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Abstract: In this paper, we address the challenge of ensuring stability in bipedal walking robots
and exoskeletons. We explore the feasibility of real-time implementation for the Predicted Step
Viability algorithm (PSV), a complex multi-step optimization criterion for planning future steps
in bipedal gait. To overcome the high computational cost of the PSV algorithm, we performed an
analysis using 11 classification algorithms and a stacking strategy to predict if a step will be stable or
not. We generated three datasets of increasing complexity through PSV simulations to evaluate the
classification performance. Among the classifiers, k Nearest Neighbors, Support Vector Machine with
Radial Basis Function Kernel, Decision Tree, and Random Forest exhibited superior performance.
Multi-Layer Perceptron also consistently performed well, while linear-based algorithms showed
lower performance. Importantly, the use of stacking did not significantly improve performance. Our
results suggest that the feature vector applied with this approach is applicable across various robotic
models and datasets, provided that training data is balanced and sufficient points are used. Notably,
by leveraging classifiers, we achieved rapid computation of results in less than 1 ms, with minimal
computational cost.

Keywords: biped stability; classification; real-time application; predicted step viability

1. Introduction

The robotics community has always been fascinated by biped walkers. Their humanoid
form and ability to locomote on human-centered environments have sparked interest into
their potential applications. For instance, bipedal robots can replace humans in hazardous
situations, such as landmine-ridden fields or radioactive zones. Or consider the possibility
of exoskeletons aiding human mobility when compromised by neuromuscular diseases.

However, one of the major challenges in designing bipedal robot walkers is the
definition of criteria to generate stable gait trajectories guaranteeing that the robot does
not fall during gait. In humans, a combination of neuromechanical factors results in stable,
robust, versatile, and energy efficient gait [1,2]. However, since the state of the art of motor
control neurophysiology cannot fully model the complete human stability control during
walking, the biomimetic translation of these characteristics into biped robots is not an
easy task. Moreover, the dynamics of biped locomotion is nonlinear, due to its strong
dependency on the system configuration [3], and thus trajectory planning and execution to
ensure stability is a complex problem.

In 1969, Vukobratovic et al. introduced one of the first stability criteria, the Zero
Moment Point (ZMP), for biped robot walking pattern generation and control [4]. The ZMP
is the point on the ground where the resulting torque of inertial and gravitational forces on
the robot has no horizontal component. This requires the resulting forces between the feet
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and the ground to be located within the region defined by the contact between the feet and
the ground.

Although this approach allowed the development of many biped walking robots, the
constraints imposed by the criterion result in some drawbacks on the robot movement. The
need to position the center of pressure (CoP) inside the support polygon implies that the
robot cannot fully exploit the inverse pendulum dynamics. This results in high energy
consumption with a slow and unnatural motion of the robot compared to human walking.
Furthermore, it requires high accuracy in the measurement of the robot joint positions.

Several techniques have been proposed to overcome these limitations. For instance,
in [5] the authors extended the ZMP introducing the Preview Control theory to achieve a
stable gait adapting to uneven terrains. The step capturability criterion (SC), proposed by
Pratt and Tedrake [6], is based on the definition of a point on the ground for foot placement,
in such a way that, reaching this point, the robot can stop at static equilibrium at all joints:
the capture point. This idea has a clear counterpart in the human gait [7], and it also related
to the mechanism employed by humans to recover from a trip [8]. In 2012, Koolen et al. [9]
expanded the SC criterion to the N-Step Capturability (N-SC), in such a way that it is
possible to reach the capture point in a certain number of steps.

Later, the predicted step viability (PSV) was proposed in [10], inspired by the N-SC
idea and the human ability to recover from perturbations, such as tripping. In this way,
a gait is considered stable if the biped is able to reach a capture point in a finite time. It
reduces the constraints imposed to the current step in such a way that it only has to end in
a configuration that future steps are able to bring the robot to a capture point.

To determine the capability of the biped to reach a capture point, the PSV has to plan
the desired gait pattern and verify whether this pattern satisfies the stability criterion at
the beginning of each step. This is achieved via a multiphase optimization proble as it is
based on the predicted behavior of future steps. Using this criterion, the gait pattern can
be non-cyclic as the human gait while walking on irregular surfaces. Given some desired
gait parameters such as step length, center of mass (CoM), height, horizontal velocity, and
trunk inclination, the algorithm optimizes the step to get as close to these parameters as
possible while reducing the capture point distance and adjusting other parameters such
as the step duration, advancing or delaying the foot contact as needed. This means that
the algorithm can self-adapt to maintain critical constraints but ensure fast recoverability
as it is found in the human gait when recovering from a trip [8]. The major limitation of
the PSV is the complexity of the optimization to plan each step. Since the algorithm uses
the complete robot dynamics to assess the recoverability of each possible step, it cannot be
directly applied to control a biped robot in real-time.

In summary, the PSV is a powerful stability and trajectory planning criterion that
optimizes joint trajectories to minimize consumption and maximize stability, ensuring the
existence of subsequent stable steps. However, in its analytic formulation, it is impossible
to apply to real-time embedded systems. In this paper, we explore machine-learning-based
solutions that are able to implement the PSV stability criterion in real time, i.e., classify
whether the step is going to be stable or not. We will analyze a set of classifiers coming
from different classification paradigms. We will test and compare them in 5-segment biped
walkers, such as robots and exoskeletons.

2. Materials and Methods
2.1. Predicted Step Viability

In the PSV, the current step is planned to guarantee that the next step exists on which
the robot is capable of either reducing or maintaining the capture point distance [10]. This
multistage optimization problem guarantees the stability of the robot and the viability of
subsequent steps, along with minimizing energy consumption. Figure 1 shows a visual
explanation of the basis of the PSV criterion.
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Figure 1. Visual representation of the PSV criterion. Source: adapted from [10].

Given an initial distance to the capture point ric(S1), on which S1 is the set of initial
conditions (positions and velocities) of the robot, and a fixed set of actuations U1, the
robot will drive itself to a given configuration S3, defined by a fixed distance from the
support point X(S3), in a given time T(S1, X(S3)). This movement is ruled mostly by the
exponential diversion of the capture point and thus the passive joint. In this situation, for
a second, closer capture point position ric(S2), the robot will have a time T(S2, X(S3)) >
T(S1, X(S3)) to drive itself to the same configuration S3 using an actuation U2 ≤ U1.
Consequently, if the robot can perform the same step, using a higher actuation U2 < U3 ≤
UMAX, we will have t3 < t2 and consequently finish the step with a capture point closer
than with the previous actuation.

If a possible step exists that reduces the capture point distance in the next step, then the
following step that will further reduce it will also exist. Therefore, the robot can eventually
bring itself to a full stop, in the absence of external disturbances. Conversely, if there is no
possible step that can at least maintain the current distance to the capture point, then a fall
is inevitable.

The PSV is a powerful stability and trajectory planning algorithm that guarantees the
stability of the current step and the existence of all subsequent steps. Simultaneously, the
PSV also aims at enhancing the step feasibility by optimizing a cost function that includes
the maximum joint torques, the trunk inclination, and the maximum step length. Notably,
other parameters are not needed, such as stepping time, which allows anticipation or delay
in contact with the floor as needed to guarantee stability. This maintains the generality of
the method while increasing the robustness to external disturbances. However, the main
drawback of the method lies in the multistage optimization problem that must be solved
to plan the trajectory and check the recoverability of the current step, thus rendering its
application in real time impossible with current technology.

2.2. Robot Model

In this work, two different biped robot models were used to assess the capability of
the proposed method to work with different bipeds and the generalizability of each set of
trained classifiers to work with different models. The parameters of each biped can be seen
in Tables 1 and 2. While the first represents an adult-size full body exoskeleton, the second
represents the parameters of a small-sized robot.

Both models are modified versions of the classic 5-segment robot with point feet
RABBIT [11]. They consist of five segments with known center-of-mass positions. The
angles are defined with respect to the vertical as shown in Figure 2. All signal conventions
follow the trigonometric circle convention. Motion is limited to the sagital plane, and thus
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there is no collision between parts of the robot. Also, the feet, as in the original RABBIT
model, are punctual and have a collision box with the ground. Moreover, the robot is
modular, with the mass, length, CoM position, and inertia of segments 1 and 2 being equal
to 4 and 5. Finally, segment 3 models the torso of the robot, which contains most of the
mass and thus governs the CoM position.

Figure 2. Planar 5-segment robot based on RABBIT.

Table 1. Exoskeleton model parameters.

Index

1 and 5 2 and 4 3

mass (m) 3.2 kg 6.8 kg 20 kg

length (l) 0.4 m 0.4 m 0.625 m

Inertia (I) 0.93 kg · m2 1.08 kg · m2 2.22 kg · m2

distance (c) 0.128 m 0.163 m 0.2 m

Umax 300 N · m

Table 2. Robotic model parameters.

Index

1 and 5 2 and 4 3

mass (m) 0.254 kg 0.780 kg 3.861 kg

length (l) 0.15 m 0.15 m 0.2095 m

Inertia (I) 4.34 kg · cm2 8.74 kg · cm2 141.48 kg · cm2

distance (c) 0.090 m 0.085 m 0.138 m

Umax 11.3 N · m

The PSV method was implemented as described by Rossi et al. in [10], and a set of
simulations were performed to map the initial and end-step conditions of the biped for
each initial configuration. The result of the algorithm, which means whether or not the
robot managed to reduce the distance to the capture point (i.e., the step is recoverable), is
also registered for posterior analysis.

The set of all possible initial conditions for the robot are defined with three constraints.
First, the front leg and the torso must not initially be bent backward to prevent a step back
from the robot. For the same reason, all joint velocities must be negative according to the
angle convention presented in Figure 2. Second, the internal angles between the robots
thighs and legs must be positive but smaller than π (i.e., the leg cannot be bent forward).
And third, both feet must be touching the ground at the beginning of the step and the swing
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foot starting position must be behind the support foot. They are formulated mathematically
using the following equations:

q1 ∈]− (π/2); 0] and q̇1 < 0
q2 ∈]q1; π + q1] and q̇2 < 0
q3 ∈]− (π/2); 0] and q̇3 < 0

q4 ∈] arccos( l1 cos(q1)+l2 cos(q2)
l1+l2

); q2] and q̇4 < 0

q5 = arccos( l1 cos(q1)+l2 cos(q2)−l2 cos(q4)
l1

) and q̇5 < 0

2.3. Datasets

Three increasingly difficult data sets were generated to assess the viability of the
approach and to test the robustness and generalization of each classifier.

The first dataset presents an exploration of the complete set of joint angles for the
robot while keeping the initial velocity for each point of the dataset constant for each joint
and with a value of −1 rad/s. No constraints on the evolution of joint angles and velocities
were imposed other than the mechanical limits of the robot and the maximum torque of the
motors. This dataset allows for the exploration of which extreme conditions, which could
arise after slipping or external influence, for instance, could still be recoverable. The value
of −1 rad/s was chosen as a compromise between the fast and slow movements of the
swing and stance legs, respectively. At the same time, we analyzed the theoretical initial
n-step capturability of the system for each condition and verified if the chosen value would
result in a distribution across all of the theoretically recoverable zones, while minimizing
points above n∞. A finer discretization of the workspace is performed around the angles
of each segment. The discretization step was set to 0.157 rad. A total of 30.370 different
conditions were simulated with the exoskeleton model for this data set, of which 11.4%
were recoverable steps.

For the second dataset, both position and velocity were explored. We maintained the
same workspace for the position but increased the step to 0.5240 rad. As for velocity, we
gradually increased the maximum angular velocity and compared the resulting theoretical
n-step capturability of each condition. The maximum velocity was chosen so that most
points would fall within the theoretically recoverable zone by the n-step criterion. The
chosen range for velocities was from −1 to −10 rad/s, with 2 increments of 4.5 rad/s.
However, since the possible configuration of the robot could differ largely from the ideal
scenario on which the inverted pendulum model is based, and there was a large excursion
of the center of mass both horizontally and vertically, most of the points would result in a
fall. A total of 67.068 different conditions were simulated with the robotic model, of which
4.6% were recoverable steps.

These datasets were used to assess the effect of the dataset on the training and the
sensitivity to unbalanced data. By analyzing their combined results, we explore how
important initial velocity can be for the overall performance of the classifier or if the
position mostly dictates the recoverability.

The third dataset was chosen to better represent the operation point of the biped robot.
Three constraints were applied to the initial conditions of interest to obtain a balanced
dataset, i.e., a dataset with a similar number of recoverable and non-recoverable steps. First,
we limit the height of the CoM in the initial configuration to be above 74% of the CoM that
the human gait resized to the robot’s parameters would have. Second, we limit the initial
vertical velocity of the CoM to be above −0.6 m/s. Third, we calculate the theoretical n-step
capturability of each condition and remove all points that would theoretically need more
than 3 steps to reach the capture point. Finally, since some of the points were removed due
to the 3 rules, we chose a finer step of 0.3140 rads for position exploration and 3 rad/s for
velocity exploration. A total of 74.618 different conditions were simulated with the robotic
model, of which 44.4% were recoverable steps.
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2.4. Classification

We trained 11 different classifiers to predict whether a given step falls within either
the stability region or the no-recovery zone for each dataset. They are: Naive Bayes (NB),
Logistic Regression (LogReg), k-Nearest Neighbors (KNN), Support Vector Machine with
Linear Kernel (SVM-L), Support Vector Machine with Radial Basis Function Kernel (SVM-
RBF), Decision Tree (DT), Random Forest (RF), Adaboost (ADA), Quadratic Discriminant
Analysis (QDA), Linear Discriminant Analysis (LDA), and Multi-Layer Perceptron (MLP).
They were selected to explore various classification approaches, spanning from linear to
non-linear, parametric to non-parametric, and generative to discriminative solutions [12,13].
In addition, we introduced an ensemble approach that consolidates the outputs generated
by each individual classifier. Except for MLP, all of the preceding methods are combined
using the stacking technique [14]. Since we are only interested in real-time and simple
implementations, we did not consider any deep-learning-based approaches.

The input feature vector x = [x1, . . . , x15] comprises the positions x1, . . . , x5 and veloci-
ties x6, . . . , x10 of five segments illustrated in Figure 2; the center-of-mass (CoM) position
vector x11, x12 and velocity x13, x14; and the relative position of the capture point concerning
the support feet x15. This approach indirectly incorporates robot-model-related information
without the necessity of including mass or inertia distribution, which would tie the solution
to a specific model. Due to the prevalence of unstable conditions stemming from extreme
robot configurations, resampling was essential for training the classifiers in datasets 1 and 2.
The Synthetic Minority Oversampling Technique (SMOTE) with 9 neighbors was employed
to balance these datasets [15].

2.5. Model Training and Validation

The nested holdout validation strategy was implemented to find the optimal hyper-
parameters of each classifier. In total, 70% of the data (outer set) was set aside for the
optimization of the hyperparameters. From this subset, 70% was used to train each classi-
fier with each hyperparameter on a grid search paradigm, while the remaining 30% was
used to test each classifier and choose the best one. After finding the best hyperparameters,
each classifier is retrained in the totality of the Outer Setand the remaining data are used to
compute the final score of each method, referred to as Validate Set. Figure 3 summarizes
the data distribution for each stage. Each of the 11 classifiers follows the same procedure.

Figure 3. Visual representation of the data division sets used in this work.

It is reasonable to expect that, under normal conditions, undisturbed robotic gait will
mostly comprise recoverable points. Nonetheless, it is important that the classifiers are able
to identify when we have exited this stability zone and should increase gait robustness or
prepare for a fall. In this scenario, there is a prevalence distinction on the stable class from
training data and real use scenarios. Therefore, the scoring method for the classifiers should
be independent from the class prevalence so we do not introduce a bias in our training.
In this way, the performance of training and real life should be the same. So, we must
be careful in the selection of the metric to be used for the hyperparameter optimization,
e.g., in [16] it is explained why the use of f1-score could lead to problems if there is a large
difference between the prevalence of stable class on training and application. In our case,
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we used the balanced accuracy since it is not affected by the prevalence of the classes, so
there is not a risk of obtaining a biased classifier in favor of one of the two classes. Once the
hyperparameters for the corresponding classifier are optimized, each classifier is run (for
each dataset) and different metrics are calculated: balanced accuracy, ROC AUC, f1 score,
average precision, precision, recall, specificity, and negative predictive value (NPV) [17], as
well as the time taken for a prediction for trained classifiers.

In the biped gait framework, falsely identifying a condition as belonging to the stability
region can lead to damage to the device or, in the case of exoskeletons, to the wearer. On
the other hand, falsely identifying a condition as part of the no-recovery zone would lead
to increased computational costs as the algorithm would try to increase robustness of
the gait to recover from instability or prepare to minimize damage in an eventual fall.
Since misidentification is expected to occur around the boundary of regions, increasing
the robustness of gait on a false negative (FN) can lead to faster recovery and convergence
towards a more stable region in a situation that, while still stable, would be approaching an
irrecoverable situation. On the other hand, not trying to do so in a false positive (FP) could
distance the robot even further from the boundary, resulting in a completely irrecoverable
situation and unavoidable fall. For this reason, while both are not ideal and should be
avoided, the FP are more problematic.

Finally, an Out-of-Sample evaluation was performed by running the trained classifiers
of all datasets on the validating set of each data set and comparing the percentage of TP, TN,
FP, and FN within each data set. Since each dataset has different prevalences of positive and
negative classes, the percentage of each prediction is given to simplify a direct comparison.
This way, we can verify if models hold their performance when applied to datasets other
than those on which they were trained on and, thus, if the classifier could be generalized
for a broader range of robots or must be model specific.

2.6. Robotic Simulation Validation

Finally, to validate the results obtained with the training of the classifiers on the PSV
output, a numerical simulation of the robotic model described in Table 2 and used for
datasets 2 and 3 was performed. MATLAB version: 9.14.0 (R2023a) (The MathWorks Inc.,
Natick, MA, USA) was used in this step. At the end of each step, the procedure described
in [18] was used to compute the new states of the robot post impact.

A motion planner was implemented as described in [19] to control the robot states.
The states considered and that were controlled in this study are:

1. Torso inclination in respect to the vertical (Γ);
2. Vertical position of the center of mass (CoMy);
3. Both vertical and horizontal position of the swing foot (Pswx , Pswy );

Similar to [18], our robot employs Bézier Curves to interpolate and smooth the trajec-
tories for motion planning. The use of Bézier curves allow one to accommodate for initial
derivatives at the beginning of the step, thus minimizing required torque, while at the
same time having a controlled evolution to the desired end condition. In this study, the
torso reference was kept vertical, and CoM height was kept constant at a height equivalent
to the human CoM resized to the robot’s dimensions. Swing foot height initially follows
the derivative resulting from the impact dynamics and is then kept at a constant height
before being projected to the ground. Finally, on each iteration of the control loop, the
diversion of the capture point position at the end of the step is estimated, based on its
current position and the planned step duration. The Bézier points are then updated based
on the new prediction, to smooth the step trajectory at a fixed distance from it.

The simulation was repeated with increasing levels of disturbancies, from model
mismatch, sensing noises, terrain irregulaties, and pushes. For model mismatch, a random
difference up to 50% was added or subtracted to the robot model but not to the controller
model. The mass, inertia, and center of mass positions were varied. Encoder sensing noise
was modeled as the sum of two Bernoulli sequences, one positive and one negative, with a
probability 99% of being kept at zero, while tachometer noise was modeled as Gaussian
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noise. Finally, both the push and the terrain inclination were sequentially increased until
the control could no longer stabilize the robot, leading to a fall. In all cases, the disturbance
was introduced in the 5th step to give the robot time to reach steady state before introducing
them and was kept untill the 50th step.

We then proceeded to use the best performing classifiers to predict the recoverability
of each step using only the initial conditions of each step.

3. Results
3.1. Real-Time Performance

One of the motivations of this work is to prove that it is possible to obtain an accurate
prediction of the PSV criterion in real time. Although in this study only the stability evalua-
tion of the PSV is being reproduced and not the trajectory planning, all of the proposed
methods managed to reduce the computation time of the PSV algorithm significantly,
allowing for their real-time use. The neural network classifier requires more time due to the
complexity of the model as expected: near 5 ms per prediction when applied on a raspberry
pi 3 model B, Raspberry Pi Foundation, Pencoed, Wales, UK. KNN and SVM-RBF took
1 ms amd 800 µs, respectively. For the rest of classifiers, the response is even faster. When it
comes to the stacking classifier, the total time to compute an answer was close to the sum
of the individual times of the involved methods, taking around 6 ms.

3.2. Classification

Tables 3–5 summarize the results for each classifier for the validation of the set of data
in datasets 1, 2 and 3, respectively. For the comparison of the different results, we will
analyze the sensitivity, also known as true positive rate (TPR); the specificity, also known
as true negative rate (TNR); and the balanced accuracy (BAcc). A visual representation of
these metrics for each algorithm and dataset is given in Figure 4. As a visual summary, in
Figure 5 we show the overall performance of each classifier.

We can see in Figure 4 that SVM-RBF performs well in all datasets and metrics; it is
consistently ranked in the top three classifiers and always at least in the top five. MLP,
RF, DT, stacking, and KNN also consistently rank highly. In terms of TNR, DT, RF, and
SVM-RBF obtained the best performances in dataset 3; SVM-RBF, stacking, and MLP
performed better in dataset 2; and DT, RF, and stacking performed better in dataset 1.
Moreover, we can see that there is a clear drop in performance in dataset 3, with the best
three classifiers having around 93% TNR in dataset 1, over 95% in dataset 2, and around
84% in dataset 3. Looking exclusively at FP, this translates to around 6%, 4.37%, and 9.14%
FP misidentification for datasets 1, 2, and 3, respectively. At the same time, we found that
KNN also managed to retain high TNR in all three datasets. When it comes to TPR, SVM-
RBF still performed well, scoring 99%, 94%, and 83%, respectively. We found, however,
that LDA and QDA performed well in dataset 1 and 2 in this scoring but performed worse
for TNR in dataset 3.

While SVM-RBF, MLP, DT, RF, KNN, and the stacking of methods had significantly
high balanced accuracies, LDA, QDA, SVM-L, NB, and LogReg had significantly worse
performances. In all cases, the TNR of these methods was worse, albeit at times they had
high TPR. Balanced Accuracy was consistently worse than the other methods. When it
came to dataset 3, the NPV of these methods was also lower, indicating that the algorithm
found it difficult to properly separate regions within the data set.

All of the methods performed worse in dataset 3, which had a more focused distri-
bution of points and contained more points around the boundary between stability and
no-recovery zones, making the problem much harder. DT and the stacking method had the
greatest performance reduction when compared to dataset 1. RF, MLP, and SVM-RBF were
the algorithms that were more robust to this dataset, maintaining high balanced accuracy.
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Table 3. Summary of results of data set I with balanced accuracy as the main metric.

Method B. Acc. ROC AUC f1 Avg. Prec. Prec. Recall Specificity NPV

NB 0.9109 0.9109 0.6253 0.4506 0.4620 0.9674 0.8545 0.9951
LogReg 0.9229 0.9229 0.6875 0.5175 0.5383 0.8410 0.8946 0.9930

KNN 0.9369 0.9369 0.7096 0.5464 0.5584 0.9731 0.9006 0.9962
SVM-L 0.9226 0.9226 0.6796 0.5090 0.5273 0.9558 0.8893 0.9936

SVM-RBF 0.9569 0.9569 0.7649 0.6183 0.6227 0.9914 0.9224 0.9988
DT 0.9442 0.9442 0.7806 0.6352 0.6620 0.9510 0.9373 0.9933
RF 0.9506 0.9506 0.7861 0.6439 0.6634 0.9645 0.9368 0.9951

AdaBoost 0.9309 0.9309 0.7213 0.5580 0.5813 0.9501 0.9116 0.9930
QDA 0.9090 0.9090 0.6131 0.4385 0.4475 0.9731 0.8448 0.9959
LDA 0.9115 0.9115 0.6155 0.4417 0.4491 0.9779 0.8451 0.9966

Ensemble 0.9442 0.9442 0.7806 0.6352 0.6620 0.9510 0.9373 0.9933
MLP 0.9551 0.9551 0.7688 0.6227 0.6306 0.9846 0.9255 0.9979

Table 4. Summary of results of data set II with balanced accuracy as the main metric.

Method B. Acc. ROC AUC f1 Avg. Prec. Prec. Recall Specificity NPV

NB 0.8659 0.8659 0.3649 0.2068 0.2308 0.8702 0.8615 0.9929
LogReg 0.8929 0.8929 0.4093 0.2439 0.2644 0.9062 0.8796 0.9949

KNN 0.9188 0.9188 0.4361 0.2716 0.2827 0.9531 0.8845 0.9975
SVM-L 0.8960 0.8960 0.4025 0.2404 0.2577 0.9182 0.8737 0.9956

SVM-RBF 0.9475 0.9475 0.6570 0.4772 0.5053 0.9389 0.9561 0.9970
DT 0.9239 0.9239 0.4739 0.3014 0.3162 0.9455 0.9024 0.9971
RF 0.9235 0.9235 0.4674 0.2964 0.3102 0.9476 0.8994 0.9972

AdaBoost 0.8918 0.8918 0.4557 0.2757 0.3077 0.8779 0.9057 0.9936
QDA 0.9007 0.9007 0.3604 0.3215 0.2217 0.9629 0.8386 0.9979
LDA 0.8798 0.8798 0.3642 0.2108 0.2279 0.9062 0.8534 0.9948

Ensemble 0.9475 0.9475 0.6570 0.4772 0.5053 0.9389 0.9561 0.9970
MLP 0.9435 0.9435 0.6293 0.4467 0.4738 0.9367 0.9503 0.9968

Table 5. Summary of results of data set III with balanced accuracy as the main metric.

Method B. Acc. ROC AUC f1 Avg. Prec. Prec. Recall Specificity NPV

NB 0.6747 0.6747 0.6346 0.5688 0.6436 0.6259 0.7235 0.7080
LogReg 0.7178 0.7178 0.6934 0.6059 0.6689 0.7198 0.7158 0.7621

KNN 0.8148 0.8148 0.7960 0.7163 0.7784 0.8145 0.8150 0.8463
SVM-L 0.7176 0.7176 0.6934 0.6056 0.6684 0.7203 0.7149 0.7622

SVM-RBF 0.8329 0.8329 0.8156 0.7400 0.7999 0.8320 0.8339 0.8615
DT 0.8106 0.8106 0.7903 0.7142 0.7827 0.7979 0.8233 0.8363
RF 0.8377 0.8377 0.8199 0.7497 0.8143 0.8255 0.8498 0.8593

AdaBoost 0.7761 0.7761 0.7542 0.6700 0.7365 0.7728 0.7794 0.8113
QDA 0.7334 0.7334 0.7234 0.6132 0.6526 0.8115 0.6553 0.8134
LDA 0.7150 0.7150 0.6909 0.6029 0.6650 0.7190 0.7111 0.7603

Ensemble 0.8147 0.8147 0.7960 0.7163 0.7784 0.8145 0.8150 0.8463
MLP 0.8348 0.8348 0.8185 0.7390 0.7926 0.8463 0.8233 0.8704
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Summary of the three main metrics of all classifiers in all datasets. (a) TPR dataset 1.
(b) TNR dataset 1. (c) BAcc dataset 1. (d) TNR dataset 2. (e) TPR dataset 2. (f) BAcc dataset 2. (g) TPR
dataset 3. (h) TNR dataset 3. (i) BAcc dataset 3.
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Figure 5. Summary of the results of each classifier for each dataset.

3.3. Stacking Performance

The use of the stacking strategy to combine the different classifiers did not improve the
overall performance. In all cases, the stacking results were worse than the ones obtained
with the best single algorithm. Most notably, SVM-RBF outperformed the stacking method
for all conditions, except TNR in dataset 1, while having a significant lower prediction
average time.

3.4. Out-of-Sample Validation

Each trained classifier was tested on all data sets to compare the performance on a
data set other than the one it was trained on. Tables 6–8 summarize the results.

When it comes to model translation, our results show that there is performance
reduction when using a classifier trained on one model on top of another and that it is
much greater if there is also a significant difference in data set form. Tables 6 and 7 show
that there is a significant increase in either FP and FN for all classifiers, except when trained
with dataset 3.

All classifiers trained in dataset 2 performed worse when applied to the other datasets.
Out of the best performing ones, DT and RF saw the least significant performance reduction
when applied to dataset 1. These algorithms had 4.7% and 3.9% more FP, and 0.4% and
0.3% more FN, respectively, for a total of 14% and 13.5% FP, or 84.1% and 84.8% TNR, and
0.6% and 0.5% FN, or 94.4% and 95.1% TPR, respectively. However, even if the performance
decreases of other methods such as SVM-RBF and stacking were greater, since they had
better performances in dataset 2, the overall performance was very similar with 14.3% FP
and 0.8% FN for both. KNN and MLP saw a much more significant performance decrease,
on the other hand. When applied to dataset 3, however, the performance reduction was
much more expresive for all methods, having more than 20% extra FP for all methods.

When trained in dataset 1, only MLP managed to retain performance when tested
with data set 2. It showed a small increase in both misidentifications, having 3.8% extra FP
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and 0.7% extra FN, for 89.1% TNR and 80.4% TPR. When applied to dataset 3, all methods
had significant performance reduction.

Finally, when it comes to dataset 3’s trained classifiers, SVM-RBF and MLP performed
well on both datasets. However, since the number of true positives in datasets 1 and 2 is
smaller than in dataset 3, the small increase in misdentification resulted in a lower TPR.
SVM-RBF had a total of 91.3% TNR and 68.9% TPR in dataset 1, and a similar 99% TNR
and 61.1% TPR in dataset 2. MLP, on the other hand, had 88.6% TNR and 89.1% TPR in
dataset 1, and 99% TNR and 66.5% TPR in dataset 2.

Table 6. Out-of-set validation of data set I classifiers.

Method TP 1 TN 1 FP 1 FN 1 TP 2 TN 2 FP 2 FN 2 TP 3 TN 3 FP 3 FN 3

NB 11.06 75.68 12.89 0.37 1.17 56.35 39.09 3.39 11.65 40.63 15.00 32.72
LogReg 10.88 79.23 9.33 0.56 4.22 57.76 37.69 0.33 41.83 6.42 49.20 2.55

KNN 11.13 79.76 8.80 0.31 4.36 34.80 60.64 0.19 43.31 3.64 51.98 1.07
SVM_linear 10.93 78.76 9.80 0.50 4.31 50.79 44.65 0.25 42.16 5.44 50.18 2.22
SVM_RBF 11.34 81.69 6.87 0.10 0.05 95.41 0.03 4.51 0.22 55.60 0.02 44.15

DT 10.88 83.01 5.55 0.56 3.11 71.39 24.05 1.45 28.16 27.43 28.20 16.22
RF 11.03 82.97 5.60 0.41 3.11 78.45 16.99 1.45 27.90 27.85 27.77 16.47

AdaBoost 10.87 80.74 7.83 0.57 1.83 77.10 18.34 2.73 22.65 28.37 27.25 21.73
QDA 11.13 74.82 13.74 0.31 0.33 94.32 1.12 4.23 4.48 52.20 3.42 39.89
LDA 11.18 74.84 13.72 0.25 3.19 75.19 20.26 1.37 33.17 24.69 30.93 11.20

Ensemble 10.88 83.01 5.55 0.56 3.11 71.39 24.05 1.45 28.16 27.43 28.20 16.22
MLP 11.26 81.97 6.60 0.18 3.66 85.01 10.43 0.89 39.12 19.78 35.84 5.26

Table 7. Out-of-set validation of data set II classifiers.

Method TP 1 TN 1 FP 1 FN 1 TP 2 TN 2 FP 2 FN 2 TP 3 TN 3 FP 3 FN 3

NB 10.36 73.88 14.69 1.08 3.97 82.23 13.22 0.59 42.90 3.58 52.05 1.47
LogReg 11.33 15.84 72.73 0.11 4.13 83.95 11.49 0.43 43.82 9.73 45.89 0.55

KNN 11.27 55.04 33.52 0.16 4.34 84.42 11.02 0.21 43.93 9.91 45.71 0.45
SVM_linear 11.33 18.85 69.72 0.11 4.18 83.39 12.05 0.37 44.13 7.73 47.89 0.25
SVM_RBF 10.62 74.23 14.33 0.81 4.28 91.25 4.19 0.28 41.68 28.45 27.17 2.69

DT 10.80 74.49 14.07 0.64 4.31 86.12 9.32 0.25 43.29 10.54 45.09 1.09
RF 10.88 75.09 13.48 0.56 4.32 85.84 9.60 0.24 44.14 8.78 46.85 0.23

AdaBoost 11.03 67.69 20.88 0.41 4.00 86.44 9.00 0.56 44.29 2.67 52.96 0.08
QDA 8.60 78.20 10.36 2.83 4.39 80.04 15.41 0.17 44.28 3.12 52.50 0.09
LDA 10.88 61.63 26.93 0.56 4.13 81.45 13.99 0.43 44.25 3.96 51.66 0.13

Ensemble 10.62 74.23 14.33 0.81 4.28 91.25 4.19 0.28 41.68 28.45 27.17 2.69
MLP 10.98 50.46 38.11 0.46 4.27 90.70 4.74 0.29 42.48 25.73 29.89 1.89

Table 8. Out-of-set validation of data set III classifiers.

Method TP 1 TN 1 FP 1 FN 1 TP 2 TN 2 FP 2 FN 2 TP 3 TN 3 FP 3 FN 3

NB 8.78 72.36 16.20 2.66 2.54 89.59 5.85 2.02 27.78 40.24 15.38 16.60
LogReg 10.38 14.47 74.10 1.05 2.78 91.14 4.30 1.77 31.94 39.82 15.81 12.43

KNN 10.38 35.79 52.77 1.05 3.33 84.85 10.60 1.23 36.14 45.34 10.29 8.23
SVM_linear 10.38 15.46 73.10 1.05 2.79 91.39 4.06 1.76 31.97 39.77 15.86 12.41
SVM_RBF 7.88 80.88 7.68 3.56 2.78 94.47 0.97 1.77 36.92 46.39 9.24 7.46

DT 11.05 7.99 80.57 0.38 3.17 84.93 10.52 1.39 35.41 45.80 9.83 8.97
RF 10.90 24.28 64.28 0.54 3.40 85.43 10.01 1.16 36.63 47.27 8.35 7.74

AdaBoost 11.26 5.78 82.78 0.18 3.14 85.57 9.87 1.42 34.29 43.35 12.27 10.08
QDA 4.63 83.60 4.96 6.80 3.10 90.09 5.35 1.46 36.01 36.45 19.17 8.36
LDA 10.41 17.59 70.97 1.03 2.78 91.69 3.75 1.78 31.90 39.56 16.07 12.47

Ensemble 10.38 35.79 52.77 1.05 3.33 84.85 10.60 1.23 36.14 45.34 10.29 8.23
MLP 10.19 78.49 10.08 1.25 3.03 94.52 0.92 1.53 37.55 45.80 9.83 6.82
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3.5. Simulation Results

KNN, DT, RF, and SVM-RBF were used to predict the stability of each step in increas-
ingly unstable conditions. All four classifiers managed to successfully identify that the
steps were recoverable in all conditions, with all degrees of disturbances. Terrain inclination
varied from −3º (−5.2%) to 20º (36.4%), while a constant push was applied to the robots
hip of up to 7N (12% of robot’s mass).

In conclusion, the results obtained for all these experiments prove that it is possible to
provide an embeddable real-time classifier that can replace the PSV analytical formulation
in a real robot.

4. Discussion

Accurately and rapidly identifying unstable conditions that could lead to a fall is
critical for ensuring the integrity of biped robots and exoskeletons alike. Machine learn-
ing techniques have become increasingly common due to their versatility, accuracy, and
speed of prediction, managing to combine information from complex and varied sources to
overcome the limitations of simpler models and the computational cost of complete dy-
namic models. Over the years, different groups have studied how to best combine various
sensors to correctly classify the stability of the gait. Solutions have ranged from inertia
measurement units on multiple body parts [20], to integrating trunk acceleration and CoP
position [21], or using physical quantities derived from the robots’ own sensors [22]. Input
features and training data are critical for the success of such techniques. As such, using
complex models that can extract more information about the robots’ gait and including
both kinetic and dynamic information on the input feature could be the best approach to
ensure the generalization and accuracy of ML-based techniques. Despite researchers’ best
efforts, some conditions that may arise during walking are simply irrecoverable. For these,
other groups have studied how to minimize potential damage to the system [23,24].

In our work, we thoroughly examined different classifiers to assess the viability of
implementing the PSV stability criterion in a real-world robotic system under real-time
constraints while also focusing on minimizing computational cost and energy consumption.
Additionally, we investigated the generalizability of our findings across two biped models
and three datasets. This is crucial because maintaining robustness against model parameters
is essential for lower limb exoskeletons. While the number of degrees of freedom remains
consistent across different users, variables like mass, the segment center of mass positions,
and inertia vary significantly. So, a stability classifier can adapt to these variations to
ensure safe exoskeleton operation for different users. To test this adaptability, we evaluated
the classifiers by training and testing them on a biped system that has different inertial
parameters yet with the same number of degrees of freedom.

All the classifiers investigated in this study significantly simplified the PSV algorithm
complexity, reducing the prediction time to less than 5 ms, which is adequate for real-time
applications. Since robotic systems often operate at sampling frequencies of 1 kHz or
higher, it is essential to note that this prediction only needs to run once per step. In this
scenario, it is possible to assess stability separately and in parallel with trajectory planning
computation and execution.

While the joint control loop could be run at 1 kHz, the step period could range from
400 ms to 1 s depending on the biped robot size. In this case, the 0.8 ms classification delay
shown by the SVM-RBF corresponds to less than 0.25% of the stepping time. Furthermore,
our simulations demonstrated that the strategy is robust to model mismatch, sensing
errors, and light disturbances in both the terrain inclination and pushes, further validating
the model’s efficacy. For this reason, SVM-RBF performed better in this criterion as the
lower computational time with respect to MLP allows for the computation of the predicted
stability of several steps ahead when planing trajectory.

Among the classifiers, SVM-RBF, MLP, RF, DT, and KNN obtained the best results, con-
sistently ranking at the top of the different TPR, TNR, and BAcc metrics. The performance
of the joint method of stacking all classifiers was similar to that of the highest performing
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individual classifiers. Due to its higher computational cost, further analysis ruled out the
stacking method.

SVM-RBF and MLP demonstrated higher recall and specificity than the other methods.
However, KNN consistently had more mislabeling of FP, as depicted by a lower precision and
specificty, despite its high recall and low false negatives. It is also important to note that in this
case, false positives FP are much more harmful than false negatives FN. While an FN would
induce additional resource use from the robot to increase step robustness (e.g., by reducing
center of mass and increasing step length and cadence for a few steps), an FP could result in a
fall, possibly damaging hardware or, in the case of exoskeletons, the wearer.

KNN, SVM-RBF, DT, and RF demonstrated excellent performance when dealing with
distinct boundaries between classes (recoverable and non-recoverable zones). KNN’s non-
parametric nature allows it to thrive on local data distributions, making it effective for
well-separated classes. DT and RF excel in partitioning informative features recursively, ac-
commodating non-linear relationships and capturing interactions among features, thereby
leveraging clear data separation. Meanwhile, SVM-RBF’s capability to create non-linear
decision boundaries by mapping the feature space to higher dimensions becomes advan-
tageous when distinct and well-defined regions exist within the feature space, aligning
with our well-separable stable and non-recovery zones. The overall high performance of
these four methods indicates a clear separation between classes in our data, suggesting the
presence of a basin where the trajectory planning algorithm should focus to maximize gait
stability and ensure the recoverability of the next step.

In contrast, LDA and SVM-L seek linear decision boundaries for classification, explain-
ing their poorer performance in classifying non-linear or complex relationships between
features and classes. However, MLP’s high flexibility in mapping interrelations between
features and classes enables it to handle high-dimensional, non-linear, and complex data
by approximating any function mapping inputs to outputs. This flexibility allows MLP to
maintain high precision and NPV when other methods fail to do so.

Regarding model adaptation, our findings suggest that it is feasible to maintain or
even enhance the overall performance of classifiers trained with different models, provided
the appropriate classifier is selected for the task and the training data are carefully selected.
However, performance consistently diminished when classifiers were evaluated using
dataset 3. This result is expected as dataset 3 places greater emphasis on the boundary
region. Consequently, the data from dataset 1 or dataset 2, which are more general and
lack detailed information around the boundary, failed to adequately train the algorithm
to accurately identify this boundary. However, when the training data were concentrated
around the boundary and subsequently the test was expanded to include a broader dataset,
performance became comparable, regardless of whether datasets 1 or 2 were used.

The strong performance of KNN, DT, RF, and SVM-RBF classifiers suggests that the
feature space could be divided into different non-overlapping regions, which could be
considered by the trajectory planning algorithm. One possibility would be ranking the
regions by feature stability and ensuring that the step ends in the geometric center of these
regions. Additionally, to reduce the number of FN, the robot could be programmed to
take action only if the last two or more steps were predicted to be unstable. However, this
would result in slower reaction time to actual unstable steps, potentially leading to a fall.

Concerning the robot model, it is important to highlight that the PSV method opts
for a detailed model over a simplified one for its multi-stage optimization. This choice is
crucial because the datasets used contain configurations that deviate significantly from
normal walking patterns and undergo substantial changes during recovery steps. Utilizing
a simplified model, such as the inverse pendulum, would fail to accurately predict most
outcomes in this scenario. Despite imposing restrictions on positions and velocities based
on the theoretically recoverable limit of step capture, a considerable number of points
remain unrecoverable. This observation implies that our approach is better at predicting
step recoverability after major disruptions in walking patterns.
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Future studies should leverage the trained classifiers to evaluate their effectiveness
across various scenarios, including 3D movements in more sophisticated models. Investi-
gating the impact of disparate models, sensor inaccuracies, and terrain inconsistencies on
prediction accuracy using a real robot would validate the promising results observed in
simulations. It is crucial to highlight the importance of integrating prediction and trajectory
planning. This integration can be enhanced by incorporating various clusters within the
feature space into trajectory planning, aligning them with stability predictions. This ap-
proach ensures a more comprehensive trajectory planning process, optimizing the robot’s
performance in varying conditions. Moreover, since each prediction takes only a fraction of
a millisecond, once it is determined that the current step is stable, the prediction could be
used to plan future steps similarly to what the PSV algorithm achieves but in real-time.
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