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Abstract: Insects are able to fly stably in the complex environment of the various gusts that occur in
nature. In addition, many insects suffer wing damage in their lives, but many species of insects are
capable of flying without their hindwings. Here, we evaluated the effect of hindwings on aerodynamics
using a Navier–Stokes-based numerical model, and then the passive dynamic stability was evaluated by
coupling the equation of motion in three degrees of freedom with the aerodynamic forces estimated
by the CFD solver under large and small perturbation conditions. In terms of aerodynamic effects, the
presence of the hindwings slightly reduces the efficiency for lift generation but enhances the partial
LEV circulation and increases the downwash around the wing root. In terms of thrust, increasing the
wing area around the hindwing region increases the thrust, and the relationship is almost proportional
at the cycle-averaged value. The passive dynamic stability was not clearly affected by the presence of
the hindwings, but the stability was slightly improved depending on the perturbation direction. These
results may be useful for the integrated design of wing geometry and flight control systems in the
development of flapping-winged micro air vehicles.

Keywords: insect flight; flapping wing; computational fluid dynamics; aerodynamics; dynamic
stability; hindwing-less; hawkmoth

1. Introduction

The application of flying robots such as drones has spread rapidly in recent years [1].
The development of processing and control technologies and the miniaturization of devices
have enabled stable flight even with small airframes. However, drones still face many
challenges in terms of efficiency, stability, and safety. Drones are about the same size as
insects and birds, and insects and birds can be the inspiration for drones, as they have
achieved high-performance flight that outperforms drones [2].

Insects generate aerodynamic forces to support their own weight and adjust their
size by means of flapping wings. The aerodynamic forces to support their own weight
and adjust their posture are generated by unsteady aerodynamic mechanisms such as
leading-edge vortices and rotational lift [3–6]. Since the unsteady aerodynamic forces are
generated by the interaction between the flapping wing and the air, the wing morphology
and kinematics have a significant influence on the aerodynamic performance of a flapping
wing [7]. In particular, the effect of wing morphology and kinematics on efficiency has
been extensively studied experimentally and theoretically [8–12].

In both flying organisms and robots, flight stability is very important, along with
efficiency in generating aerodynamic forces. In insects, for example, attitude stabilization
is achieved by adjusting wing motion [13]. They need to control their attitude with wing
motions in response to their own attitude. On the other hand, there is a reaction delay of
several flapping cycles, which significantly affects their flight performance [14]. The me-
chanical stability of insect flight is also very important from the point of view of efficiency,
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etc., because in nature there are unpredictable disturbances, such as wind, and if the posture
is significantly disrupted during the sensory delay, more energy will be consumed to restore
the posture.

The mechanical stability of insect flight has been investigated by wind tunnel ex-
periments and numerical simulations [15–19]. For example, numerical simulations have
investigated the flight stability of various insects and confirmed that insects are unstable
in the pitch and roll directions. Since stability and maneuverability are trade-offs, these
results suggest that maneuverability is important for the insect’s habitat along with flight
stability.

Thus, while the flight stability of insects has been investigated so far, the effect of
wing morphology on flight stability has received little attention compared with its effect on
efficiency. As the balance between stability and maneuverability is considered important in
flying robots for various missions, it would be very important to derive design guidelines
for flapping wings from the perspective of flight stability when creating bio-inspired flying
robots.

In the present study, we focused on the effect of the presence of hindwings on flight
stability, with particular emphasis on the hawkmoth as the target insect. It has been reported
that lepidopterans can fly even when their hindwings are ablated [20]. This is likely due
to the very small contribution of the hindwings to the generation of vertical forces, as
aerodynamic forces are generated during wing flapping, especially near the wing tips. On
the other hand, the effect of wing morphology on flight stability is unknown, as is the effect
of hindwing ablation on flight stability. Therefore, in the present study, along with a model
of the hawkmoth, a model of the hawkmoth with its hindwings removed was also created,
and these models were used to investigate the effect of wing morphology, especially near
the base, on the flight stability of the flapping wing by the numerical simulation. It is hoped
that clarifying the effects of insect wing shape on stability will help to provide design
guidelines for future wing shapes of flapping-winged micro air vehicles (FMAVs).

2. Materials and Methods
2.1. Morphological and Kinematic Model for a Hawkmoth with/without Hindwings

A morphological and kinematic model of a hovering hawkmoth, Agrius convoluvuli,
was built based on an experimental observation that was filmed with five synchronized
high-speed cameras (Fastcam SA-3, Photron, Tokyo, Japan), and a three-dimensional
reconstruction was performed with a direct linear transformation (DLT) method via the
open-source MATLAB-based application, DLTdv5 [21]. More details can be found in [22].
The reconstructed morphological model with/without hindwings is depicted in Figure 1,
and the morphological parameters are summarized in Table 1. The body orientation and
flapping wing kinematics are described with the help of the global (X-Y-Z) and wing-fixed
(x’-y’-z’) coordinate systems (Figure 2). The body-fixed coordinate system (xb-yb-zb) is
defined for the dynamic analysis and is centered on the center of gravity. The hovering
kinematic model is defined by the three angles expressed as the third-order Fourier series
with respect to the stroke plane (Figure 3).
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Table 1. Morphological parameters for full-winged and forewing models.

Full-Winged Model Forewing Model

Total mass [mg] 956 946
Wing area [mm2] 443 325

Mean chord length, Cm [mm] 12.39 9.10
Wing length, R [mm] 35.76

Stroke plane angle [deg] 36.36
Body length [mm] 41.70

Body angle, β [deg] 36.36
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2.2. Numerical Model for Flow Field around a Flyer

For the analysis of the flow field around the hawkmoth model, we used a CFD solver
based on a finite volume method and a fortified Navier–Stokes solver for a multi-blocked
overset grid system [23]. The governing equations of the numerical solver are the three-
dimensional incompressible unsteady Navier–Stokes equations written in strong conser-
vation form for mass and momentum. The artificial compressibility method is used by
adding a pseudo-time derivative of pressure to the equation of continuity. For an arbitrary
deformable control volume V(t), the non-dimensionalized governing equations are∫

V(t)

(
∂Q
∂t

+
∂q
∂τ

)
dV +

∫
V(t)

(
∂F
∂x

+
∂G
∂y

+
∂H
∂z

+
∂Fv

∂x
+

∂Gv

∂y
+

∂Hv

∂z

)
dV = 0, (1)

where bold letters are used to denote matrices as

Q =


u
v
w
0

, q =


u
v
w
p

, F =


u2 + p

uv
uw
λu

, G =


vu

v2 + p
vw
λv

, H =


wu
wv

w2 + p
λw

,
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Fv = − 1
Re


2ux

uy + vx
uz + wx

0

, Gv = − 1
Re


vx+uy

2vx
vz + wy

0

, Hv = − 1
Re


wx+uz
wy+vz

2wz
0

.

Above, λ is the pseudo-compressibility coefficient; p is pressure; u, v, and w are velocity
components in the Cartesian coordinate system X, Y, and Z; t denotes physical time, while τ
is pseudo-time; and Re is the Reynolds number. The term q associated with the pseudo-time
is designed for an inter-iteration at each physical time step, which will vanish when the
divergence of velocity is driven to zero to satisfy the equation of continuity. Reynolds
number is defined as

Re =
Ure f Lre f

ν
, (2)

where Uref is a reference velocity, Lref is a reference length, and ν is the kinematic viscosity
of air. The forewing mean chord length is used as the reference length. The mean wingtip
velocity of the forewing is used as the reference velocity; Uref = Utip = ωR, where R is the
span length and ω is the mean angular velocity of the flapping wing (ω = 2Φf, where Φ is
the wing positional angle amplitude and f is the flapping frequency). When we solve the
Navier–Stokes equations for a wing block, the aerodynamic forces exerted on the wing are
evaluated by a sum of inviscid and viscous flux over the wing surface as

Faero
(

Fx, Fy, Fz
)
= −

n

∑
i
(Fluxinvis + Fluxvis), (3)

where n denotes the cell number on the surface of the wing. This CFD solver has been validated
by comparison with some experimental studies, including the case of the hawkmoth wing [24].

In the present study, the computational domain was a Cartesian grid with 10R× 10R× 10R
dimensions in which the body grid and the left- and right-wing grids (flyer blocks) were im-
mersed (Figure 4). The Cartesian grid has two sub-regions: the clustering region, which has
small uniform grid spacing, and the global region, which is gradually refined towards the
center of the computational domain. The uniform grid spacing is set to 0.15 Cm in the model.
The outer boundaries of the flyer blocks are immersed in the clustering region to prevent loss
of accuracy due to the interpolation between the global block and flyer blocks. The numbers
of grid points are the following: the global grid is 73 × 81 × 61; the body grid is 35 × 35 × 9;
and the left- and right-wing grids are 45 × 45 × 15. The wing grids were clustered along the
edges of the wing for higher resolution in the regions where strong shear flow is expected.
The averaged grid size on the wing surface is approximately 0.045 Cm and 0.066 Cm in the
chordwise and spanwise directions.
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2.3. Wing Kinematics Modifications for Hovering Equilibrium Conditions

For the perturbation analysis of 3 degree-of-freedom (DoF) flight dynamics and passive
dynamic stability, the hovering equilibrium conditions must be achieved. In this study,
the body and wings are assumed as rigid models without considering the deformations,
and the center of mass is calculated under the constant density distribution of the body
and wings. The results of the computational aerodynamic forces using the wing kinematic
model constructed based on the filming experiment described previously show that there
are differences from the hovering equilibrium condition (i.e., the state in which the cycle-
averaged values of the aerodynamic forces FX, FZ, and the aerodynamic torque TY are
zero). Therefore, in this study, the following kinematic parameters were adjusted based
on the previous studies [25,26] to achieve the hovering equilibrium conditions in 3 DoF
flight dynamics—FX: the amplitude center of the feathering angle; FZ: flapping frequency;
and TY: the center of mass in the Z-axis. Note that many insects have been observed
to behave in a similar manner when their wings are damaged. For example, they often
increase their flapping frequency to compensate for the reduction in wing area for the
generation of lift (i.e., hawkmoth [27], damselfly [28], honeybee [29]). Table 2 shows the
adjusted parameters and the resultant cycle-averaged aerodynamic forces and torques.
Note that the measured value of the center of mass is set to zero as the initial position and
that the values in parentheses are the deviation from the experimental results. The forewing
model has a smaller wing area than the full-winged model, so the flapping frequency was
increased to compensate for the lift force. The Reynolds number—Re of each tuning model
was calculated by Equation (2)—is Re = 4392 for the full-winged model and Re = 3350 for
the forewing model. Both models are on the order of 103, and no significant difference in
aerodynamic properties is expected.

Table 2. Tuning parameters and resultant forces for full-winged and forewing models.

Measurement
Model

Full-Winged
Model

Forewing
Model

Amplitude center of
the feathering angle [deg] 7.36 11.86 (+4.5) 10.66 (+3.3)

Flapping frequency, f [Hz] 39.14 44.00 (+4.86) 45.70 (+6.56)
Center of mass in Z-axis [mm] 0 −5.29 −6.66

Cycle-averaged
horizontal force, Fx [mN] −1.13 −0.0019 0.012

Cycle-averaged
vertical force, Fz [mN] 7.28 9.35 9.30

Total weight [mN] 9.38 9.38 9.28
Cycle-averaged

pitching torque, Ty [mN·mm] 34.21 −0.011 0.017

2.4. Numerical Model for Flight Dynamics: Equations of 3 DoF Motions

In the present study, we treat the flyer as a bilaterally symmetric rigid model and
investigate its 3 DoF motions in the longitudinal direction. In actual insect flight, the
flapping motion of the wings causes a shift of the center of mass; however, because of
its high frequency and the light mass of the wings in a hawkmoth, about 5 to 6% of the
body [30], the morphological effect caused by the flapping motion is negligible compared
with that of the body. Therefore, we assume that the center of mass is fixed and the
moment of inertia of the body is constant regarding the body-fixed coordinate system for
the treatment of the rigid body model [31]. Then, a single rigid body dynamic model can
be reconstructed based on the Newton–Euler equations of 3 DoF motions as a set of three
coupled nonlinear ordinary differential equations, such as
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.
ub = −qb·wb + gsinθ + Fxb

m ,
.

wb = qb·ub − gcosθ + Fzb
m ,

.
qb =

Tyb
Iyy

,

(4)

where Fxb and Fzb denote the aerodynamic forces acting along the xb- and zb- axes, re-
spectively; Tyb is the aerodynamic pitching torque; θ is the pitch angle; ub and wb are
the two components of the translational velocity of the body; qb is the angular velocity
of the body; and Iyy is the moment of inertia about the pitch axis of the body. Note that
the translational and angular velocities of the body(ub, wb, qb) are defined as three state
variables that describe the 3 DoF motions in the body-fixed coordinate system. Body mass,
m, moment of inertia, Iyy, and gravitational acceleration, g = 9.8 m/s2, are assumed to
be constant.

2.5. Nonlinear Stability Analysis Based on the Perturbation Theory

Gao et al. performed the passive dynamic stability analysis with a relatively small
perturbation (i.e., the magnitudes of the vertical and horizontal disturbances were less
than 5% of the cycle-averaged flapping velocity of the flyer) by applying the first-order
approximation based on the assumption that the aerodynamic forces and torques vary
linearly in the directions of the disturbances [32]. However, in the aerial environment
of a flying insect, there are usually sharp velocity gradients and wing gusts and, hence,
large disturbances [33]. Some studies have been conducted to analyze the nonlinear
flight dynamics of hovering model insects by numerically solving the equations of motion
coupled with Navier–Stokes equations to simulate large disturbance motions [34], but these
studies are computationally expensive. Therefore, in the present study, considering that the
aerodynamic forces are on the scale of the square of the reference velocity, the second-order
approximation is implemented to express the differences on the aerodynamic forces and
torque with the perturbations. The construction is as follows.

First, a function representing aerodynamic forces and torque is defined and constructed
in the form of a Fourier series, considering four conditions—one equilibrium condition and
three unidirectional perturbation conditions. Under equilibrium conditions, time-varying
aerodynamic forces and moments based on the CFD model can be decomposed into a
Fourier series for a complete wing beat cycle [35], in the form of

F(t) =
h

∑
n = 0

(ancos(nkt) + bnsin(nkt)), (5)

where k is the reduced frequency; an and bn are Fourier series coefficients. Note that
the coefficient, a0 represents the cycle-average aerodynamic force or torque over a single
flapping cycle. The higher the harmonic h, the better this function fits the original value.
In the present study, the tenth-order Fourier series (h = 10) was found to be sufficient for
reproducing all the waveforms of the aerodynamic forces and torque generated by the CFD
solver.

Second, considering that the perturbation conditions are achieved by specifying the
deviation of the translational velocity and angular velocity of the body, the function in
Equation (5) should change with both time t and time-varying state variables. Therefore, it
is necessary to construct a system function in terms of these four variables (t, ub, wb, qb) to
solve the equations of motion in Equation (4) while updating the time-varying aerodynamic
forces and torque. To construct this system function, a CFD solver was utilized to obtain
the aerodynamic forces and torque under the perturbation conditions in three directions.
For the horizontal direction, the dimensionless translational velocity was given as eight
different perturbation conditions in the range −1.0 < u < 1.0, as well as w for the vertical
direction. For the pitch direction, the dimensionless angular velocity was given as six
perturbations in the range −0.05 < q < 0.05. Note that u and w are the dimensionless inflow
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velocities in the X- and Z-axes. Using these results, the aerodynamic forces and torque
under the perturbation conditions are approximated by introducing a quadratic function,
such asFx

Fz
Ty

 =

Fxe
Fze
Tye

+

CFx ,u CFx ,w CFX ,q
CFz ,u CFz ,w CFz ,q
CTy ,u CTy ,w CTy ,q

·
u

w
q

+

DFx ,u DFx ,w DFX ,q
DFz ,u DFz ,w DFz ,q
DTy ,u DTy ,w DTy ,q

·
u2

w2

q2

, (6)

where Fxe
Fze
Tye

 =
10

∑
n = 0

(ai,ncos(nωt) + bi,nsin(nωt)),

Ci,j =
10

∑
n = 0

(
ci,j,ncos(nωt) + di,j,nsin(nωt)

)
,

Di,j =
10

∑
n = 0

(
ei,j,ncos(nωt) + fi,j,nsin(nωt)

)
.

Above, the forces and torque (Fxe, Fze, Tye) are obtained under the trimmed flight
condition without perturbation (see Section 2.3); ω is the angular frequency of the wing
beat; a~f are Fourier series coefficients; the subscript of i denotes the aerodynamic force
and torque components and j denotes the perturbation components.

At this stage, the solution of Equation (6) is transformed to the body-fixed coordinate
system, yielding Fxb, Fzb, and Tyb which can be utilized for Equation (4). Finally, it was
possible to simulate the state variables under the perturbation conditions by performing
the time integration while inserting the perturbations obtained from Equation (4) into
Equation (6) at each time step.

3. Results and Discussion
3.1. Aerodynamic Performance of a Hawkmoth with/without Hindwings

First, to clarify the effects of the hindwings on the aerodynamic performance of the
hovering hawkmoth, we performed the numerical simulation of the full-winged and
forewing models by adopting the measured wing kinematics (Figure 3). The difference
between these two models here is the wing area; the wing area of the forewing model is
about 73% of that of the full-winged model. Regarding force production, it is known that
the force generated by a flapping or revolving wing is proportional to the second moment
of the wing area [36]. In the present study, the second moment of the wing area can be
calculated as

S =
∫ R

0
Cm(r)r2dr, (7)

where r denotes the spanwise location of the local wing element. The second moment
of the wing area of the forewing model results in 93% of that of the full-winged model.
The vertical and horizontal aerodynamic forces and pitching torque during a wingbeat
cycle are depicted in Figure 5, and the cycle-averaged aerodynamic forces, wing area (refer
again as in Table 1), and the second moment of wing area are summarized in Table 3.
The values in parentheses for the forewing model indicate the percentages compared with
the full-winged model.

The considerable difference in aerodynamic forces between the full-winged and
forewing models can be seen in the timing around t/T = 0.9. At this timing, the wings
are flapping with a geometric angle of attack close to 90 degrees, generating the large
positive pressure region on the upper surface and the large negative pressure region on
the lower surface, resulting in a large drag-based thrust (Figure 6). This thrust is greater in
the full-winged model which has a longer chord length than the forewing model, and the
positive velocity increase in the X-axis can be seen in the visualized X-velocity distributions
around the wings.
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Figure 5. (a) Vertical (solid lines) and horizontal (dashed lines) forces acting on the hawkmoth with
(black lines)/without (red lines) hindwings by adopting the measured wing kinematics. (b) Aerody-
namic torque.

Table 3. The cycle-averaged forces, torque, and the wing parameters.

Full-Winged Model Forewing Model

Cycle-averaged
horizontal force, Fx [mN] −1.13 −0.80 (70%)

Cycle-averaged
vertical force, Fz [mN] 7.28 6.73 (93%)

Cycle-averaged
pitching torque, Ty [mN·mm] 34.21 28.53 (85%)

Wing area [mm2] 443 325 (73%)
Second moment of wing area [mm4] 1.41 × 10−7 1.31 × 10−7 (93%)
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Figure 6. Pressure distribution on the upper/lower left wing surface and X-velocity field in the
XZ-plane of (a) full-winged and (b) forewing models visualized from two different views. The gray
smoke-like object is the iso-surface of Q-criterion at 3.0 × 105 [s−2]. Dashed arrows indicate the
direction of wing motion.

In terms of lift force during downstroke, the full-winged model maintains a greater
lift force than the forewing model at approximately a constant rate, and the average values
of lift force during downstroke are 11.79 and 10.18 [mN], respectively. The delayed stall of
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the leading-edge vortex (LEV) on the wing surface during the flapping motion has been
observed [3,37–39], and it can promote the lift force. The presence of the LEV on the wing
surface creates a relatively low-pressure region, which increases the lift force. To clarify the
differences in lift force in the present study, we quantified the strength (circulation) of the
LEV at t/T = 0.2, where the maximum lift forces occur in both models. The LEV circulation
was estimated by integrating the vorticity as follows.

ΓLEV =
x

S

ω·dS, (8)

where ω is the vorticity. Note that the area of integration, dS, is bound by the vorticity
threshold for capturing the LEV (25% of the peak vorticity in this study) as in [40]. The span-
wise distributions of the instantaneous LEV circulation at t/T = 0.2 are shown in Figure 7.
In both the full-winged and forewing models, the LEV intensities increase linearly with
almost the same slope from the wing root to 0.8R at the wingtip. Chen et al. adopted
a revolving wing model of a hawkmoth and reported that LEV formation is almost the
same when the hindwings are removed, and thus, the forewings can produce most of the
aerodynamic forces [41], indicating that the results adopting the flapping kinematics in
the present study show similar results for LEV formation. The decrease in the values at
0.9R is caused by the interference of the wing tip vortex. The only considerable difference
occurs in the circulation at 0.8R, where the full-winged model shows about an 18% increase
compared with the forewing model. Phillips et al. performed the experiments with simple
rectangular wings and insect kinematics and reported more enhanced LEV circulation
across the span with an increasing aspect ratio (AR) [10]. On the other hand, Harbig et al.
reported in their numerical calculations of a revolving wing with a fruit fly model that
the narrower width per unit span of a high-AR wing causes the LEV to interact with the
trailing-edge vortex (TEV) from the lower side of the wing, reducing the circulation and,
thus, the lift [42]. Comparing cicada hindwings with hindwing-less Drosophila, in which
the cicada wings have two distinct trailing-edge shapes with a reduced wing tip area
and an increased wing root area, clear differences in trailing-edge vortex formulation and
stabilization of the flow in the wing span direction have been reported to improve lift [43].
The difference in TEV structure was also observed in the present study (Figure 8), where
the TEV of the forewing model was more backwardly tilted along its trailing-edge shape
around the wing root compared with the full-winged model, and it shed from the wing
surface earlier than the full-winged model. The local difference in LEV intensity between
the full-winged and forewing models when the area is reduced only on the wing root
side, as in this study, may not be due to the effect of AR but rather to the difference in
the trailing-edge vortex. In addition, the difference in the vertical velocity distributions
(Figure 8) indicates that the downwash is more widely spread on the wing root side in the
full-winged model than in the forewing model, resulting in greater lift near the wing root as
well. Because the wingtip vortices in both models do not show significant differences, this
may not be caused by a change in the relative angle of attack due to the downward velocity
induced by the wingtip vortices, but rather, it is due to the fact that the TEV remains distinct
near the trailing edge, as seen in Figure 8 and in the longer chord length in the full-winged
model. It is also possible that the spread of downwash in the wing root region may enhance
the stability of the LEV, as seen in the circulation at 0.8R [44–46].

In flapping flight, the cycle-averaged aerodynamic force-to-power ratio (FΣ/P) can be
utilized for estimating the efficiency [47]. The aerodynamic power imparted to the air by
each wing is defined as

P = −
N

∑
i

(
Faero,i·vsur f ,i

)
, (9)

where N denotes the number of elements on the surface of each wing; Faero is the aero-
dynamic force acting on each element; and vsurf is the corresponding velocity of each
element. The efficiencies of the left and right wings in generating lift force are 19.5% for
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the full-winged model and 22.8% for the forewing model, with the forewing model being
slightly more efficient. Similarly, numerical results using a revolving hawkmoth wing
model with/without hindwings reported improved aerodynamic efficiency of a forewing
model [41]. In the comparison of the cycle-averaged values, 30% and 7% reductions in
horizontal and vertical forces are observed due to the reduction in wing area. From the
morphological parameters of the wings in Table 3, the reduction of the horizontal force in
the forewing model is almost equal to the reduction ratio of the wing area (=27%), and the
reduction of the vertical force is almost identical to the reduction of the second moment of
the wing area (=7%). The cycle-averaged aerodynamic torque was slightly higher in the
pitch-up direction for the full-winged model. This may be caused by the moving of the
center of the air pressure closer to the center of mass in the forewing model.
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Figure 7. Spanwise distributions of LEV circulations at t/T = 0.2.
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XY-plane near the lower wing surface for (a) full-winged and (b) forewing models.

The aerodynamic forces obtained from trimmed flight by adopting the tuned wing
kinematics for the full-winged and forewing models are shown in Figure 9. The differences
in the wing kinematics that affect the aerodynamic force generation in both models are
the flapping frequency and the amplitude center of the feathering angle, which differ by
1.7 Hz and 1.2◦, respectively (see Table 2). While the maximum lift and thrust increased
with increasing flapping frequency in the tuned wing kinematic models, the waveforms of
the aerodynamic forces and torque were similar to those of the measured wing kinematic
models for both the full-winged and forewing models (Figure 5 vs. Figure 9). For the
models with the tuned wing kinematics here, the cycle-averaged values of the aerodynamic
horizontal force and the aerodynamic torque in the pitch direction were close to zero, and
the vertical aerodynamic force is nearly balanced by its own weight, indicating that a state
close to trimmed flight was achieved (Table 2).
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Figure 9. (a) Vertical (solid lines) and horizontal (dashed lines) forces acting on the hawkmoth with
(black lines)/without (red lines) hindwings during the trimmed flight. (b) Aerodynamic torque.

3.2. Hovering Equilibrium Condition

As discussed in previous studies [32], the initial values of aerodynamic forces and
torque in the flight dynamic analysis have a significant effect on the subsequent dynamic
behavior, and thus, the initial time of the dynamic analysis must be adjusted to achieve
a long-term hovering equilibrium condition in the absence of active control of the wing
motion. As a result of the parameter study, appropriate initial times of t0 = 0.3574 and
0.3487 were obtained for the full-winged and forewing models. With these initial times,
the equilibrium conditions are achieved up to 20 beat cycles and the time variation of the
state variables ub, wb and qb oscillate in a range of −0.016 < ub < 0.006, −0.016 < wb < 0.001,
and −0.013 < qb < 0.010 for the full-winged model and −0.015 < ub < 0.006, −0.013 < wb
< 0.001, and −0.008 < qb < 0.007 for the forewing model (Figure 10). In the present study,
these equilibrium conditions were defined as stable hovering flight, and then the dynamic
analysis was performed by adding the various perturbations.
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Figure 10. The time histories of the state variables of (a) ub, (b) wb, and (c) qb up to 20 wingbeat cycles
under the no perturbation conditions. All the state variables are shown as dimensionless values.
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3.3. Passive Dynamic Stability with Relative Small Perturbations

In this section, the dynamic analysis was performed under relatively small perturbations–
5% of the reference velocity for the ub and wb components and 0.5% of the reference angular
velocity for the qb. Figure 11 presents the time histories of the state variables under the initial
conditions of ub = 0.05 (solid line) and ub = −0.05 (dashed line). It can be seen that the xb-axial
velocity component (ub) converges monotonically and gradually to an equilibrium state up to
about t = 0.15 [s] (Figure 11a) while the zb-axial velocity component (wb) remains in an equilibrium
condition (Figure 11b). The pitch angular velocity, qb tends to gradually diverge up to this time, but
after t = 0.15 [s], it gradually converges to an equilibrium state until about t = 0.25 [s] (Figure 11c)
while the ub and wb tend to diverge during this time. The pitch-up motion (qb is positive) due
to the forward perturbation (ub = −0.05) and the pitch-down motion (qb is negative) due to the
backward perturbation (ub = 0.05) during the first few flapping cycles are similar in trend
to the passive response of Drosophila with a high aspect ratio wing [32]. This passive
response is likely to promote convergence because the pitch-up/down motion leads to a
modulation of increased backward/forward aerodynamic forces [48], which can passively
reduce the forward/backward deviation. There is no significant difference depending on
the presence or absence of hindwings, but the ub and wb recover to a transient equilibrium
state slightly earlier in the full-winged model than in the forewing model.
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Figure 11. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of ub = 0.28 (solid lines) and ub = −0.28 (dashed lines) [m/s] up to 20 wingbeat cycles.
Circle markers represent the cycle-averaged values at each wingbeat cycle.

For the vertical initial perturbations of wb = 0.05 (solid line) and wb = −0.05 (dashed
line), it can be seen that the overall transitions of the state variables are more stable than for



Biomimetics 2023, 8, 578 13 of 20

the horizontal perturbations (Figure 11 vs. Figure 12). Although there is a slight divergence
trend in the ub (Figure 12a), all state variables remain stable up to about t = 0.25 [s].
In particular, for the wb, the passive restoring force acts steadily and monotonically up
to about t = 0.4 [s] (Figure 12b). After t = 0.25 [s], the ub and the pitch angular velocity,
qb are more stable for the downward perturbation than for the upward perturbation,
with the same trend for both full-winged and forewing models. The difference between
the full-winged and the forewing models can be seen in the pitch angular velocity after
t = 0.3 [s] (Figure 12c). The forewing model is able to delay the divergence trend for the
upward perturbation compared with the full-winged model. The stable behavior of the
translational velocity and the development of the pitch instability in response to the vertical
perturbations in both models are similar to those observed in the analysis of nonlinear flight
dynamics with the fully coupled Navier–Stokes equation and the equation of motion [34].
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Figure 12. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of wb = 0.28 (solid lines) and wb = −0.28 (dashed lines) [m/s] up to 20 wingbeat cycles.
Circle markers represent the cycle-averaged values at each wingbeat cycle.

With respect to the pitch perturbations, there is a slightly more stable transition for
the ub around t = 0.1 to 0.3 [s] for the pitch-up (solid lines) perturbation compared with
the pitch-down (dashed line) perturbation (Figure 13a), and this trend is also observed
for the pitch angular velocity, qb around t = 0.2 to 0.4 [s] (Figure 13c). The wb is less
affected by the pitch perturbation and remains in the equilibrium state until about t = 0.3 [s]
(Figure 13b) when the ub starts to diverge significantly at this timing. Although there is
no significant difference between the full-winged and the forewing models, the ub and wb
around t = 0.3 to 0.4 [s] under the pitch-down perturbation have a slightly smaller slope in
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the positive direction for the forewing model than for the full-winged model, indicating
that the forewing model is less affected by the pitch perturbations.
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Figure 13. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of qb = 1.28 × 102 (solid lines) and qb = −1.28 × 102 (dashed lines) [deg/s] up to 20 wingbeat
cycles. Circle markers represent the cycle-averaged values at each wingbeat cycle.

3.4. Passive Dynamic Stability with Relatively Large Perturbations

Here, we present the response of the state variables to the large perturbations—100% of
the reference velocity for the ub and wb components and 5% of the reference angular velocity
for the qb. For the forward and backward perturbations of the ub, the response of the ub
tends to converge during the first few flapping cycles as in the case of a small perturbation of
the ub (Figures 11a and 14a), while the wb and pitch angular velocity, qb diverge significantly
during this period (Figure 14b,c). Note that the response of the pitch angular velocity, qb
during the first three cycles acts to passively reduce the forward/backward deviation, as in
the case of the small perturbation of the ub. Thereafter, the large monotonic oscillations tend
to begin in all state variables. After t = 0.32 [s], the full-winged and forewing models show
differences in response to the backward perturbation with the forewing model continuing
the large oscillations in all state variables while the full-winged model shows different
behavior. The full-winged model shows stable behavior with respect to the ub and the pitch
angular velocity, qb maintaining an almost equilibrium state for a short period.
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Figure 14. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of ub = 5.54 (solid lines) and ub = −5.54 (dashed lines) [m/s] up to 20 wingbeat cycles.
Circle markers represent the cycle-averaged values at each wingbeat cycle.

The most stable passive restoring forces in the present study were found in the re-
sponse of the ub and wb to large vertical perturbations (Figure 15a,b). For the upward
perturbation (solid lines), the ub initially diverges in a positive direction but then becomes
a damped oscillation, similar to the response of the wb; finally, both values recover to an
equilibrium state in about t = 0.4 [s]. For the downward perturbation (dashed lines), the ub
is almost unaffected and remains in the equilibrium state, as in the case of the small per-
turbation (Figures 12a and 15a), while the wb shifts monotonically and gradually from the
initial perturbation values to an equilibrium state (Figure 15b). The pitch angular velocity,
qb has little effect for the downward perturbation but is significantly shifted away from the
equilibrium state for the upward perturbation (Figure 15c). This clear difference in the pitch
instability due to the directions of the large vertical perturbations is also observed in the
previous study [34]. Under the large vertical perturbation, the differences in the response
of the state variables between the full-winged and forewing models were observed that
were not seen under the small perturbation. In the full-winged model, the ub, the wb, and
the pitch angular velocity, qb are all more sensitive to the upward perturbation than in the
forewing model, indicating that the presence of hindwings has a greater effect in this case.
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Figure 15. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of wb = 5.54 (solid lines) and wb = −5.54 (dashed lines) [m/s] up to 20 wingbeat cycles.
Circle markers represent the cycle-averaged values at each wingbeat cycle.

With respect to the pitch perturbation, the ub and the pitch angular velocity, qb tend to
converge to the equilibrium state until about t = 0.1 [s], but thereafter all state variables
oscillate significantly by increasing the wb, and the amplitude tends to increase with time.
As seen in the response to the large perturbation in the ub, after t = 0.32 [s], the full-winged
and forewing models show the difference in response to this pitch perturbation (Figures 14
and 16). The full-winged model continues to oscillate significantly for all state variables
while the forewing model shows the behavior that breaks the periodic motion at this time.
The forewing model shows a gradual convergence to the equilibrium state with respect to
ub and pitch angular velocity, qb until about t = 0.4 [s].

These behaviors show that the full-winged model is partially stable for the horizontal
perturbation while the forewing model is partially stable for the pitch perturbation, in-
dicating that the hindwing can act for better or worse depending on the direction of the
perturbation.
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Figure 16. The time histories of the state variables of (a) ub, (b) wb, and (c) qb under the initial
conditions of qb = 1.28 × 103 (solid lines) and qb = −1.28 × 103 (dashed lines) [deg/s] up to 20 wingbeat
cycles. Circle markers represent the cycle-averaged values at each wingbeat cycle.

3.5. Effect of Hindwings on Passive Dynamic Stability

The results of the passive dynamic stability analysis with the hawkmoth in the present
study showed that for some perturbations, the state variables converged to the equilibrium
state condition as reported in the study on the longitudinal dynamic stability of a hawkmoth
adopting a linear time-invariant dynamic model [34], but for other perturbations, an
inherent instability was observed as reported for the desert locust and the bumblebee in
the open-loop conditions with a linear theory [15,49]. There are some small differences
in flight behavior with/without hindwings in the present study, but no clear trend was
observed. In nature, insects suffer wing damage throughout their lives [50], but even if
they have lost or damaged their hindwings, most of them can still fly, so the intrinsic
influence of hindwings on passive flight stability may be small. However, in terms of
flight maneuverability, in the flights of moths and butterflies (Lymantria dispar and Pieris
rapae) with severed hindwings, which have a larger ratio of hindwings to total wing
area than the model in this study, a reduction in flight maneuverability in terms of linear
and turning acceleration has been reported as a result of hindwing resection [20]. In the
escape flights of moths with varying hindwing shapes in response to bat predation, it
was reported that species with longer hindwings in the chordwise direction were more
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successful in deflecting predation by bats [51]. Flying insects are known to adopt flight
strategies that actively modify wing kinematic parameters, such as flapping frequency,
flapping amplitude, and stroke plane angle [27–29], when wing area is reduced due to
wing damage. In terms of passive flight stability, it has been reported that wing flexibility
can improve flight stability [52]. It should be noted that a comprehensive evaluation of
the unique impact of hindwings on flight stability in natural insects may be possible by
considering active changes in wing kinematics and passive wing deformation, which were
not considered in this study.

The delay in controlling active wing motion in insects is estimated to be several
flapping cycles [14], and the results of passive flight behavior in this study for the long
flapping cycles may not necessarily be related to the flight behavior of actual insects;
however, this study does play a great role in considering the wing design in FMAVs.
In particular, the presented results may be useful to guide the design of wings in terms
of whether to adopt wings with a high aspect ratio to improve flight maneuverability,
or wings with a small aspect ratio and a large wing root area to achieve a high passive
response and damped vibration during the first few flapping cycles to perturbations.

4. Conclusions

In the present study, we investigated the aerodynamic effects and passive dynamic
stability with/without hindwings in the hawkmoth, Agrius convoluvuli. In terms of aero-
dynamic effects, it was suggested that the hindwings may contribute to the enhancement
of partial LEV circulation during downstrokes due to the stable TEV of the hindwings.
An increase in downwash at the hindwings was also observed while the hindwings have a
slight negative effect on the efficiency of lift generation. For thrust generation, a significant
increase was observed in the region of the hindwings during upstrokes. In terms of passive
dynamic stability, the results showed that the presence or absence of the hindwings did not
show a significant trend, but the hindwings may contribute to improving flight stability
depending on the direction of any perturbations. The results obtained in this study may be
useful for the integrated development of wing geometry and flight control for FMAVs.
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