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Abstract: Multiple automatic guided vehicles are widely involved in industrial intelligence. Path
planning is crucial for their successful application. However, achieving robust and efficient path
planning of multiple automatic guided vehicles for real-time implementation is challenging. In this
paper, we propose a two-layer strategy for multi-vehicle path planning. The approach aims to provide
fast computation and operation efficiency for implementation. The start–destination matrix groups
all the vehicles, generating a dynamic virtual leader for each group. In the first layer, the hybrid A*
algorithm is employed for the path planning of the virtual leaders. The second layer is named leader–
follower; the proposed Weight-Leader-Vicsek model is applied to navigate the vehicles following
their virtual leaders. The proposed method can reduce computational load and achieve real-time
navigation by quickly updating the grouped vehicles’ status. Collision and deadlock avoidance is also
conducted in this model. Vehicles in different groups are treated as dynamic obstacles. We validated
the method by conducted simulations through MATLAB to verify its path-planning functionality
and experimented with a localization sensor.

Keywords: path planning; Vicsek model; leader–follower; hybrid A*; multiple automatic guided vehicles

1. Introduction

With the development of robotic technologies, mobile robots are implemented in com-
merce and industry. Automated Guided Vehicles (AGVs) enhance transportation efficiency
with less cost [1,2]. They are utilized in the industry as a part of industrial intelligence,
intelligent logistics, and intelligent factories [2,3]. AGVs comprise the industry’s unit load
vehicles, towing vehicles, forklifts, and pallet trucks [4]. AGVs are applied to diminish
labour costs and improve safety for the high demands in a production environment [5,6].
Servo handling systems, warehousing systems, logistics, and storage industries employ
AGVs in various areas [6,7], including transportation, transhipment, distribution, and
material handing in manufacturing [8].

AGVs can transfer products at high speeds in a chaotic situation. They are imple-
mented in production lines with flexible development in modern manufacturing, incorpo-
rating automated intelligent control systems [4,6,9]. With sensors’ help, detecting obsta-
cles and automatically eliminating problems ensure the intelligence and adaptability of
AGVs [6]. AGV navigation in the industrial environment usually implements the fixed line
or the coupled approach, which adapts the single-robot navigation methods. It lacks the
flexibility and the possibility of real-time implementation. It has highly demanded that
AGV have a quick and flexible route setting and adapt to the dynamic environment. The
motivation of this study is to provide fast computed path planning with flexibility and
scalability for multi-AGV systems, addressing most situations.

This paper introduces a new algorithm for this purpose. Its main contribution is
as follows:
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• A novel path-planning approach for multi-AGV systems based on the improved Vicsek
model with a leader–follower structure. The bio-inspired approaches are widely used
in multi-robot path planning. The Vicsek model is adapted for this case because the
AGVs aim to move as a swarm operation and provide quick computation for the
entire system.

• Offering the fast path setting for multiple AGVs in one calculation step, which differs
from the other path-planning algorithms that repeat the algorithms for every robot.

• For real-time implementation, it provides faster computation and adaption to
the environment.

Instead of navigating all the AGVs directly, a set of virtual leaders is introduced in
the AGV swarms to navigate all the AGVs, combining search and intelligent algorithm
advantages. Biological patterns and the leader’s principle are the main concepts in this
model, and it integrates the coupled and decoupled approach. The hybrid centralized
decentralized is proposed for determining the leader’spath while providing flexibility
for AGVs. Each AGV follower collects data from its neighbours and is led by the virtual
leaders without the restriction of the current group. One of the significant advantages of
the proposed multi-AGV path-planning system is that it requires less computational load
for real-time implementation.

The Leader-Vicsek model was published in [10], and this paper is an extension. The
published paper introduces the concept of the novel Weight-Leader-Vicsek model, but it
uses simple, straightforward path planning for the leader and traditional Vicsek update
equations for followers. Nevertheless, this paper uses a dual layer to improve the model
as an enhanced Weight-Leader-Vicsek model (WLVM). It generates the dynamic virtual
leader by the hybrid A* algorithm and uses a start–destination matrix to determine the
swarms’ integration, and collision avoidance is achieved by priority. Also, the followers’
position and angle updates are improved by adding the weight for the average angle and
considering the current leader’s angle. The simulations are conducted in a new scenario,
and WLVM is compared with other algorithms.

This paper offers a multi-AGV path-planning approach for optimizing automatic
transportation in commercial or industrial warehouses. The paper is organized as follows.
Section 2 reviews path-planning algorithms and the multi-AGV navigation approaches.
Weight-Leader-Vicsek model is proposed in Section 3 for multi-AGV path planning and
navigation. Experiment results are demonstrated in Section 4 to validate the approach, and
the conclusion is in Section 5.

2. Related Work

The Automatic Guided Vehicle (AGV) plays a crucial role in the intelligent trans-
portation system. AGVs are the primary automated equipment that carry materials and
process unmanned distribution and sorting in an unmanned storage environment [11].
Path planning has been the most crucial consideration of mobile robot navigation, which
plans the path from the start to the target for mobile robots [3].

Obstacle avoidance functions must be developed to operate AGVs when considering
dynamical limitations and dynamical safety [1,12]. Meta-heuristic-based methods [13],
graph search-based methods [2,14], mathematical optimization-based methods [1], and
potential field and navigation-based methods [15] are the four main categories for naviga-
tion algorithms.

Additionally, adapting the classic graph search algorithm is implemented widely for
AGV path planning, such as the A* and Dijkstra [16]. The limitation of the improved A*
algorithm is that the path cannot be guaranteed optimal and is conducted under simulation.
Different algorithms can be combined; for example, the Dijkstra algorithm is for initial
static path planning, and the virtual potential function algorithm is for dynamic path
planning [17]. The drawback of this study is that static or dynamic obstacles have yet
to be tested in real-life testing. Sampling-based methods are also significant for single
AGV path planning, such as the Voronoi graph and rapidly exploring random trees (RRT)
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methods [18]. Future research on the improved RRT must combine obstacle avoidance and
data-driven path planning.

The mathematical optimization-based approach also consists of open-loop and closed-
loop strategies [1]. A nonlinear model predictive control (MPC) algorithm has been pro-
posed for large-size AGVs with onboard LIDAR sensors and a 14 DoF vehicle dynamics
model [1]. Artificial potential field (APF) methods [19] and the probabilistic road map [20]
are also proposed for motion planning. The limitations of these studies include vehicle
control, moving obstacles, and real-time implementation.

The AGV path-planning algorithms introduced above are mainly focused on indi-
vidual AGVs. For the venues with multiple AGVs operated simultaneously, the dynamic
environment due to other AGVs and people needs to be handled safely and efficiently.

Multi-AGV systems have become more popular because of their powerful task-solving
complexity, continuous operation, reduced maintenance and operational costs, and broad
convergence, flexibility, and versatility [21,22]. Multi-AGV optimization scheduling can
improve the logistics transportation system structure and system operation efficiency and
reduce transportation costs [23,24].

Finding the best path quickly and avoiding collision is worth studying in an AGV
operation [25]. AGVs obtain the paths from the multi-AGV scheduling system, and they
sense the surroundings independently and communicate with others by sending poses [26].
AGVs are usually guided by optical, electromagnetic, and laser navigation technologies
or combinations of them, following the arranged path and avoiding collisions [27]. The
research on multi-AGV routing can be classified as semi-dynamic, fully-dynamic, and static
routing [28].

Vehicle dispatching, positioning, vehicle routing, scheduling, and collision and dead-
lock avoidance are considered for designing vehicle transportation systems [29]. Current
multi-AGV systems commonly implement the centralized control architecture to perform
tasks, such as motion coordination, mission allocation, and path planning [30]. The cen-
tralized control system is referred to as the warehouse management system (WMS) [31].
However, each AGV plans its path for the distributed approaches and resolves deadlocks
or collisions by communicating with its neighbours. Vehicle autonomy and distributed
computation are characteristics of decentralized methods [21].

Moreover, a decentralized approach for determining the shortest paths and motion
coordination based on nonholonomic vehicle constraints is presented in [21]. It needs to
consider the other vehicles’ motion plans or locations in future work. A regional control
model is introduced for distributed control for the multi-AGV system in [32] to minimize
the complexity of scheduling issues. The limitations are related to real manufacturing
companies and distributed control mechanisms.

An ant-agent optimized by a repulsive potential field is developed to combine central-
ized and decentralized control and avoid path conflicts with stability and efficiency [28].
The approach’s limitations are that it cannot determine whether the method is optimal or
considers the working condition of AGV. A multi-AGV path-planning method improves
ant colony algorithms according to prioritized planning, considering battery management
in [33] as a decentralized algorithm, whereas it only uses simulation to verify the results.

The metaheuristic algorithms are widely used for optimization problems for AGV
systems, such as task allocation [24] and path planning [34]. Multi-agent path-planning
algorithms can be divided into rule-based, search-based, and learning-based [35]. Rule-
based algorithms use mature solutions for path planning by transferring the problem to
other problems; search-based algorithms implement heuristic search algorithms and are
classified as decoupled search, and coupled search algorithms [36], and learning-based
algorithms obtain optimal solutions from suboptimal solutions [35].

A multi-AGV probabilistic time-constrained path-planning algorithm is also based on
the A* heuristic algorithm with dynamic stochastic network theory in [22]. An improved A*
path-planning algorithm is introduced for a grid-shaped network, ensuring the locating and
execution of motion commands [25]. The unidirectional directed graph method combined
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with the A* algorithm for AGV path planning in a multi-AGV scheduling system is pre-
sented [37]. The limitations of these improved A* algorithms consist of the iterative update
whichis not adaptive of path arc time consumption [22], lacking experiments [22,25,37],
dynamic scheduling algorithms, or path optimality [37].

Heuristic information and elastic time window are considered in the improved ant
colony algorithm [38], and the conflict resolution strategies are based on the priority of AGV
task scheduling. The drawbacks of the algorithm include transportation equipment, actual
operation, and path conflict. A hybrid genetic algorithm-particle swarm optimization is
proposed for multi-AGV path planning with a fuzzy logic controller in [36], combining
scheduling and path planning. The shortcoming focuses on dynamic real-time scheduling
in a large-scale system. A genetic algorithm is improved to consider the highest charging
utilization rate and the shortest path to plan the optimal path for multi-AGV, whereas it
lacks real operation [11].

Deadlock avoidance is the primary consideration during multi-AGV path planning.
Nodes describe the physical locations, whereas the grids are independent spaces in the en-
vironment [23]. The node-based coordination strategies strictly avoid the AGVs occupying
a common node. The authors of [23] propose deadlock strategies by combining nodes and
grids, and future work will be integrated with a distributed framework for scalability. A
structural online control policy is proposed for multi-AGV deadlock resolution based on
analyzing the system as discrete events [39]. The topological graph and roadmap work for
the AGVs’ subsequent coordination by local negotiation and shared resources as a holistic
approach in industrial warehouses [40]. The shortcomings focus on the task allocation
mechanism and real factors of the graph weights.

However, the multi-agent algorithms plan the path independently and lack consid-
eration of moving obstacles and real-time implementation. Most evolution-based and
swarm-based algorithms are bio-inspired, and the biological pattern is considered when
developing the new algorithm. This paper proposes a Weight-Leader-Vicsek model algo-
rithm, which incorporates the advantages of decentralized and centralized approaches.
Each AGV collects data from relevant AGVs, determines its path, and achieves collision
avoidance. At the same time, a central decision-maker assigns the multi-AGV groups and
virtual leaders for the defined groups. AGV control variables can be gained with faster
computational speed and less complexity. This model provides path-planning functionality
simultaneously for grouped AGVs and treats each group as different swarms.

3. WLVM with Virtual Leaders and Weight
3.1. Preliminary Knowledge: Vicsek Model

The Vicsek model is introduced for particles with biologically motivated interaction
with self-ordered motion and is proposed in [41]. The Vicsek model can be expressed by
(1) and (2), and the algorithm is shown in Algorithm 1. Biological subjects spin in the same
direction and move as their neighbourhood for interaction in an L ∗ L square region [41,42].
For a multi-agent system, the Vicsek model has been improved by taking a fixed number
of neighbours and a percentage of neighbours into account as the remote neighbours’
strategy [43]. The hierarchical Weighting Vicsek model is proposed for flocking navigation,
and it assigns different layers for the drones with weights to enhance the convergence
speed, analyzing the involved parameters [44].

xi(t + 1) = xi(t) + vi(t)∆t (1)

θi(t + 1) = 〈θ(t)〉r + ∆θ (2)

where xi(t + 1) is the location of the particle i, the velocity vi is gained through an absolute
velocity, and the angle is represented by θi(t + 1). 〈θ(t)〉r represents the average angle of
the neighbouring particles within a circle with radius r. ∆θ denotes a random number from
[− η

2 , η
2 ] as noise.
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Algorithm 1: Vicsek model

1 Initialize parameters
2 for time← 1 to timemax do
3 Calculate averageTheta
4 x ← x + vel ∗ cos(theta) ∗ dt
5 y← y + vel ∗ sin(theta) ∗ dt
6 theta← averageTheta + noise
7 end

3.2. Problem Statement

The basic components of AGV path planning include the start, the target, and the
environment. Path planning aims to generate the path from the start to the target without
collisions. Figure 1 indicates an example of AGV path planning. As the occupancy map, the
map uses the binary number to represent the locations in a 2D space. It can be transformed
into a grid map or nodes for performing the heuristic or other path-planning algorithms.
The obstacles or the walls are annotated in black.

Figure 1. Path planning in the map.

The AGV is supposed to move from the start to the target, and green points demon-
strate the path points. The obstacles or walls are treated as static obstacles, and the
generated path should not be overlapped with the static obstacles. The path points are
represented by rk

1, rk
2, . . . , rk

n. r is the position of the current iteration k for nth AGV, and rk
n

is (xk
n, yk

n).
Collision and deadlock avoidance are necessary for the multi-AGV system. Each AGV

is assumed to communicate with other AGVs treated as dynamic obstacles. The deadlock
of AGVs should be avoided for great system performance, and the adjusting progress is
based on priority. The adjusted position of AGV n is represented by rn−new.

3.3. Algorithm Description
3.3.1. Overview

WLVM is proposed for a multi-AGV path-planning algorithm to improve the Vicsek
model because the Vicsek model cannot achieve practical path planning in the industry.
WLVM assigns the virtual leaders to collaborate with the grouped AGVs and guide the
followers to reach their destinations, considering collision avoidance.
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Figure 2 describes the process of WLVM. According to a real industrial environment,
the storage map is generated. Points represent the map; 0 is open space for movement,
whereas 1 represents the wall or obstacles. The number of AGVs, velocities, angles, and
locations are set for model initialization. The AGVs are divided into swarms based on
their locations and destinations with assigned virtual leaders. The positions and angles
of virtual leaders are computed by the hybrid A* algorithm. The follower-AGVs use the
status of the leader in the current group to obtain the average angle within the defined path
for WLVM. The AGVs implement a segment delay function to be separated by a certain
distance for optimal arrangements. The AGVs avoid vehicle congestion and deadlock.
Ref. [10] presents the design of the model for the AGV system.

Figure 2. WLVM process.

Table 1 saves the positions and angles of each swarm during the path-planning process.
N stands for the number of the AGVs, and Virtual Leader represents the leader in the
group. WLVM saves the positions and angles for follower-AGVs and virtual leaders in
each iteration and is used for further updating.

Table 1. AGV navigation data in the same group.

Iteration AGV 1 AGV 2 · · · AGV n Virtual Leader

1

x1
1

y1
1

θ1
1

 x1
2

y1
2

θ1
2

 · · ·

x1
n

y1
n

θ1
n

 x1
L

y1
L

θ1
L


2

x2
1

y2
1

θ2
1

 x2
2

y2
2

θ2
2

 · · ·

x2
n

y2
n

θ2
n

 x2
L

y2
L

θ2
L


...

...
...

...
...

...

k

xk
1

yk
1

θk
1

 xk
2

yk
2

θk
2

 · · ·

xk
n

yk
n

θk
n

 xk
L

yk
L

θk
L



3.3.2. Dynamic Virtual Leader

Dynamic virtual leaders are implemented in WLVM for shorter paths, faster con-
vergence, and more accurate direction for planning the path to arrive at the destination.
Each multi-AGV group has one virtual leader. Figure 3 demonstrates the principle of
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the dynamic virtual leader. When a new AGV joins the current group, the AGVs of the
multi-AGV group will treat it as part of the current group, and the group dynamically
generates the virtual leader. The virtual leaders are generated in a static environment.
When the AGVs aim for different areas, the start–destination matrix makes the separation,
which refers to Section 3.3.3.

Figure 3. Principle of WLVM.

The positions for each AGV are calculated by (3). The equations for calculating the
angles for follower AGVs are as (4).(

xk+1
i

yk+1
i

)
=

(
xk

i
yk

i

)
+ v∆t ·

(
cosθk

i
sinθk

i

)
(3)

θk+1
i = ω1 · arctan

〈
sin(θk

i )
〉

p〈
cos(θk

i )
〉

p

+ ω2 · θk+1
l + ηk

i (4)

where the average direction arctan
〈sin(θk

i )〉p

〈cos(θk
i )〉p

is estimated along the path p, and the travel

distance is represented by v∆t. ηk
i denotes the noise. w1 is a random number in (0, 1), and

the sum of w1 and w2 is 1. The swarm only considers the AGVs in the defined path in the
same direction. The hybrid A* algorithm is integrated to calculate the position and angles
for virtual leaders, and θk+1

l denotes the angle of the leader in the current iteration. It is
adapted for multi-task implementation for virtual leaders.

When an AGV joins a new group, the virtual leader of that group will change if the
AGV’s destination aligns with the group’s destination. If not, the group’s structure and
leader remain unchanged. The leaders are predefined, while the followers keep gaining
statuses from the neighbourhoods and then updating their status. It provides the possibility
of real-time implementation.

For virtual leaders, angles and positions are generated by the hybrid A* algorithm,
and the pseudo-code is indicated in Algorithm 2. A* is a widely used graph traversal
algorithm because of optimal efficiency and completeness [45]. The hybrid A* algorithm is
proposed in [46], which guarantees kinematic feasibility and continuous nature [47]. The
heuristics are the maximum non-holonomic-without-obstacles and obstacle map, ignoring
the nonholonomic nature [46]. The MATLAB navigation toolbox has the function for the
hybrid A* algorithm.
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Algorithm 2: Hybrid A*

1 Initialization of openset, closeset
2 openset.push(start)
3 while openset is not empty do
4 xcurrent ← openset.popMinCostNode
5 if exists RS path then
6 return the path
7 end
8 for xnext calculated by kinematic equation do
9 Collision avoidance

10 if xnext not exists in closeset then
11 g← g(xcurrent) + l(xcurrent, xnext)
12 if xnext not exists in openset or g < g(xnext) then
13 g(xnext)← g
14 h(xnext)← Heuristic(xnext, xgoal)

15 Pred(xnext)← xcurrent
16 if xnext not exists in openset then
17 openset.push(xnext)
18 else
19 openset.update(next node)
20 end
21 end
22 end
23 end
24 end

The hybrid A* and WLVM combination is shown in Figure 4, and the proposed WLVM
is in Algorithm 3. The leaders are generated for each swarm, and they are unique. For the
generated path for followers, the path needs to be smooth by the Spline curve for AGVs to
operate. The leaders will be regenerated if the environment or group formation changes.
The statuses of AGVs are defined as (5). The statuses of AGVs are dynamically assigned
based on their roles in the current swarm. Once the AGV arrives at the destination, the
status is −1.

status =


1, if leader

0, if f ollower

− 1, if arrives

(5)

Figure 4. Dual layer of WLVM.
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Algorithm 3: WLVM.
Data: x, y, leaderStart, leaderTarget

1 Initialize parameters
// n - the number of particles

2 n← size(x, 2) + 1
3 dt← 1
4 change← 1
5 x ←

[
x leaderStartx

]
6 y←

[
y leaderStarty

]
7 theta← zeros(1, n)
8 for i← 1 to n do
9 theta(i)← leaderStarttheta

10 end
11 while change > 0 do
12 change← change− 1
13 for each changed swarm do

// getting the positions and angles for the virtual leader
14 [LeaderPos, LeaderAngle]← HybridAstar
15 for time← 1 to timemax do
16 Calculate averageTheta
17 x ← x + vel ∗ cos(theta) ∗ dt
18 y← y + vel ∗ sin(theta) ∗ dt
19 theta← w1 ∗ averageTheta + w2 ∗ leaderAngle(time) + noise
20 Smoothen path
21 Deadlock and collision avoidance
22 end
23 Segment delay
24 end
25 Swarm evaluation
26 if swarm changes then
27 change← change + 1
28 end
29 end

3.3.3. Start–Destination

WLVM can handle the multi-agent motion directed to different areas, as shown in
Figure 5. The start–destination matrix is saved in Table 2. It assigns the multi-AGV
groups, determines each group’s destination, treats them as other swarms, and does
not integrate them. M stands for the number of leader-AGVs, which is much less than
the number of follower-AGVs. Start and Destination represent each leader’s origin and
destination locations.

Figure 5. Groups with a different direction.
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Table 2. Start–destination matrix.

Virtual Leaders

Location Leader1 Leader2 · · · LeaderM

Start Start1 Start2 · · · StartM
Destination End1 End2 · · · EndM

Keep updating positions and directions within the defined group based on the des-
tination flag. When AGVs are in operation, they only consider the AGVs along the path
in the same direction. Even if the other path with a different direction is closer, the AGVs
would not be generated. It only concerns the AGVs on the current path.

3.3.4. Segment Delay

The proposed WLVM enables AGVs to travel as a swarm and reach the target, which
results in inefficiency for loading and unloading, so segment delay is introduced to solve
this problem. Segment delay allows for the spacing of AGVs to avoid them arriving
simultaneously. This facilitates organized loading and unloading operations. Figure 6
indicates the operation of segment delay, and it sets segment delay as two segments. Each
AGV follows the defined path with a different segment delay for departure in each swarm.
The segment delay is set as five segments in the computational experiments to provide the
buffer area among AGVs.

Figure 6. The positions after setting segment delay as two segments.

3.3.5. Collision Avoidance
Obstacle Avoidance

Collision avoidance is necessary during the updating iterations to keep AGVs safe.
There usually are some obstacles on the map in the practical implementation, so collision
avoidance with the obstacles should be achieved. Collision avoidance of the virtual leaders
is achieved by the hybrid A* algorithm. The follower-AGV utilizes the leader angle in the
next iteration to determine the direction of the movement.

Figure 7 demonstrates the movement of the AGV. Each obstacle or wall sets the buffer
area as 1m. The leader angle θ indicates the movement of the path, and AGV is represented
by i. If a path point represented by ri(xi, yi) overlaps with the buffer area or the restricted
area as the obstacles, it requires adjusting positions. The steps for achieving obstacle
avoidance are as follows.
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Figure 7. The AGV’s new position after collision avoidance.

First, comparing θ with 0. If θ ≥ 0 means the path is aimed to move upper/forward,
then yi = yi + vy∆t. Although θ < 0 means the path moves lower, then yi = yi − vy∆t. The
AGVs follow the dotted line to change the Y locations. Second, comparing θ with π

2 or −π
2 .

If θ ≥ π
2 means the path is aimed to move left, then xi = xi − vx∆t. Although θ ≥ −π

2 ,
which means the path is moving right, then xi = xi + vx∆t. The AGVs follow the dotted
line to change the X locations.

Deadlock Avoidance

The other AGVs in the predictable path or the moving obstacles are treated as dynamic
obstacles. As shown in Figure 8, vehicle congestion must be avoided. The target location
reserves only one vehicle in each iteration to avoid deadlock. The strategies to deal with
the moving obstacles, except for other AGVs, refer to the previous section.

Figure 8. The AGV’s new position after deadlock avoidance.

Deadlock avoidance involves priorities for AGVs, and high priority is assigned when
AGVs carry goods close to the destination or have urgent tasks. The AGV with higher
priority remains following the predicted path, whereas the other AGV moves to an available
position. The priority is calculated based on (6), and the new position is gained by (7). The
new position is updated in the robot’s path after ensuring it is available.

priorityi = ω1 · prioritytask + ω2 · distance (6)

rk+1
i−new = rk+1

i + rand (7)

where i stands for the current robot, and distance is the distance from the current position
to the destination. prioritytask represents the priority of each assigned task, and if the task
is more urgent than others, prioritytask is higher. w1 and w2 are the weight of each factor,
the sum of w1 and w2 is 1. ri−new stands for a new position of the robot i.
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3.4. Comparison

The proposed WLVM implements dynamic swarms and virtual leaders to ensure accu-
rate direction and faster convergence, considering collision avoidance, the start–destination
matrix to distinguish the destinations of swarms and the applications of multi-objective
algorithms in the industrial environment. Figure 9 shows the advanced functionality of
the WLVM. It also provides flexibility because of the dynamic swarms involved, and the
follower-AGV can join or disconnect from the current group. The AGVs are assumed to
exchange information during operations; if one AGV enters another area, it becomes a
member of the new group.

Figure 9. Comparison of Vicsek model and WLVM.

The WLVM is novel for multi-AGV navigation, and it adapts the biological pattern
because it achieves the path planning of several AGVs in one step. The traditional Vicsek
model can describe the multi-agent movement, which is enhanced to improve WLVM.
Following the biological pattern, AGVs move automatically as their neighbours do in the
same direction if operating the same task. It is typical to involve several AGVs for one task;
the improved WLVM achieves fast multi-AGV path planning by updating the positions
and angles. It only requires calculation for the virtual leaders in the leader layer and one
calculation step in the follower layer. Even though the number of AGVs is large, it obtains
the path with a quick calculation.

4. Computational Experiments
4.1. Experiment Settings

Figure 10 generates the warehouse map and denotes the initial locations of AGVs;
different colours indicate the different swarms. WLVM is validated through MATLAB. The
start–destination matrix separates the swarms. Each delivery group is operating in Area A.

The multi-AGV system is engaged for deliveries from Area A because the three-
dimensional storage system is implemented in the primary storage rooms: Area B to Area
F. The materials are placed on the platform to transfer to the defined location by the pallet
in the three-dimensional storage system.

Assumptions in the simulation are as follows:

• 7 AGVs depart from Area A to different storage areas for processing tasks, and 4 AGVs
move to Area A for parking;

• Set segment delay for five segments in each swarm;
• AGVs with an absolute velocity of 1 m/s;
• Each AGV is equipped with a board that can operate WLVM;
• Each AGV has onboard sensors for localization and obstacle detection;
• Each AGV communicates with other AGVs, sending its positions, angles and statuses.
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(a) After t = 0 (1st group change.)

(b) After t = 8 (2nd group change.)

Figure 10. The path for virtual leaders.

The groups’ settings are listed in Table 3.
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Table 3. Group settings.

Group No. Group Priority Number of AGVs Color

1 Area A to E 1 4 Blue
2 Area A to F 2 3 Orange
3 Area B to A 2 2 Purple
4 Area C to A 3 2 Green

4.2. Results
4.2.1. Simulation

Figure 10 displays the path for the virtual leaders generated by the hybrid A* algorithm
after the group changes. The directions are indicated along with the path. It also outlines
the path area for each swarm. The blue path is from Area A to Area E, and the orange
path is from Area A to Area F. The purple path is from Area B to Area A, and the green
path is from Area C to Area A. Groups 1 and 2 from Area A are separated based on the
simulation’s destination. Groups 3 and 4 are merged into one group when they are close to
each other and aim for the same destination.

Figure 11 shows the AGVs’ paths. When two delivery groups pass the same area,
collision avoidance ensures that AGVs operate safely. The start–destination matrix has
played a role in distinguishing the multi-AGV group. The groups of inbound delivery
are aimed at different main storage rooms with different virtual leaders. When the group
arrives at the destination, the group is reminded of the current state, and the moving AGVs
achieve collision avoidance based on the priorities.

(a) t = 25

Figure 11. Cont.
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(b) t = 49

Figure 11. AGV positions during the path-planning process and the grey areas indicate the pack-
ing areas.

The following Table 4 lists the performance measurements. The group number is
assigned according to the respective swarms. The distance is the travelling distance for
each AGV in the group, which refers to the distance each AGV must travel to accomplish
its assigned task. The time is the consumed time for each swarm to complete the task.

Table 4. Performance measurements.

Group No. Group Time Distance Group Changes

1 Area A to E 49 s 34.84, 36.46, 35.84, 34.02 Separated to Group 1 and 2
2 Area A to F 44 s 36.13, 37.36, 35.97 when t = 0
3 Area B to A 37 s 33.00, 34.21 Group 3 and 4 merged
4 Area C to A 35 s 30.82, 30.86 when t = 8

4.2.2. Experiment

The results of the simulation section are validated by the experiment with the Rasp-
berry Pi robot and Ultra-Wide Band (UWB) for positioning. UWB provides centimetre-level
positioning and high positioning accuracy in the indoor environment. The robot follows
the designed path gained by the simulation.

The experiment used the AGVs from Group 1, the inbound delivery group from Area
A to Area E, with 4 AGVs. They followed the defined paths and gained positioning data
from the positioning sensor. The positioning results were collected from the Decawave
UWB sensors, and the robot carries the target for getting locations. The iterations of the
results shown in Figure 12 are t = 0, t = 25, and t = 49. The start positions are indicated as
t = 0, and the destinations are shown when t = 49. The locations have some bias due to
the sensor accuracy, which can be fixed by sensor fusion in future work.
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Figure 12. UWB positions following the generated path.

4.3. Comparison

The proposed WLVM is compared with the RRT* algorithm [48] and an improved
APF with deterministic annealing (DA-APF) [49] for path planning in Group 1, with a
segment delay of five segments. The comparison of the runtime is listed in Table 5. RRT is a
sampling-based algorithm that is popular for multi-constrained and high-dimensional path
planning [50]. Sampling-based planners connect samples by constructing trees iteratively
from the sampling distributions, and the planners deterministically or probabilistically
draw random samples. APF uses attractive and repulsive potentials and treats the robot as
an affected object. Wu et al. [49] apply a deterministic annealing strategy to improve the
classical APF algorithm for path planning, changing the temperature parameters.

Table 5. Runtimes for the RRT*, DA-APF, and WLVM algorithms.

Algorithm Runtime Total Runtime

WLVM Leader: 0.0757 s 0.0813 sAGV 1–4: 0.0056 s

RRT*
AGV 1: 1.5522 s

5.0382 sAGV 2: 1.1777 s
AGV 3: 1.1550 s
AGV 4: 1.1533 s

DA-APF
AGV 1: 0.0419 s

0.1546 sAGV 2: 0.0381 s
AGV 3: 0.0372 s
AGV 4: 0.0374 s

The RRT* and DA-APF algorithms need to repeat the calculation for each AGV,
whereas WLVM calculates the path for all AGVs at one step. WLVM provides fast path
planning due to the computational speed. Figure 13 shows the AGV positions generated by
the RRT* and DA-APF algorithms. Figure 13a shows the positions generated by the RRT*
algorithm for t = 25 that are marked by different colours and the last positions when t = 64
that are marked by blue. If the number of AGVs dramatically rises, the computation time
for the RRT* algorithm will rise rapidly, whereas it would not affect WLVM. Figure 13b
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indicates the path generated by the DA-APF algorithm. Although DA-APF achieves fast
computation, it is still slower than WLVM for grouped AGVs.

(a) RRT* algorithm.

(b) DA-APF algorithm.

Figure 13. AGV positions generated by other algorithms.
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5. Conclusions

The WLVM is proposed to improve the Vicsek model, and it develops dynamic virtual
leaders and a start–destination matrix, considering the leaders’ direction with weight. Also,
it is capable of providing scalability and flexibility for multi-AGV systems with fast and
flexible path settings. The path-planning problem is formulated as a 2D space with the start
and target locations, and it avoids static and dynamic obstacles. From the literature, most
path-planning approaches plan the path independently. However, the proposed WLVM
algorithm can offer the path settings in one calculation step for swarms.

The WLVM implements the virtual leader to navigate the follower-AGV in each multi-
AGV group, and the leader’s positions and angels are generated by the hybrid A* algorithm.
The proposed approach updates the statutes of AGVs with iterations, and the angles of
AGVs consider the neighbour and the leader. Model and system initialization and multi-
AGV group formation are completed through a centralized method, whereas it achieves
the dynamic decentralized approach for each AGV.

It computes the follower-AGVs’ path with a quick computation, even though the
number of AGVs is large. Unnecessary turning costs and path segments are avoided in
this model. Each AGV only considers its neighbours in the path and tends to move as its
neighbours. For swarm integration or separation, the start–destination matrix plays a role.
It determines whether the multi-AGV group is aimed at the same destination and makes
changes in the decentralized follower layer. Segment delay is implemented for optimal
arrangement between AGVs for loading.

The proposed WLVM has the following benefits: accurate direction, dynamic swarms,
fast convergence, and collision avoidance. It can achieve real-time implementation due to
its computational speed and robust implementation. For the computational experiment,
four groups with different settings demonstrate swarm separation and integration. The
proposed algorithm is compared with other algorithms for path planning of four AGVs;
the WLVM saves 98.39% and 47.41% computational time than the RRT* and DA-APF
algorithms, respectively. WLVM is robust and simple for implementation during the AGVs’
or robots’ operations. The proposed algorithm can be applied to various scenarios involving
the system of multiple robots, such as warehouses, logistics systems, ports, and airports.

The limitation of the proposed approach is that it does not consider the cost value
during the path planning as the heuristic methodologies. Therefore, the generated path
cannot be measured or estimated with the specific costs to determine whether the path is
globally optimal. The robot’s dynamics and different speed scenarios must be considered
during the real-world application. With the following considerations, WLVM would be
more practical in the industrial environment for future work. Mission planning and task
allocation can be included in the further improvement of this model. The multi-AGV
system would be more practical if it involves fault tolerance during implementation. The
combination of sensors and the sensor-fusion algorithm could be considered in further
real experiments to estimate the angle and the position and detect and avoid obstacles.
Implementing a neural network for the path-planning approach can be considered a
potential improvement.
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Abbreviations
The following abbreviations are used in this manuscript:

AGV Automatic guided vehicles
Multi-AGV Multiple automatic guided vehicles
WLVM Weight-Leader-Vicsek Model
RRT Rapidly-exploring random trees
WMS Warehouse management system
DA-APF APF algorithm based on deterministic annealing
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