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Abstract: Nowadays, the interaction of additive technologies and methods for designing or optimiz-
ing porous structures has yielded good results. Construction with complex microarchitectures can be
created using this approach. Varying the microarchitecture leads to changes in weight and mechanical
properties. However, there are problems with geometry reconstruction when dealing with complex
microarchitecture. One approach is to use Voronoi cells for geometry reconstruction. In this article,
an extension of the Voronoi diagram algorithm to orthotropic space for material structural design
is presented. The inputs for the method include porosity, ellipticity, and ellipticity direction fields.
As an example, a beam with fixed end faces and center kinematic loading was used. To estimate
robust results for different numbers of clusters, 50, 75, and 100 clusters are presented. The porosity for
smoothed structures ranged from 21.5% up to 22.8%. The stress–strain state was determined for the
resulting structures. The stiffness for the initial and smoothed structures was the same. However, in
the case of 75 and 100 clusters, local stress factors appeared in the smoothed structure. The maximum
von Mises stress decreased by 20% for all smoothed structures in the area of kinematic loading and
increased by 20% for all smoothed structures in the area of end faces.

Keywords: structural design; porous constructions; structural material; orthotropic material; Voronoi
diagram

1. Introduction

Developing methods for modeling and designing custom endoprostheses is one of
the important tasks of personalized medicine [1–3]. Additive manufacturing offers many
advantages in the production of high-quality, patient-specific porous implants [4,5]. The
application of complex unstructured geometry makes it possible to obtain new product
properties that provide improved treatment and improve the quality of patient rehabili-
tation [6]. Such structures may not only have unique mechanical properties but also new
biological properties [7–9]. Thus, modern biomedical engineering is aimed at designing and
producing patient-specific devices with distinctive regenerative properties. This regenera-
tive effect can be achieved by adding a pharmacological agent to the chemical composition
of the material [10–12]. Despite the development of the use of biocompatible materials and
complex structured products, issues related to design methods and technological features,
such as the quality of the resulting surfaces, require further study [13–15].

However, amazing examples of optimal designs are observed in nature. A good
example is bone. The internal structure of bone adapts to external loads while considering
mass reduction. However, this structure is quite complex. From the point of view of solid
mechanics, it can usually be described as an orthotropic, asymmetric, and heterogeneous
medium. Thus, the goal of biomimetic design is to recover such a structure for artificial
products. Nowadays, the possibility of manufacturing such complex samples rests on
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additive manufacturing, and there is a lot of research in this area. Some methods are
based on copying existing structures, whereas others attempt to copy the principles of
structure formation. Therefore, research into the design of such products is one of the
cutting-edge areas of modern engineering [16]. First of all, we can distinguish topological
optimization methods [17,18]. This approach modifies the boundary of the design volume
according to the target function. Separately, it is possible to allocate the approach in which
the dimensionality of the design model is reduced, and the corresponding geometrical pa-
rameters are subjected to modification [19,20]. An alternative approach involves changing
the geometry (e.g., pore distribution) within the computational domain. Pore geometry
is often described using representative volumes. In this case, each representative volume
contains a parameterization of its microarchitecture. In this approach, we can separately
address the problem of geometry reconstruction from the obtained distribution of repre-
sentative volume parameters. The obvious one is direct restoration, but this approach is
labor-intensive, and the results are often not technologically advanced [21]. An alternative
is the use of Voronoi cells for geometry restoration [22,23]. From a biomimetic point of
view, Voroni structures hold promise for life. Similar structures are observed in foliage and
insect tissues. Researchers have reported positive results regarding Voronoi scaffolds in
terms of mechanical [24,25] and biomechanical parameters [26]. With this approach, we can
understand the computational domain as a domain on which some scalar field is defined.
For this domain, it is possible to construct weighted Voronoi cells (taking into account the
value of the scalar field as a weight) [27,28]. A logical extension is the development of
optimization methods using Voronoi cells. In [29], a connection between microstructure and
macroscopic scale density was found. Subsequently, the optimization and reconstruction
problems were solved for the full-scale graded lattice structure. In [30], the biomimetic
capabilities of the Voronoi-based cancellous bone microstructure were investigated. A new
parametric method for the design of Voronoi-based lattice porous structures is presented
in [31]. The method was based on the relationship between parametric microstructure and
macroscopic scale density. This approach assumes a specific microstructure architecture.
Additionally, it should be mentioned that the resulting microarchitecture is isotropic in
macroscale terms [29,30] or is gradient-based [31].

The aim of this study was to generalize the Voronoi diagram method to the case of
locally orthotropic space for structure reconstruction problems with microarchitecture.

2. Materials and Methods
2.1. Brief Description of the Proposed Design Method

The concept of previously developed structural design revolves around the idea of a
basic cell. According to this idea, the geometry’s volume is considered a subset of basic
cells, which can be represented as follows:

N⋃
i=1

VBC
i = V (1)

where VBC represents basic cells.
Basic cells should not intersect each other. This can be represented as follows:

N⋂
i=1

VBC
i = ∅ (2)

Each basic cell possesses some mechanical properties. Previously, we considered them
as anisotropic media [32,33]. Assuming that the origin of anisotropy is provided by the
microarchitecture, the parameter vector p was introduced. So, the effective stiffness tensor
can be presented as:

∼
∼
C =

∼
∼
C
(→

p
(→

x
))

(3)
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Wherein the parameter vector and, as a consequence, the stiffness tensor are constant
in the domain of each basic cell:

∼
∼
C
(→

p
(→

x
))

=

∼
∼
Ci, ∀

→
x ∈ VBC

i (4)

The task of structural design is to find the distribution of the parameter vector for a
certain type of microarchitecture. The widespread assumption is the existence of material
symmetry in basic cells. Orthotopic symmetry is a common type of symmetry. So, let us
consider a plane problem and orthotopic basic cells. In this case, the parameter vector can
be defined as a set of ellipticity β, porosity η, and main direction of an ellipticity e:

→
p
(→

x
)
=

(
β
(→

x
)

, η
(→

x
)

,
→
e

T(→
x
))

(5)

This parameter vector is defined at each point of a study volume. The polynomial
connection between stiffness tensor components and ellipticity and porosity was found
previously, as follows [32]:

Ckl(λ, β) =
3

∑
i=0

3

∑
j=0

cijλ
iβj (6)

Ckl in Equation (6) corresponds to Young’s modulus, the shear modulus, and Poisson’s
ratio in orthotropic directions. Non-zero polynomial coefficients (cij in Equation (6)) are
shown in Table 1.

Table 1. The values of coefficients of the approximation polynomial for stiffness parameters.

c00 c10 c01 c11 c21 c31 c12 c22 c13

E11, GPa 109 −3.9 −5.3 −192 287 −115 319 −209 −136
E22,33, GPa 102 2.9 10.6 −111 325 −278 −17.8 −18.7 27
G12,13, GPa 10.7 −0.1 0.25 −2.7 13 −10 −3.9 −0.1 4.1
G23, GPa 2.5 −0.1 −0.06 −4.4 8 −3.4 6.4 −5 −2.5
υ12,13 0.011 – – – – – – – –
υ23 0.017 – – – – – – – –

where E11, E22, and E33 correspond to C11, C22, and C33, respectively; G12, G13, and G23 correspond to C44, C55,
and C66, respectively; υ12, υ13, and υ23 correspond to C12, C13, and C23, respectively.

Using Equation (6), the structural design problem can be solved. As a result, the
distribution of the parameter vector in the geometry’s volume can be found. The next step
is to restore the resulting geometry, which should provide the vector field. The evident
solution is to draw each basic cell directly. In practice, a finite element mesh is associated
with a distribution of basic cells. This means that each finite element is treated as a basic cell.
This is generally not true. Additionally, the problem of smoothing the microarchitecture
on the borders of the basic cells occurs. From this point of view, the shape of each basic
cell is unknown. One of the solutions is to use the distribution of the parameter vector
to solve this problem. This study used the clustering method for porosity distribution.
Next, the pore shape should be restored in each cluster according to the distribution of
ellipticity values and directions. For these purposes, the Voronoi diagram for orthotropic
space was generalized.

2.2. Mathematical Formulation of the Smoothing Problem

Let us consider the results of the distribution of the parameter vector as a result of
the design task. The next problem is to restore the corresponding geometry. Then, the
geometry’s volume can be presented as a set of subvolumes hi, as follows:

N⋃
i=1

hi = V (7)
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With the obvious condition of
N⋂

i=1

hi = ∅ (8)

Considering hi as a cluster set by porosity distribution:〈
η
(→

x
)〉

= Mi,
→
x ∈ hi (9)∣∣∣Mi − η

(→
x
)∣∣∣ ≤ ε,

→
x ∈ hi (10)∣∣∣Mi − η

(→
y
)∣∣∣ > ε,

→
y /∈ hi (11)

This means that the markup function can be defined as follows:

ϕ : V → Z (12)

Considering Voronoi cell as

V(T) = {p : ∀υ ∈ T ω ∈ S/T, d(p, υ) < d(p, ω)} (13)

The order-k Voronoi diagram can be defined as follows:

Vork(S) =
⋃

V(T), T ⊂ S, |T| = k (14)

The difference from a classic approach is the orthotropic property of the metric space.
This leads to modification of the distance function. For each point, principal directions
can be understood as a local coordinate system, and ellipticity can be understood as the
scale factor for an axis. So, the Euclidean distance with the corresponding scale factor can
be used.

An algorithm for obtaining a generalized Voronoi diagram on orthotropic space has
been developed and is provided below (smoothing structure algorithm). The inputs for
the algorithm include mesh and parameter vector (β, η, and e) distribution, the number
of clusters K, and Voronoi mesh parameters (Ndim and Mdim). The outputs were markup
functions defined as binary maps and clusters data.

The flood fill algorithm for segmented data (see Algorithm 1, smoothing structure
algorithm) was modified for this purpose. To take into account the local ellipticity and its
direction, a Bresenham circle with a radius of 1 was used. To modify the flood fill algorithm,
we introduced the weight at the point. This is an intermediate parameter before filling with
the target color (filling by color if weight was higher than the critical value, denoted as s
in the ColorStep algorithm). To improve accuracy, 8 directions were used in the modified
algorithm (see Algorithm 2, ColorStep algorithm).

The algorithm is illustrated in Figure 1. An example of a 5 × 5 mesh was considered,
with a constant ellipticity value of 0.5 and a critical weight value equal to 3. In Figure 1a,
the first step of the algorithm is illustrated. The initial cell (a cluster center) was filled
with cyan color, and the ellipticity vector is shown by an arrow. Then, according to the
algorithm, the cells were filled in a Bresenham circle with a radius of 1. Thus, in Figure 1b,
the cells in the ellipticity direction were colored in red (with a weight equal to 1), the cells
in the orthogonal direction were colored in blue (with a weight equal to 0.5), and the cells
in other directions were colored in light green (with a weight equal to 0.63). After three
iterations, the weight of the cells accumulated, and critical values appeared in the red cells
(see Figure 1c). This cell was colored according to the algorithm’s terms. Therefore, cyan
and two red cells were added to the list and, for each cell in the list, the same procedure
in a Bresenham circle with a radius of 1 was repeated. In Figure 1d, the next iteration is
illustrated. The ellipticity direction is shown by an arrow (see Figure 1c). In Figure 1d, the
weights are shown after another iteration step. In the ellipticity direction, the weights were
incremented by a value of 1. In the orthogonal direction, the weights were incremented
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by a value of 0.5. In the other directions, the weights were incremented by a value of 0.6.
The total weights are presented in Figure 1d. Such iterations were repeated until the count
of colored cells was less than the limit. The limit value was calculated using porosity and
cluster area (volume) values. The colored cells were interpreted with different meanings.
In this study, the colored cells represented pores.

Algorithm 1. Smoothing structure algorithm

Inputs: mesh, β, η, e, K, Ndim, Mdim
Outputs: Binary map: clMap; clusters: Kmap
newmesh← generate regular mesh (Ndim ×Mdim) in the mesh domain
newmesh← interpolated data of the parameter vector
newmesh← clusterization of newmesh by η on K clusters
color← unique (Kmap)
clMap← 0
For each cluster in Kmap

clMap (cluster.center) = s
stPoint = cluster.center
clMap← ColorStep(clMap, newmesh, cluster, stPoint, color; eps, s)

end for
clMap (clMap ≥ s)← 1
clMap (clMap < s)← 0

Algorithm 2. ColorStep algorithm

Inputs: mapColor, mapData, clusterN, point, color; eps, s
Outputs: mapColor
i← point.i
j← point.j
e←mapData.mainDirection(i, j)
e→ direction: {[0, 1]; [1, 0]; [1, 1]; [−1, 1]}
tangent←map(direction): {[1, 0]; [0, 1]; [−1, 1]; [1, 1]}
diag←map(direction): {[1, 1] and [−1, 1]; [1, 0] and [0, 1]}
ptemp← size (mapColor == s and mapData.cluster = color(clusterN))
ptemp← ptemp/size(mapColor and mapData.cluster = color(clusterN))
β←mapData.ellipticity(i, j)
p←mapData. cluster(clusterN).meanPorosity
If |p(cluster) − ptemp|/ptemp > eps

break
end if
If mapColor [(i,j) ± direction] ̸= s and mapData.cluster = color(clusterN) then
mapColor [(i,j) ± direction] += 1
else

colorStep(mapColor, (i,j) ± direction, β, e, s)
end if
If mapColor [(i,j) ± tangent] ̸= s and mapData.cluster = color(clusterN) then
mapColor [(i,j) ± tangent] += β

else break
colorStep(mapColor, (i,j) ± tangent, β, e, s)

end if
If mapColor [(i,j) ± diag] ̸= s and mapData.cluster = color(clusterN) then
mapColor [(i,j) ± diag] += sqrt(2β2/(β2 + 1))
else

colorStep(mapColor, (i,j) ± diag, β, e, s)
end if
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Figure 1. Illustration of the algorithm: (a)—initial step, (b)—result after 1 iteration, (c)—result after 3
iterations, (d)—result after 4 iterations.

2.3. Test Task

To test the proposed algorithm, test tasks were performed. For this purpose, one cluster
was investigated. Different values of porosity, ellipticity, and the direction of ellipticity
were used to reconstruct the Voronoi cell. The porosity values varied from 0.1 to 0.4 in
steps of 0.05. The ellipticity value varied from 0.1 to 1 in steps of 0.05. The direction value
varied from 0◦ to 90◦ in steps of 5◦. The smoothing structure algorithm was implemented
in Matlab R2019a software.

2.4. Model Task

A rectangular plate of 140 mm × 28 mm × 14 mm (see Figure 2) was used for imple-
mentation of the algorithm. The mechanical behavior of the rectangular plate (region V in
R3) with the boundary ∂V, within the linear theory of elasticity, can be described by the
following system of equations:

→
∇·∼σ = 0, ∀→x ∈ V0 ⊂ R3 (15)

∼
ε =

1
2

(
→
∇→u +

(→
∇→u

)T
)

, ∀→x ∈ V0 ⊂ R3 (16)

∼
σ =

∼
∼
C :
∼
ε, ∀→x ∈ V0 ⊂ R3 (17)

→
u = 0, ∀→x ∈ SF (18)
→
u =

→
u 0, ∀→x ∈ SA (19)

∼
σ·→n = 0, ∀→x ∈ ∂V\(SA ∪ SF) (20)

where V◦ = V ∪ ∂V; u is the displacement vector; σ is the stress tensor; ε is the elastic
strain tensor; and C is the stiffness tensor. SF is the surface with no displacement, and SA is
the surface on which kinematic boundary conditions were specified. n is a normal to the
corresponding surface.
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Figure 2. Loading scheme. u0 is the applied displacement, the blue region is a region of structural
modification (VD), and the green region is a region with no structural modification (VC).

The problem (15)–(20) was solved using the finite element method. Eight-node hexa-
hedral finite elements were used for the calculations. A kinematic loading of 1 mm was
used in the numerical simulation. The length of the kinematic loading region was 20 mm.
So, the region and boundary condition in (15)–(20) can be specified as follows:

V0 : x ∈ [−70, 70], y ∈ [−14, 14], z ∈ [−7, 7] (21)

SA : x ∈ [−10, 10], y = 14, z ∈ [−7, 7] (22)

SF : x ∈ {−70, 70}, y ∈ [−14, 14], z ∈ [−7, 7] (23)
→
u 0 = (0,−1, 0) (24)

According to the method developed in [32], the region was divided by two parts: the
region with and without structural modification. Structural modification leads to changes
in the stiffness tensor values. So, Equations (15)–(24) should be extended as follows:

V = VC ∪VD (25)

VC ∩VD = ∅ (26)

→
p
(→

x
)
= const ⇒

∼
∼
C
(→

x
)
= const, ∀→x ∈ VC (27)

→
p
(→

x
)
̸= const⇒

∼
∼
C
(→

x
)
̸= const, ∀→x ∈ VD (28)

where VC is a region without structural modification and VD is a region with structural
modification.

The loading scheme is presented in Figure 2, where the region VC (with no structural
modification) is marked in green. The end faces of the beam were fixed (18) and (23).
Kinematic loading was applied to the middle of the plate (19) and (22). The parameter
vector distribution was found using the method described in [32]. The stiffness tensor
component values (28) were calculated using the structure parameters in Equation (6) and
the polynomial coefficient values in Table 2.

Table 2. Porosity values in zones for different clusterization cases.

Number of Clusters
Zones

I II III

50 5% 15% 2.8%
75 4.5% 14.8% 2.5%

100 4.3% 14.8% 2.4%

As a result of the method developed in [32], the distribution of parameter vector p in
region V was found. The parameter vector consists of the ellipticity value, the porosity
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value, and the main direction of ellipticity. Then, the computational domain was remeshed
using a Cartesian fine grid (with each edge sized to about 6/100 of the computational
grid). The parameter vector field was smoothed on the Cartesian grid. The parameters
for smoothing were as follows: eps = 0.05 and s = 3. The region V was clustered by
porosity distribution. Three variants of clusterization were used for smoothing: 50, 75,
and 100 clusters. As a result, the segmentation data was obtained. The STL file was
restored using the segmentation data. This STL file can be used for both direct simulation
of the stress–strain state and for manufacturing. The reconstructed smoothed geometry
was simulated in the same problem formulation (15)–(24). Direct simulation of the stress–
strain state was performed using FEM. Ten-node tetrahedral finite elements with quadratic
approximation were used for the direct simulation. The stress and strain field distributions
for the original and smoothed beam were compared. The smoothing structure algorithm
was implemented using Matlab software. The stress–strain problem was solved using
Ansys v. 14 software.

3. Results and Discussion
3.1. Test Task Results

The results for the region with 32 pixels per side are shown in Figure 3. The samples
in the columns in Figure 3 have constant ellipticity values of 1, 0.7, 0.5, and 0.2, respectively.
The samples in the rows in Figure 3 have constant porosity values of 0.2, 0.3, and 0.4,
respectively. The results for different ellipticity directions are shown in Figure 3a, Figure 3b,
and Figure 3c.

Some form deviations were noticed for the spherical pores (ellipticity equal to one)
with porosity values below 0.2. In this case, some hairy pixels were observed (see Figure 3,
with an ellipticity of one and a porosity 0.2). The number of hairy pixels decreased when
the ellipticity was not equal to one (see Figure 3, with a porosity of 0.2).

The form became more accurate as the porosity increased. A representative picture is
shown in Figure 3, with a porosity of 0.3. Hairy pixels occured only when the ellipticity
was 0.2 and the ellipticity direction was 45◦.
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The last porosity value was 0.4. For low ellipticity, in this case, form limitations
appeared due to cluster borders (see Figure 3, with an ellipticity of 0.2 and a porosity of 0.4).

From Figure 3, it is clear that the received forms for cases with an ellipticity direction
of 0◦ and 90◦ were equal within rotation. When the ellipticity direction was 45◦, there were
some deviations. This can be explained by pixel filled density. In the test task, grids with
32 by 32 pixels were used. Increasing this value, on one hand, improves form quality, but
on the other, leads to increasing required memory. This is not important for test tasks but
can be crucial for real problems.

3.2. Lightening of the Original Construction

The initial geometry was divided by two regions: with and without structural modifi-
cation (represented by the blue and green regions in Figure 2, respectively). An eight-node
hexahedral finite element was used for the simulation. The finite element size for the
region with structural modifications was 4 × 4 × 4 mm. The finite element size for the
region without structural modifications was 2 × 4 × 4 mm. Then, the structural design
was performed.
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The stress–strain state for the initial (solid) and the structurally designed plate were
compared. The Cartesian cell size for smoothing was equal to 0.25 mm. The cell size was
defined by the factor of production. The sample porosity was equal to 21%. The critical
accuracy for the porosity values in clusters via smoothing was equal to 5%. So, smooth
geometry was built for three clusterization variants. Clusterization was performed using
porosity distribution. A total of 50, 75, and 100 clusters were used. The sample porosity
for 50, 75, and 100 clusters was equal to 22.8%, 21.8%, and 21.5%, respectively. Compared
with the directly restored geometry [32], the smoothed geometry illustrated qualitatively
good results. The resulting distribution deviated from the initial distribution. This can be
explained by the lack of robustness in the clustering process. The impact of clusterization
deviation on the sample porosity was about 2%. The smoothed geometry was meshed
for the following simulations. A three-point bending simulation was performed using
kinematic loading. Some typical zones were detected. The zones are shown in Figure 4 (the
zones are marked using roman numerals I, II, and III), and the porosity values in the zones
are provided in Table 2.
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First, the displacement filed was analyzed. The displacement on the opposite side
of the loading site was about 0.095 mm, compared to 0.1 mm for the solid sample (with a
relative deviation of 0.5%). The displacement distribution in the longitudinal direction was



Biomimetics 2024, 9, 185 11 of 15

almost the same for all the clusterization cases. Of course, some deviations occured, but
they were insignificant. The displacement fields are shown in Figure 4.

Then, the von Mises stress field was analyzed. The von Mises stresses on the opposite
side of the loading site were about 200 MPa, compared to 240 MPa for the solid sample
(with a relative deviation of 20%). Stress raisers obviously appeared in the location of
kinematic loading and in the corner of the end wall. Hot spot stress (about 200–240 MPa
for 50 clusters) appeared between the pores. This can be explained by local thinning. For
75 and 100 clusters, stress raisers appeared in these parts (box area in Figure 5c,d). The von
Mises stress fields are shown in Figure 5.
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In Figure 6, the critical zones are shown. For 75 clusters, the stress factor appeared in
the arch. This stress factor persisted even for the case of 100 clusters.
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4. Discussion

The resulting structures (see Figure 4) correlate with the results from another research
study [34]. Let us focus on zones. The largest porosity value appeared in zone II (about
15% compared to 2.4–5% in zones I and III). Similar results were obtained in [34], where
the largest porosity value appeared in places close to zones I and II. This difference can be
explained by the applied boundary condition. Thus, in previous research, the end faces
were fixed [32], which led to stress factors in the end face area and additionally resulted
in increased porosity in zone I. In zone III (the kinematic loading area) and II, the pore
shape and shape direction were similar to the ellipticity distribution from [32] and [34].
Using the porosity distribution in [32,34], the structure was directly reconstructed (see
Figure 7a). In this paper, an extension of the Voronoi diagram algorithm to the orthotropic
space was implemented for the same distribution. Numerical calculations showed that
a stable structure appeared when the number of clusters was more than 50. The clusters
of 50, 75, and 100 are shown in different colors in Figure 7b–d. Porosities of less than 1%
were not reconstructed. The resulting pores in each cluster are shown in Figure 7b–d. The
obtained pore distributions are qualitatively similar for both the direct method and the
Voronoi diagram method.

Deviation of the total porosity from the original structure was 8% for the case of
50 clusters and about 2% for the other cases. The resulting designs (Figure 7b–d) are
more technologically advanced. In addition, the data obtained can be directly utilized for
fabrication by laser stereolithography. On the other hand, local stress factors appeared,
which motivates further improvement of the proposed approach. Nevertheless, the devel-
oped approach allows for the reconstruction of porosity based on the distribution of the
parameter vector.

Similar research [35,36] should be highlighted. In the literature, Voronoi-based struc-
tures have been investigated using numerical and full-scale tests. Detected stress factors
are a key problem in the research and in general material design. According to numerical
results, we cannot be sure about the nature of stress factors (whether they are a numerical
or boundary condition problem, or whether they are due to local strength loss). Of course,
a large number of calculations with local remeshing can shed light on this issue, but this
costs time. So, in [35], a biomimetic approach was used. The initial structure was derived
from the wing geometry of the dragonfly Didymops floridensis. The algorithm proposed
in [35] does not take into account changes in stress distribution during structural formation,
and the strength was checked in the full-scale tests after the structure was formed. In [36],
an optimized density map was used for initial data for structural composition. However,
in [36], the thickness of the Voronoi wall depended on local density. Such an approach
indirectly takes into account stress distribution, but only in terms of local isotropy. The
transition to Voronoi cells disrupts the isotropy, leading to the emergence of stress factors.
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Additionally, using only the density map in [36] leads to assuming volumetric stress at
each point.
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Conversely, the presented approach allows for obtaining a Voronoi cell structure while
taking into account both porosity distribution (or the density map) and ellipticity distri-
bution (local stress behavior). Such an approach enables consideration of both principal
stresses, leading to the orthotropic properties of the resulting structure. The presented
results do not contradict existing results and contribute to a broader understanding of
structure design methods. Still, the problem of local strength for the resulting structure
exists, and developing a new method that takes into account stress–strain changes during
structure formation is a pathway for further development.

5. Conclusions

In this article, the extension of the Voronoi diagram algorithm to the orthotropic
space for a material’s structural design is presented. Relevant algorithms and numerical
results are presented. The input data for the proposed method included porosity and
ellipticity fields.

In the numerical results, a beam with fixed end faces and kinematic loading at the
center were used. The porosity field was used for clustering. Cases of 50, 75, and 100 clusters
were presented. Then, the Voronoi diagram algorithm was extended to orthotropic space.
For this purpose, the ellipticity field was used. Local orthotropic directions and ellipticity
were used. The corresponding total porosity values were 22.8%, 21.8%, and 21.5%.

The stress–strain state was investigated for the resulting structures. The maximum
von Mises stress decreased by 20% for all cases of the smoothed structure in the area of
kinematic loading. The maximum von Mises stress increased by 20% for all cases of the
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smoothed structure in the area of the end faces. In the cases of 75 and 100 clusters, a local
stress factor appeared in the smoothed structure. The stiffness for the initial and smoothed
structure was the same.

The proposed algorithm can be improved using a Bresenham circle with a radius of
more than 1. Some smoothing can be applied to the resulting cell map, which can improve
the direct numerical results. This research can be developed for three-dimensional cases.
In addition, the problem of clustering should be mentioned. The number of clusters used
for smoothing is controversial. More research is needed to find the optimal number or
appropriate criteria.

The general pipeline can be formulated to restore geometry. The first step is to
formulate the boundary value problem for the stress–strain state. Then, it is necessary to
find the parameter vector for this problem (the method given in article [32] or another one
can be used). The last step is to apply the proposed Voronoi diagram algorithm to the
parameter vector distribution.
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