

Table 3. Warning visualizations for proposed headway warning, over-speeding warning and fatigue
warning algorithms.

Warning Levels

Headway Warning Over-Speeding Warning Fatigue Warning

Normal phase

A green car A speed limit sign with the No interventions
current speed value in green.
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Table 3. Cont.
Warning Levels Headway Warning Over-Speeding Warning Fatigue Warning
Dangerous phase A yellow car with the time A speed limit sign with the A yellow coffee symbol

headway value in yellow.

current speed value in yellow.

@83

with the current driving
duration value in red and
auditory alarms.

¢

\ J

—

Avoidable accident phase

A red car with the time headway

value in red and auditory alarms.

A speed limit sign with the
current speed value in red and
auditory alarms.

A fatigue warning sign
with increased pitch
auditory alarms

Unavoidable accident phase

A red car with the time headway
value in red and increased pitch
auditory alarms.

A speed limit sign with the
current speed value in red and
increased pitch auditory
alarms.

Note that the headway warning is triggered when the headway < 4.0 s, the over-speeding warning is triggered
when the speed > speed limit values—20 km/h.

Table 4. Warning visualizations for the proposed illegal overtaking warning algorithm.

Warning Types

Description

Illustration Example

Normal phase

An overtaking warning sign.

Dangerous phase

An overtaking warning sign with a duration limit sign of the left-turn
signal light on (i.e., 3 s), a flashing left turn sign and the current duration

value of the left-turn signal light on in yellow.

An overtaking warning sign with a duration limit sign of the right-turn
signal light on (i.e., 3 s), a flashing right turn sign and the current duration

value of the right-turn signal light on in yellow.
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Table 4. Cont.

Warning Types

Description Illustration Example

Avoidable accident phase

An overtaking warning sign with a duration limit sign of the left-turn
signal light on (i.e., 3 s), a flashing left turn sign, the current duration value
of the left-turn signal light on in red and auditory alarms.

IJQ

=

An overtaking warning sign with a duration limit sign of the right-turn
signal light on (i.e., 3 s), a flashing right turn sign, the current duration
value of the right-turn signal light on in red and auditory alarms.

D@B
B

An overtaking warning sign with an acceleration limit sign, the current
acceleration value in red and auditory alarms.

B

Unavoidable accident phase

An overtaking warning sign with a heading degree limit sign and the
current heading degree value in red and increased pitch auditory alarms.

1 [

B

5. Algorithm Validation
5.1. Driving Simulation Test

This study implements the warning algorithms in a driving simulator to further test
whether they can output the expected warnings. The driving simulator is the Cockpit
Sim that carefully recreates the feeling of driving a real vehicle by using authentic vehicle
parts and equipment. The 3 x 50 inch, 130° FOV visual system provides a realistic, high-
resolution driving view. Additionally, its size is not big and it can fit inside an office room;
Figure 5 presents the driving simulator set-up used for this experiment. While theoretically
different warnings could be activated at the same time, the set-up in place only displayed
one warning at a time; if more than one were activated, one warning would override the
other, in order to prevent driver disturbance.

The driving simulator uses the STISIM Drive 3 software, which features an open
architecture and can be programmed according to specific requirements. STISIM Drive® is
the result of over 40 years of driving simulation research. It is used by over 500 universities,
government agencies, medical facilities, training centers and corporations worldwide.

A highway without speed limits was created for testing the headway warning, illegal
overtaking warning, and fatigue warning strategies. The highway has three lanes in each
direction and lane width of 4.0 m. The total length of the highway section is 3.6 km. A
rural road whose speed limits are 50 km/h and 70 km/h was also created to test the
over-speeding warning strategy. It has two lanes in each direction and the lane width is
also 4.0 m. The total length of the rural road is 4.4 km.
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Figure 5. The driving simulator set-up (own figure).

5.2. Results

Figure 6 shows the changing of time headway and headway thresholds according to
the adaptive headway warning algorithm. It should be noted that the driver was asked
to have more braking actions to have more situations to update the threshold and test the
algorithm. In real-word driving, there would not be such highly frequent braking behavior.
Additionally, the updating based on the fatigue and the distraction are not included since
the parameter needs to be further identified by the data-driven analysis. In this test, a; was
found to be 0.05 and a5 0.06.

The green, yellow, magenta and red are for the normal phase (headway > 2.5 s),
dangerous phase (updated threshold for AA phase < headway < 2.5 s), avoidable accident
(AA) phase (0.6 s < headway < updated threshold for AA phase) and unavoidable accident
phase (headway < 0.6 s), respectively. We can find that the updated threshold is changing
over the occurrence of braking situations between 1.0 s and 2.0 s. The braking action in the
dangerous phase will make the threshold lightly bigger in the dangerous phase based on
Equation (1) and the bigger a; is, the bigger the improvement is. On the contrary, the low
deceleration action in the avoidable accident phase will make the threshold lightly smaller
based on Equation (2) and the bigger a5 is, the bigger the decrease is.

Figure 7 illustrates a test example of the real-time illegal overtaking warning algorithm.
The lateral position is the vertical distance to the center of dividing lines. The lateral
velocity (vj,;) and lateral acceleration (a;,;) are the vertical components of the velocity and
acceleration (a), respectively. The positive values are shown in the right direction while
the negative values in the left direction. The heading degree (f) is the angle between the
vehicle head and the lane marker stripe. The positive heading degree () presents that the
vehicle heads to the right direction with respect to the direction of the lane marker stripe.
The negative heading degree (6) presents that the vehicle heads to the left direction with
respect to the direction of the lane marker stripe. The green, yellow, magenta and red are
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for the normal phase, dangerous phase, avoidable accident phase and unavoidable accident
phase, respectively. The blue curve presents the acceleration threshold. It is labeled as the
avoidable accident phase (i.e., magenta) when the acceleration is higher than the threshold.

4.0 . . .
Thresholdifor dangerous phas

3.0 i
O
25 o .
% Updated threshold for AA phase
®20F .
e
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Unavoidable accident phase

Figure 6. A test example of the adaptive headway warning algorithm (a; = 0.05, a; = 0.06).
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Figure 7. A test example of the real-time illegal overtaking warning algorithm.
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By comparing the lateral velocity (v;,;) and the heading degree (8), we find that their
curve tends are the same and that they have the same sign at the same location. The
lateral velocity reduces or increases with the decrease or improvement of the heading
degree. These two indicators achieve local extreme points (e.g., maximum, minimum,
and zero) at the same location. On the contrary, the curve tends of the lateral velocity
(v14) and the lateral acceleration (a;,) are not the same. The lateral velocity achieves local
maximum or minimum values when the lateral acceleration is zero temporarily. According
to the lateral position, we can find that there are five overtaking moves in Figure 7. An
overtaking move includes a preparation phase, a lane-changing phase, a passing phase,
and a lane-returning phase. In the lane-changing phase, the heading degree (6) and the
lateral velocity (vj,;) firstly starts to reduce until a negative local minimum value, and then
increases until around zero. Meanwhile, the lateral acceleration (a,;) firstly starts to reduce
until a negative local minimum value, and then increases until a positive local maximum
value, and then reduces to around zero. In the lane-returning phase, the heading degree ()
and the lateral velocity (vj,) firstly starts to increase until a positive local maximum value,
and then increases until around zero. Meanwhile, the lateral acceleration (a;,;) firstly starts
to increase until a positive local maximum value, and then reduces until a negative local
minimum value, and then improves to around zero. The start and end of their travelled
distances of each overtaking move in Figure 7 are approximately (200 m, 645 m), (645 m,
930 m), (930 m, 1250 m), (1425 m, 1803 m) and (1803 m, 2384 m).

In Figure 7, some parts of the lane-changing phase and the lane-returning phase in the
first overtaking move are labelled as the unavoidable accident phase (i.e., red) since the
absolute value of their lateral velocities is too big. Similarly, some parts of the lane-changing
phase in the second and fifth overtaking move are also labelled as the unavoidable accident
phase (i.e., red). Since the lateral velocity mostly depends on the heading degree and
velocity, it is therefore important to control the maximum value of the heading degree
during the overtaking move.

Figure 8 illustrates a test example of the real-time over-speeding warning algorithm.
The green, yellow, magenta, and red are for the normal phase (speed < threshold for
dangerous phase), dangerous phase (threshold for dangerous phase < speed < threshold
for AA phase), avoidable accident (AA) phase (threshold for AA phase < speed < threshold
for UA phase) and unavoidable accident (UA) phase (speed > threshold for UA phase),
respectively. There are four kinds of driving conditions. They are, successively, a clear
condition without the fatigue and distraction (time: 0-630.90 s), a night condition without
the fatigue and distraction (time: 630.95-1230.05 s), a rainy night condition with a phone
distraction (time: 1230.10-1840.75 s), and a rainy condition with a phone distraction (time:
1840.80-2500 s). According to Table 2, the adjustment coefficients is calculated (see Figure 8)
and then the thresholds are updated with the help of the real-time over-speeding warning
algorithm. Meanwhile, the speeding warning is provided in real time based on the current
speed and thresholds.



Safety 2024, 10, 10

18 of 21

Speed (km/h)

Speed limit (km/h)

Adjustment coefficient

120

—
B (o)) o o
o (@) o o

N
o

80
70
60
50
40

-0.01

-0.02

,,,,,,,,,,,,,,,, Threshold for UA phase
7777777777777777 Threshold for AA phase

T T T T

Threshold for dangerous phase

500 1000 1500 2000 2500
Time (s)

Figure 8. A test example of the real-time over-speeding warning algorithm.

Figure 9 illustrates a test example of the real-time fatigue warning algorithm. The
green dashed line, yellow dotted line, and magenta solid line are for the normal phase,
dangerous phase, and avoidable accident phase, respectively. The different levels of
the fatigue warning are provided in real time with the change in the KSS and driving
duration. It is noted that the first and second thresholds of the driving duration are
3x0.95x09=2565h,4.5 x 0.9 = 4.05 h, respectively, since this is a non-professional
young female driver. Therefore, it is identified as the dangerous phase (yellow) when
the driving duration is greater than 2.565 h even though the KSS is still 5. Moreover, it is
identified as the avoidable accident phase (magenta) during the 3.6 h and 4.05 h driving
duration since the KSS is 8.
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Figure 9. A test example of the real-time fatigue warning algorithm.

6. Conclusions

This paper proposed adaptive algorithms that could be automatically updated for
each of headway monitoring, illegal overtaking, over-speeding, and fatigue based on
real-time traffic environments and driver status, capturing thereby driver diversity and
changing parameters, and filling the gap of existing deterministic and fixed-thresholds
algorithms. Accordingly, this paper developed an integrated ADAS including the four
above-mentioned warnings. These warning algorithms can fine-tune the thresholds based
on real-time traffic environments and driver status, considering important contributing
factors such as weather, environment, risky hours, time of the day, fatigue, distraction, and
drowsiness, etc. Additionally, the proposed real-time illegal overtaking warning integrates
the consideration of the lateral-orientation, safety, and instantaneous accelerations. In this
work, we also visualized the change in max values of heading degree, latitude distance
and current speeds over time in the lane-changing phases for different initial speeds.
Furthermore, we implemented these warning algorithms in a driving simulator and further
tested them. The results showed that this ADAS can provide the real-time warning of
proposed warning algorithms. These algorithms are robust since both contextual and
operator status variables are incorporated. The findings of this work are essential as they
provide the exploratory simulation work needed to evaluate the behavior of different
algorithmic possibilities and threshold values for the definition of a Safety Tolerance
Zone [23] for different in-vehicle real-time warnings in preparation of final choices made in
the real-world driving trips. Also, the results of this paper can be a potential framework of
ADAS or in-vehicle real-time warning algorithms for industrial application.

Even though this paper promotes the improvement of ADAS largely, it does not come
without limitations. While ADASs aim to assist and improve driving behavior, it is essential
that future research considers the possible impact that such in-vehicle systems might have
on driving behavior, as they might inflict themselves distraction on drivers, as previous
research indicates [38]. With regard to the algorithm testing, due to cost and resource
limitations and since the main paper objective was to develop the adaptive algorithms,
these were only validated with tests driven by the authors themselves. Future research
could look into extending the testing to a larger-scale experimental set-up, confirming the
behavioral improvement resulting from the proposed algorithm (it is important to note
that the algorithms proposed in this paper are different than the ones described in [39]).
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Finally, some important parameters also require to be trained and calibrated with the help
of sensor data from different drivers in the real-world vehicle environment.
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