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Abstract: The Dung beetle optimization (DBO) algorithm, devised by Jiankai Xue in 2022, is known
for its strong optimization capabilities and fast convergence. However, it does have certain limita-
tions, including insufficiently random population initialization, slow search speed, and inadequate
global search capabilities. Drawing inspiration from the mathematical properties of the Sinh and
Cosh functions, we proposed a new metaheuristic algorithm, Sinh–Cosh Dung Beetle Optimization
(SCDBO). By leveraging the Sinh and Cosh functions to disrupt the initial distribution of DBO and
balance the development of rollerball dung beetles, SCDBO enhances the search efficiency and global
exploration capabilities of DBO through nonlinear enhancements. These improvements collectively
enhance the performance of the dung beetle optimization algorithm, making it more adept at solving
complex real-world problems. To evaluate the performance of the SCDBO algorithm, we compared
it with seven typical algorithms using the CEC2017 test functions. Additionally, by successfully
applying it to three engineering problems, robot arm design, pressure vessel problem, and unmanned
aerial vehicle (UAV) path planning, we further demonstrate the superiority of the SCDBO algorithm.

Keywords: optimization algorithms; swarm intelligence; dung beetle optimization; metaheuristic
algorithms; algorithm enhancement; sinh and cosh

1. Introduction

An optimization problem entails seeking the maximum or minimum value of an
objective function within a set of constraints. These challenges are prevalent across various
domains such as unmanned aerial vehicle (UAV) path planning [1], image processing [2],
mechanical design [3], and social media sentiment analysis (Yildirim, 2022). However,
many real-world optimization problems are often characterized as black-box problems,
where specific expressions, gradient information, and derivatives are unknown. As a result,
traditional optimization methods struggle to effectively address such complexities.

Compared to traditional optimization methods, metaheuristic algorithms possess self-
organization and self-learning capabilities, allowing them to more flexibly address problems
that traditional optimization algorithms struggle to solve. These algorithms typically excel
in tackling large-scale, high-dimensional, or nonlinear optimization problems.

Among them, evolutionary algorithms represent a class of optimization methods
inspired by the evolutionary processes observed in nature. By simulating biological op-
erations such as genetic variation, crossover, and mutation, evolutionary algorithms can
evolve the optimal solutions to problems. The Genetic Algorithm (GA) [4] stands as one of
the classic representatives of evolutionary algorithms and has been widely used to solve
various complex optimization problems.
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Another mainstream category of metaheuristic algorithms is swarm intelligence op-
timization algorithms, which simulate the behaviors of biological populations in nature.
These algorithms include the Ant Colony Optimization (ACO) [5], Particle Swarm Opti-
mization (PSO) [6], Whale Optimization Algorithm (WOA) [7], Grey Wolf Optimization
Algorithm (GWO) [8], Dung Beetle Optimization algorithm (DBO) [9], Sparrow Optimiza-
tion Algorithm (SSA) [10], Butterfly Optimization Algorithm (BOA) [11], Manta Ray Forag-
ing optimization algorithm (MRF) [12], Harris Hawk Algorithm (HHO) [13], and Optical
Microscope Algorithm (OMA) [14], among others. Compared to evolutionary algorithms,
swarm intelligence algorithms are easier to implement and can improve computational
efficiency without sacrificing algorithm performance.

Furthermore, there are alternative methodologies rooted in intriguing metaheuristic
principles, such as “A swarm optimization algorithm inspired by the behavior of social
spiders” or “An optimization algorithm inspired by the States of Matter, aimed at enhancing
the balance between exploration and exploitation”. These methodologies harness distinct
traits from natural or physical phenomena to bolster their optimization capabilities.

In recent years, metaheuristic algorithms have gained significant traction, leading to
their widespread application. The field has seen notable expansion with the introduction
of novel algorithms. These algorithms have been broadly applied across various domains
and have demonstrated promising results, offering new insights and methodologies for
addressing complex real-world problems.

The DBO algorithm, introduced in 2022, is a novel swarm intelligence optimization
approach inspired by the behavior of cockroaches in nature. It formulates a search frame-
work based on the “Rall-rolling-spawning-foraging-stealing” model. However, adhering to
the “No Free Lunch Theorem” (Wolpert & Macready, 1997), no single swarm intelligence
optimization algorithm can universally solve all optimization challenges. Each algorithm
in this domain carries its own limitations and constraints, prompting researchers to pro-
pose enhancements to these foundational methods. Without a specific balance between
exploration and exploitation, different problems require different algorithmic solutions.
For instance:

• Wu et al. [15] (2023) proposed a multi-strategy hybrid Sparrow algorithm. Their
optimization strategy encompasses the following: (1) Utilizing quantum computing
to refine circular chaotic mappings, thereby improving the initial population distri-
bution; (2) Accelerating convergence by enhancing the updating strategy of finders
within the Sparrow algorithm; (3) Employing mutation factors conforming to the
t-distribution to bolster the algorithm’s global exploration capability in early stages
and local exploitation prowess in later stages.

• Yuchen Duan et al. [16] introduced an optimization algorithm amalgamating the Grey
Wolf Algorithm with the Sine–Cosine Algorithm (Duan & Yu, 2023). Key enhance-
ments include the following: (1) Employing sine and cosine functions to simulate real
wolf hunting dynamics, replacing linear functions; (2) Introducing a weight-based po-
sition update strategy to better address high-dimensional optimization challenges; (3)
Exploring regions adjacent to individual best positions to prevent solution omission.

• Yongjun Sun et al. [17] presented an adaptive Whale Algorithm improved with Levy
flights and quadratic interpolation (Sun et al., 2018). Noteworthy improvements
include the following: (1) Augmenting the Whale Algorithm’s capability to escape
local optima based on Levy flight characteristics (frequent short-distance searches
and occasional long-distance explorations); (2) Adjusting local exploration and global
search capabilities through adaptive parameters to mitigate premature convergence
or insufficient solution accuracy.

The DBO algorithm is a novel optimization method that has shown promising perfor-
mance in prior research. However, it suffers from certain limitations. For instance, during
the breeding phase, if cockroaches opt for a local optimal point, such as the origin (0 point),
it leads to a clustering of egg-laying cockroaches at that point, resulting in failed algorithm
iterations. Additionally, the convergence factor of the DBO algorithm fails to adequately
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balance global exploration in the early stages and local exploitation in the later stages,
potentially leading to a decrease in solution accuracy. Furthermore, the initialization in
the early stage of the DBO algorithm is insufficient, with cockroaches’ initial distribution
positions being too concentrated, thus limiting the exploration space. Consequently, this
paper proposes a series of improvement measures:

• By utilizing the Sinh and Cosh functions to disrupt the initialization distribution of
DBO, the diversity of solutions in the solution space is increased, enabling the dung
beetles to explore a wider range of solutions during the search process. This increased
diversity provides dung beetles with richer search options, allowing them to quickly
escape local optima and move towards potential global optima in the solution space.
With dung beetles able to explore various corners of the solution space more rapidly,
the efficiency and speed of the search are consequently enhanced.

• The utilization of the nonlinear properties of the Sinh and Cosh functions modifies the
rolling action within the rollerball dung beetle algorithm, enhancing the dung beetles’
adaptability to environmental changes during the search process. In the initial stages
of the algorithm, this accelerates the DBO’s search speed, while in the later stages, it
broadens the DBO’s search range. This aids in avoiding local optima, thus improving
the overall convergence and stability of the algorithm.

• During the initial iterations, it is essential to thoroughly explore the entire search space
to identify potential solution areas. To maximize this exploration and utilization of the
solution space, we integrate the Sinh and Cosh functions into the rollerball dung beetle
phase. Incorporating these functions enables dung beetles to extensively explore and
develop areas within the solution space during the search process. Consequently,
this facilitates the more efficient discovery of global optima, thereby enhancing the
algorithm’s convergence speed and stability.

The first part of this paper introduces recent problem-solving methods, emphasizing
the effectiveness of metaheuristic algorithms. The second part focuses on the DBO algo-
rithm, followed by a discussion of enhancements in the third part. Part four evaluates the
performance of the enhanced SCDBO algorithm, while part five explores its application in
robotic arm force problems. Part six addresses the pressure vessel problem, and part seven
delves into unmanned aerial vehicle path planning. Finally, part eight provides a summary
of the paper.

2. DBO
2.1. Rollerball Dung Beetle

In the wild, dung beetles encounter the challenge of maintaining a straight course
while rolling their dung balls under the sun. Equation (1) from the original paper was used
to update the position of the rolling dung beetle.

xi(t + 1) = xi(t) + a · k · xi(t − 1) + b· △ x

△ x =
∣∣xi(t)− Xworst∣∣ (1)

Within the scope of this study, the symbol t denotes the current iteration count, while
xi(t) signifies the position of the dung beetle at iteration t. The parameter a represents
the extent to which various natural factors, such as wind and uneven terrain, can cause
dung beetles to deviate from their original direction. Specifically, when a = 1, it indicates no
deviation, while a = −1 represents a deviation from the original direction. The parameter k,
constrained to the interval (0, 0.2], characterizes the defect factor and was originally set to
0.1. Representing a constant value within the range [0, 1], b was prescribed a value of 0.3
for the purposes of this investigation. Xworst denotes the global worst value, while △ x
serves to simulate the influence of solar illumination, with a greater △ x indicating a greater
distance between the dung beetle and the light source.

In its natural habitat, when confronted with impediments, a dung beetle adjusts its
rolling trajectory through behaviors reminiscent of a choreographed dance. To simulate
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this nuanced behavior, the original study introduced a probabilistic framework to model
the probability of encountering obstacles during dung ball transportation. Upon encoun-
tering such impediments, a tangent function is invoked to determine a revised trajectory,
capturing the intricate adjustments akin to the dung beetle’s dance-like movements. This
computational process is elucidated in update Equation (2), which governs the dynamic
evolution of the dung beetle’s positional state during its rolling endeavor.

xi(t + 1) = xi(t) + tan(θ)|xt(t)− xi(t − 1)| (2)

And θ ⊆ (0, π], The position is not updated when θ = 0, π
2 and π.

2.2. Spawning Dung Beetles

In their natural habitat, dung beetles exhibit discerning behavior in selecting optimal
locations for spawning. To emulate this characteristic, the original study devises a strategy
for boundary delineation to demarcate such areas, as elucidated below.

Lb∗ = max(Xbest1 × (1 − R), Lb)

Ub∗ = min(Xbest1 × (1 − R), Ub)
(3)

The lower and upper bounds of the spawning area are denoted as Lb and Ub, respec-
tively, while Xbest1 represents the current local optimum. The parameter R is computed
as R = 1 − t/Tmax, where Tmax signifies the maximum number of iterations. Upon
identifying the optimal spawning region, the dung beetle promptly initiates spawning
within it. As per the original text, each instance of spawning corresponds to a positional
update. The dynamic nature of the spawning region ensures continual exploration of
the vicinity surrounding the current best solution, thereby averting entrapment in a local
optimum. The positional update for the spawning dung beetle is dictated by Equation (4).

xi(t + 1) = Xbest1 + b1 × (xi(t)− Lb∗) + b2 × (xi(t)− Ub∗) (4)

In the paper, b1 and b2 are random variables with dimensions of 1 × Dim, where Dim
serves as an indicator for the optimization problem’s dimensionality.

2.3. Foraging Dung Beetles

In their natural habitat, dung beetles engaged in foraging display behavior reminiscent
of selecting a secure location, akin to their egg-laying behavior. The original text delineates
this region explicitly using the following Equation (5):

Lbb = max(Xbest2 × (1 − R), Lb)

Ubb = min(Xbest2 × (1 − R), Ub)
(5)

In this context, Xbest2 denotes the optimal global position, while Lbb and Ubb represent
the lower and upper boundaries of the optimal foraging area, respectively. Additionally, Lb
and Ub denote the lower and upper bounds for problem-solving tasks. Each foraging action
conducted by the dung beetle corresponds to a single position update. The adjustment to
the position of the foraging dung beetle is detailed as follows:

xi(t + 1) = xi(t) + C1 × (xi(t)− Lbb) + C2 × (xi(t)− Ubb) (6)

C1 is a random number following a normal distribution, and C2 is a vector of size
1 × Dim, with its values falling within the range of [0, 1].

2.4. Stealing Dung Beetles

In nature, some dung beetles engage in the behavior of stealing dung balls from
conspecifics. To emulate this behavior, the original study designates the optimal global
location Xb as the position of the contested dung ball. The act of theft, executed by the



Biomimetics 2024, 9, 271 5 of 30

dung beetle engaging in this behavior, leads to a modification in location, as expressed by
the following Equation (7):

xi(t + 1) = Xbest2 + S · g · (
∣∣∣xi(t)− Xbest1

∣∣∣+ ∣∣∣xi(t)− Xbest2
∣∣∣) (7)

As elucidated in the original document, S is denoted as a constant with a predeter-
mined value of 0.5. The variable g represents the magnitude of a stochastic variable, while
Dim is employed to signify the dimensionality of the problem being studied. The initial
exposition stipulates the population sizes for different categories of dung beetles as follows:
6 for rolling dung beetles, 6 for breeding dung beetles, 7 for foraging dung beetles, and 11
for stealing dung beetles.

2.5. DBO Algorithm Implementation Steps

The pseudocode for the DBO algorithm is in Algorithm 1.

Algorithm 1 Framework of the DBO Algorithm

Input: Maximum iteration Tmax, population size N
Output: Optimal position Xbest2 and its corresponding fitness value fmin

1: Initialize the population of particles, indexed as i = 1, 2 . . . N, and define relevant
parameters.

2: while t ≤ Tmax do
3: for i belonging to the rolling dung beetles group. do
4: a = rand(1)
5: if a ≤ 0.9 then
6: Update the location of the rolling dung beetle using Equation (1).
7: else
8: Simulate rolling the ball in the presence of obstacles using Equation (2) to update

the location.
9: end if

10: end for
11: Calculate the nonlinear convergence factor as R = 1 − t/Tmax.
12: for i belonging to the spawning dung beetles group. do
13: Update the location of the spawning dung beetle using Equations (3) and (4).
14: end for
15: for i belonging to the foraging dung beetles group. do
16: Update the location of the foraging dung beetle using Equations (5) and (6).
17: end for
18: for i belonging to the stealing dung beetles group. do
19: Update the location of the stealing dung beetle using Equation (7).
20: end for
21: end while
22: return Return the optimal position Xbest2 and its corresponding fitness value fmin.

2.6. Time Complexity of the DBO Algorithm

The time complexity analysis of the DBO algorithm reveals distinct components con-
tributing to its overall efficiency. Firstly, the initialization step involves setting up the
population and defining relevant parameters, executed only once with a constant time
complexity of O(1). Subsequently, the main loop operates based on the maximum iteration
count Tmax, processing four types of “dung beetles” groups per iteration. Within each itera-
tion, the algorithm traverses each individual in the population for every group, performing
corresponding update operations. Assuming constant-time operations within each group,
the main loop’s time complexity is O(Tmax × N), where N signifies the population size.
Additionally, conditional statements within the main loop select update methods based on
random numbers, with a time complexity of O(Tmax). In summary, the DBO algorithm’s
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overall time complexity is O(Tmax × N), where Tmax denotes the maximum iteration count
and N represents the population size.

3. Improving the Dung Beetle Optimization Algorithm (SCDBO)
3.1. Motivation

The DBO algorithm demonstrates superior convergence speed when compared to tra-
ditional algorithms such as WOA and POS, and it surpasses other algorithms like SSA and
HHO in attaining global optimum solutions. It maintains a relatively balanced performance
in terms of seeking global optimal solutions and convergence speed. However, achieving
the ideal optimal solution remains a challenging task for the DBO algorithm, especially
when addressing complex problems, where its capability is relatively weak. Despite its
strengths, such as robust search abilities and fast convergence, the DBO algorithm exhibits
an imbalance between global exploration and local exploitation, making it susceptible to
local optima and limiting its global exploration capabilities.

Therefore, this chapter proposes incorporating trigonometric functions into the DBO
algorithm to enhance its exploration and exploitation. However, achieving a balance be-
tween exploration and exploitation remains a significant challenge, indicating the need
for additional strategies. Furthermore, no single algorithm can address all optimization
problems, as mentioned earlier in the discussion of the NFL. Thus, new metaheuristic
algorithms are continually needed to tackle complex and diverse problems. Finally, intro-
ducing mathematically inspired optimization algorithms such as the Sine–Cosine algorithm
(SCA) [18] and the Arithmetic Optimization algorithm (AOA) [19] suggests new directions
for research in metaheuristic algorithms. This chapter introduces the Sine and Cosine-based
DBO method, leveraging the properties of hyperbolic functions to enhance exploration
and exploitation.

3.2. Exploration Phase 1

The SCDBO method emphasizes the balance between exploration and exploitation
during the optimization process. Typically, these algorithms determine the next step by
considering the current position and the position of the best solution obtained so far.
Therefore, in our study, exploration of the next position still depends on both the current
position and the best solution obtained to date. During the early iterations of the algorithm,
the exploration scope expands outward from the agent’s position to search a wider solution
space and gradually approach the best solution. In the first phase of exploration, a position
update function for exploration is proposed, as shown in Equation (8).

xi(t + 1) =
{

Xbest2 + r1 × W1 × xi(t), r2 > 0.5
Xbest2 − r1 × W1 × xi(t), r2 < 0.5

(8)

In the first exploration phase, W1 controls the candidate solutions away from itself and
gradually explores the optimal solution, as shown in Equation (9). r1 and r2 are random
numbers between 0 and 1.

W1 = r3 × a1 × (cosh r4 + u × sinh r4 − 1) (9)

a1 is a monotonically decreasing function calculated using Equation (10), where r3 and
r4 are random numbers within the interval [0, 1]. u is the sensitivity coefficient that controls
the precision of exploration in the initial phase, and it remains fixed at 0.388. As depicted
in Figure 1, the value of W1 gradually diminishes, indicating the decreasing significance of
position updates. Consequently, candidate solutions progressively move away from their
initial positions in the first phase before exploring the optimal solution. In Equation (10), m
denotes the sensitivity coefficient governing the precision of exploration, which, based on
the experiments conducted in this paper, is set to 0.45.



Biomimetics 2024, 9, 271 7 of 30

a1 = 3 ×
(
−1.3 × t

T
+ m

)
(10)
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Figure 1. The value of W1.

3.3. Exploration Phase 2

During the second phase of exploration, the search agents are relatively independent
of the best solution found thus far. Consequently, they explore the next position in a
non-directed manner, solely based on their current location. The position update function
is computed using Equation (11).

xi(t + 1) =

xi(t) +
∣∣∣ε × W2 × Xbest2 − xi(t)

∣∣∣, r5 > 0.5

xi(t)−
∣∣∣ε × W2 × Xbest2 − xi(t)

∣∣∣, r5 < 0.5
(11)

In this context, ε represents a minute positive value, set to 0.003 based on the experi-
ments conducted in this paper. r5 is a random number between 0 and 1. During the second
phase of exploration, Equation (12) is employed for computation. The multiplication of W2
by ε significantly reduces the impact of the optimal solution on the current one, resulting in
an undirected random exploration of candidate solutions.

W2 = r6 × a2 (12)

Here, r6 belongs to the range [0, 1], representing a random number. a2 denotes a
monotonically decreasing function computed using Equation (13), and W2 is as depicted in
Figure 2.
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Figure 2. The value of W2.
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a2 = 2 ×
(
− t

T
+ n

)
(13)

Here, n represents the sensitivity coefficient controlling the exploration accuracy in
the second phase, set to 0.5 according to the experiments conducted in this study.

3.4. Development Stage

The utilization of SCDBO is integral throughout the entire iterative process, ensuring
comprehensive exploration of the search space. To maximize the exploration of potential
solution spaces, development is divided into two stages and is conducted at each iter-
ation. In the initial development stage, focus is placed on exploring the vicinity of the
current solution to unveil potential candidate solutions. Consequently, the development
Equation (16) is crafted as an equation that systematically explores the surroundings of the
current position, facilitating a broader search.

xi(t + 1) =
{

Xbest2 + r7 × W3 × xi(t), r8 > 0.5
Xbest2 − r7 × W3 × xi(t), r8 < 0.5

(14)

r7 and r8 are random numbers in the range [0, 1], and W3 is the weighting factor
utilized in the first stage of development, governing how candidate solutions explore their
surrounding search space from nearby to farther away. The calculation method of W3 is
illustrated in Equation (17).

W3 = r9 × a1 × (cosh r10 + u × sinh r10) (15)

Additionally, r9 and r10 are random numbers within the range [0, 1]. a1 is defined by
Equation (10), similar to the first exploration phase, where it is fixed at 0.388. As shown in
Figure 3, W3 gradually decreases from larger values, indicating that candidate solutions
can utilize the surrounding space from near to far.
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Figure 3. The value of W3.

3.5. SCDBO Algorithm Implementation Steps

The pseudocode for the SCDBO algorithm with updated formulas is presented in
Algorithm 2.
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Algorithm 2 Framework of the SCDBO Algorithm

Input: Maximum iteration Tmax, population size N
Output: Optimal position Xbest2 and its corresponding fitness value fmin

1: Initialize the population of particles, indexed as i = 1, 2 . . . N, and define relevant
parameters.

2: while t ≤ Tmax do
3: for i belonging to the rolling dung beetle group. do
4: Calculate a1 using Equation (10). r1 = rand(1), r2 = rand(1), r3 = rand(1),

r4 = rand(1).
5: Calculate W1 using Equation (9).
6: Update the global best position using random number r1 and Equation (8).
7: Calculate a2 using Equation (13). r5 = rand(1), r6 = rand(1).
8: Calculate W2 using Equation (12), and set ε equal to 0.003.
9: Update the global best position using random number r5 and Equation (11).

10: r7 = rand(1), r8 = rand(1), r9 = rand(1), r10 = rand(1).
11: Calculate W1 using Equation (17).
12: Update the global best position using random number r7 and Equation (16).
13: end for
14: Calculate the nonlinear convergence factor as R = 1 − t/Tmax.
15: for i belonging to the spawning dung beetle group. do
16: Update the location of the spawning dung beetle using Equations (3) and (4).
17: end for
18: for i belonging to the foraging dung beetle group. do
19: Update the location of the foraging dung beetle using Equations (5) and (6).
20: end for
21: for i belonging to the stealing dung beetle group. do
22: Update the location of the stealing dung beetle using Equation (7).
23: end for
24: end while
25: return Return the optimal position Xbest2 and its corresponding fitness value fmin.

3.6. Time Complexity Analysis of SCDBO Algorithm

The time complexity analysis of the SCDBO algorithm reveals that its initialization step
operates in constant time, as it involves setting up the population and defining parameters
just once. Similarly, the main loop iterates based on the maximum iteration count Tmax,
processing the “rolling dung beetle” group within each iteration. Despite the multiple
update steps within this group, each assumed to be constant time operations, the overall
time complexity of the main loop remains O(Tmax × N), comparable to the DBO algorithm.
Additionally, conditional statements within the main loop, determining update methods
based on random numbers, contribute an additional O(Tmax) to the overall time complexity.
Thus, the SCDBO algorithm exhibits a time complexity similar to the DBO algorithm, with
Tmax representing the maximum number of iterations and N indicating the population size.

4. Experimental Results and Discussion

In this study, we conducted a comprehensive evaluation of the SCDBO algorithm
and compared its performance with seven other widely used benchmark algorithms. We
selected 29 test functions from CEC2017 [20] as evaluation criteria (see details in Table 1)
and meticulously recorded the parameter configurations for each algorithm (see details in
Table 2). To ensure the integrity of our experiments, we standardized the initial population
size to 30 and capped the maximum number of iterations at 500.

To mitigate the influence of random fluctuations, we employed the mean and standard
deviation of solution results as our evaluation metrics. These metrics were derived from
conducting 100 runs of each of the seven benchmark algorithms and the SCDBO algorithm
on every test function.



Biomimetics 2024, 9, 271 10 of 30

Table 1. CEC2017 functions.

Type No. Function Minimum Value

Unimodal functions 1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Zakharov Function 200

Simple multimodal functions

3 Shifted and Rotated Rosenbrock’s Function 300
4 Shifted and Rotated Rastrigin’s Function 400
5 Shifted and Rotated Expanded Scaffer’s F6 Function 500
6 Shifted and Rotated Lunacek Bi_Rastrigin Function 600
7 Shifted and Rotated Non-Continuous Rastrigin’s Function 700
8 Shifted and Rotated Levy Function 800
9 Shifted and Rotated Schwefel’s Function 900

Hybrid functions

10 Hybrid Function 1 (N = 3) 1000
11 Hybrid Function 2 (N = 3) 1100
12 Hybrid Function 3 (N = 3) 1200
13 Hybrid Function 4 (N = 4) 1300
14 Hybrid Function 5 (N = 4) 1400
15 Hybrid Function 6 (N = 4) 1500
16 Hybrid Function 6 (N = 5) 1600
17 Hybrid Function 6 (N = 5) 1700
18 Hybrid Function 6 (N = 5) 1800
19 Hybrid Function 6 (N = 6) 1900

Composition functions

20 Composition Function 1 (N = 3) 2000
21 Composition Function 2 (N = 3) 2100
22 Composition Function 3 (N = 4) 2200
23 Composition Function 4 (N = 4) 2300
24 Composition Function 5 (N = 5) 2400
25 Composition Function 6 (N = 5) 2500
26 Composition Function 7 (N = 6) 2600
27 Composition Function 7 (N = 6) 2700
28 Composition Function 9 (N = 3) 2800
29 Composition Function 10 (N = 3) 2900

Search range: [−100, 100]D

Table 2. Algorithm parameters.

Algorithm Population Number of Iterations Parameters

SSA 30 500 PD = 0.2; SD = 0.1; R2 = 0.8
HHO 30 500 β = 1.5; r = 0.5; E = 0.5
BOA 30 500 P = 0.8; pe = 0.1; sm = 0.01
OMA 30 500 NA = 1.40
WOA 30 500 a = 2 ∗ (1 − t/Tmax); k = 1
SCA 30 500 a = 2
DBO 30 500 RDB = 6; EDB = 6; FDB = 7; SDB = 11
SCDBO 30 500 u = 0.388; m = 0.45; ε = 0.003; n = 0.5

Our experiments were conducted within the MATLAB (R2022a) programming envi-
ronment. Parameters for the BOA algorithm were denoted as p and m, representing the
power exponent and perceptual mode, respectively. Similarly, parameters for the DBO
algorithm were labeled as “RDB” (dung beetle population), “EDB” (ovipositing dung
beetle), “FDB” (foraging dung beetle), and “SDB” (scavenging dung beetle).

In Tables 3 and 4, we provided a detailed breakdown of the average solution rankings.
A ranking of 1 signifies that an algorithm achieved the best average solution value after
500 iterations, highlighting its exceptional search capability. Furthermore, a ranking of 1
also implies that the algorithm excels in finding the best solution at a remarkable speed.

These findings lend robust support to the efficacy of the SCDBO algorithm and furnish
invaluable insights for its application in tackling real-world problems. The successful
utilization of the SCDBO algorithm will further corroborate its prowess in addressing
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practical challenges, thereby offering crucial guidance for future research and practical
applications.

Table 3. CEC2017 test results: 30 dimensions.

Dim = 30

SSA HHO BOA OMA WOA SCA DBO SCDBO

F1
min 1.38E+02 1.51E+08 6.44E+10 4.17E+08 1.68E+06 1.20E+10 4.43E+07 2.90E+03

mean 6.93E+03 4.67E+08 7.69E+10 1.74E+09 2.87E+08 2.16E+10 3.16E+08 4.60E+04
std 4.29E+07 7.28E+16 4.40E+19 8.35E+17 3.36E+17 1.95E+19 9.37E+16 3.13E+09

degree 1 5 8 6 3 7 4 2

F2
min 3.44E+04 4.32E+04 7.35E+04 4.06E+04 4.94E+03 5.10E+04 5.90E+04 4.08E+04

mean 4.76E+04 5.90E+04 2.04E+05 6.47E+04 1.13E+04 7.52E+04 9.03E+04 4.57E+04
std 6.93E+07 3.81E+07 2.95E+10 2.18E+08 2.19E+07 2.32E+08 4.65E+08 1.22E+08

degree 3 4 8 5 1 6 7 2

F3
min 4.68E+02 5.58E+02 7.51E+03 5.80E+02 4.24E+02 1.96E+03 5.08E+02 4.61E+02

mean 5.06E+02 7.44E+02 1.66E+04 7.77E+02 5.64E+02 3.28E+03 6.78E+02 4.79E+02
std 5.43E+02 1.20E+04 2.77E+07 2.45E+04 3.43E+03 9.43E+05 2.27E+04 1.46E+03

degree 2 5 8 6 3 7 4 1

F4
min 6.13E+02 6.92E+02 8.79E+02 6.40E+02 6.14E+02 7.70E+02 6.29E+02 6.11E+02

mean 7.47E+02 7.82E+02 1.01E+03 7.15E+02 6.88E+02 8.24E+02 7.66E+02 6.86E+02
std 3.62E+03 1.26E+03 3.66E+03 1.13E+03 1.26E+03 9.99E+02 3.99E+03 1.55E+03

degree 4 6 8 3 2 7 5 1

F5
min 6.26E+02 6.52E+02 6.87E+02 6.17E+02 6.30E+02 6.53E+02 6.21E+02 6.15E+02

mean 6.49E+02 6.67E+02 7.14E+02 6.30E+02 6.48E+02 6.66E+02 6.47E+02 6.27E+02
std 1.63E+02 5.49E+01 1.32E+02 6.42E+01 6.09E+01 3.88E+01 1.32E+02 1.73E+02

degree 5 7 8 2 4 6 3 1

F6
min 9.39E+02 1.19E+03 1.44E+03 9.56E+02 9.15E+02 1.13E+03 8.50E+02 9.22E+02

mean 1.21E+03 1.32E+03 1.54E+03 1.17E+03 1.10E+03 1.24E+03 1.02E+03 1.01E+03
std 1.35E+04 3.74E+03 4.14E+03 7.75E+03 4.44E+03 3.25E+03 9.42E+03 6.08E+03

degree 5 7 8 4 3 6 2 1

F7
min 9.14E+02 9.37E+02 1.16E+03 9.35E+02 8.88E+02 1.01E+03 9.06E+02 9.02E+02

mean 9.84E+02 9.80E+02 1.22E+03 9.78E+02 9.40E+02 1.09E+03 1.03E+03 9.38E+02
std 8.78E+02 6.66E+02 1.76E+03 7.88E+02 5.80E+02 6.34E+02 3.92E+03 7.66E+02

degree 5 4 8 3 2 7 6 1

F8
min 4.61E+03 7.06E+03 1.19E+04 1.95E+03 2.41E+03 5.13E+03 2.78E+03 2.85E+03

mean 5.35E+03 8.94E+03 1.70E+04 3.79E+03 4.10E+03 8.80E+03 6.33E+03 3.59E+03
std 3.65E+04 1.81E+06 7.24E+06 1.84E+06 5.89E+05 3.03E+06 3.88E+06 2.78E+06

degree 4 7 8 2 3 6 5 1

F9
min 3.84E+03 4.09E+03 8.81E+03 4.99E+03 3.60E+03 8.08E+03 3.90E+03 3.46E+03

mean 5.28E+03 6.21E+03 1.03E+04 8.13E+03 4.75E+03 8.86E+03 6.43E+03 5.16E+03
std 3.65E+05 1.06E+06 3.63E+05 1.02E+06 3.25E+05 1.74E+05 1.60E+06 5.93E+05

degree 3 4 8 6 1 7 5 2

F10
min 1.17E+03 1.32E+03 8.50E+03 1.25E+03 1.15E+03 2.37E+03 1.32E+03 1.17E+03

mean 1.31E+03 1.59E+03 2.60E+04 1.43E+03 1.30E+03 3.97E+03 2.01E+03 1.29E+03
std 4.27E+03 2.98E+04 1.23E+08 3.44E+04 1.86E+04 1.76E+06 7.70E+05 8.34E+03

degree 3 5 8 4 2 7 6 1

F11
min 4.65E+04 6.15E+06 9.92E+09 8.46E+05 2.17E+05 1.14E+09 4.15E+05 1.61E+05

mean 9.95E+05 1.12E+08 2.10E+10 1.21E+07 2.20E+06 2.52E+09 1.36E+08 2.10E+06
std 7.92E+11 7.91E+15 3.65E+19 2.05E+14 3.93E+12 9.86E+17 4.44E+16 2.82E+12

degree 1 5 8 4 3 7 6 2

F12
min 4.17E+03 5.08E+05 1.04E+10 5.62E+03 3.66E+03 3.09E+08 5.13E+04 4.87E+03

mean 2.88E+04 1.77E+06 2.15E+10 4.19E+04 1.40E+04 1.10E+09 7.25E+06 4.35E+04
std 5.55E+08 1.17E+13 4.89E+19 2.58E+09 1.82E+08 1.29E+17 2.01E+14 3.19E+09

degree 2 5 8 3 1 7 6 4

F13
min 3.89E+03 1.71E+04 1.51E+06 2.01E+03 1.63E+03 1.34E+05 1.40E+04 7.95E+03

mean 6.21E+04 1.04E+06 3.07E+07 2.23E+04 7.88E+03 6.74E+05 2.65E+05 1.19E+05
std 3.16E+09 1.39E+12 4.67E+14 9.47E+08 2.32E+08 1.90E+11 1.23E+11 9.63E+09

degree 3 7 8 2 1 6 5 4

F14
min 2.03E+03 5.04E+04 7.91E+08 2.52E+03 1.67E+03 4.13E+06 6.90E+03 2.43E+03

mean 1.58E+04 1.25E+05 3.27E+09 1.10E+04 6.06E+03 5.84E+07 8.75E+04 5.91E+03
std 1.78E+08 3.32E+09 2.47E+18 5.30E+07 4.08E+07 2.83E+15 5.77E+09 6.79E+08

degree 4 6 8 3 2 7 5 1

F15
min 2.34E+03 2.58E+03 4.62E+03 2.77E+03 1.92E+03 3.38E+03 2.83E+03 2.16E+03

mean 2.91E+03 3.56E+03 5.70E+03 3.42E+03 2.90E+03 4.09E+03 3.45E+03 2.90E+03
std 1.19E+05 2.91E+05 4.16E+05 6.94E+04 1.18E+05 7.99E+04 7.50E+04 1.79E+05

degree 3 6 8 4 2 7 5 1

F16
min 2.04E+03 1.93E+03 3.19E+03 1.86E+03 1.92E+03 2.35E+03 2.01E+03 1.96E+03

mean 2.48E+03 2.77E+03 4.18E+03 2.22E+03 2.38E+03 2.82E+03 2.67E+03 2.17E+03
std 5.65E+04 7.72E+04 7.24E+05 3.22E+04 6.80E+04 4.30E+04 9.22E+04 8.72E+04

degree 4 6 8 2 3 7 5 1

F17
min 9.25E+04 1.09E+05 3.25E+07 7.86E+04 2.34E+04 2.71E+06 7.52E+04 7.55E+04

mean 4.15E+05 3.56E+06 3.39E+08 3.90E+05 1.07E+05 1.54E+07 3.83E+06 2.09E+06
std 1.05E+11 1.21E+13 3.90E+16 1.31E+11 1.09E+10 8.51E+13 3.14E+13 6.06E+12

degree 3 5 8 2 1 7 6 4

F18
min 2.08E+03 2.56E+05 1.08E+09 2.25E+03 2.09E+03 1.81E+07 2.88E+03 2.48E+03

mean 8.70E+03 1.77E+06 3.81E+09 8.82E+03 6.40E+03 9.15E+07 3.80E+06 6.28E+03
std 9.27E+07 1.58E+12 2.59E+18 4.15E+07 2.07E+07 4.92E+15 1.32E+14 1.66E+08

degree 3 5 8 4 2 7 6 1
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Table 3. Cont.

Dim = 30

SSA HHO BOA OMA WOA SCA DBO SCDBO

F19
min 2.21E+03 2.25E+03 3.06E+03 2.34E+03 2.13E+03 2.62E+03 2.31E+03 2.25E+03

mean 2.80E+03 2.85E+03 3.59E+03 2.67E+03 2.51E+03 2.94E+03 2.75E+03 2.49E+03
std 9.98E+04 6.65E+04 4.99E+04 1.90E+04 3.06E+04 2.39E+04 3.76E+04 4.86E+04

degree 5 6 8 3 2 7 4 1

F20
min 2.40E+03 2.52E+03 2.64E+03 2.41E+03 2.41E+03 2.53E+03 2.47E+03 2.41E+03

mean 2.51E+03 2.59E+03 2.77E+03 2.47E+03 2.47E+03 2.60E+03 2.56E+03 2.46E+03
std 4.95E+03 1.68E+03 4.66E+03 1.52E+03 1.07E+03 5.88E+02 2.83E+03 2.16E+03

degree 4 6 8 2 3 7 5 1

F21
min 2.30E+03 2.59E+03 7.56E+03 2.43E+03 2.33E+03 4.09E+03 2.31E+03 2.30E+03

mean 5.57E+03 7.30E+03 1.11E+04 2.94E+03 2.89E+03 8.97E+03 5.20E+03 4.81E+03
std 5.10E+06 1.33E+06 1.63E+06 1.58E+05 1.22E+06 4.69E+06 5.96E+06 5.33E+06

degree 5 6 8 3 2 7 4 1

F22
min 2.81E+03 3.10E+03 3.17E+03 2.81E+03 2.79E+03 3.01E+03 2.82E+03 2.78E+03

mean 2.91E+03 3.30E+03 3.38E+03 2.90E+03 2.95E+03 3.09E+03 3.01E+03 2.89E+03
std 4.94E+03 1.47E+04 1.72E+04 2.35E+03 6.17E+03 2.10E+03 4.97E+03 9.52E+03

degree 3 7 8 2 4 6 5 1

F23
min 2.95E+03 3.25E+03 3.36E+03 3.02E+03 3.00E+03 3.18E+03 3.02E+03 2.91E+03

mean 3.07E+03 3.48E+03 3.54E+03 3.11E+03 3.09E+03 3.26E+03 3.18E+03 3.04E+03
std 6.53E+03 1.15E+04 1.70E+04 2.38E+03 4.66E+03 1.94E+03 1.01E+04 1.08E+04

degree 2 7 8 4 3 6 5 1

F24
min 2.88E+03 2.93E+03 4.12E+03 2.99E+03 2.89E+03 3.30E+03 2.92E+03 2.88E+03

mean 2.90E+03 3.01E+03 5.62E+03 3.09E+03 2.96E+03 3.68E+03 3.01E+03 2.89E+03
std 1.98E+02 1.10E+03 7.63E+05 5.09E+03 1.89E+03 1.05E+05 3.77E+04 2.39E+02

degree 2 4 8 6 3 7 5 1

F25
min 2.80E+03 5.54E+03 9.08E+03 5.61E+03 3.21E+03 7.08E+03 4.14E+03 2.81E+03

mean 6.10E+03 8.28E+03 1.17E+04 6.40E+03 6.80E+03 7.93E+03 6.59E+03 5.99E+03
std 2.39E+06 7.23E+05 1.34E+06 3.89E+05 1.43E+06 2.89E+05 9.41E+05 1.64E+06

degree 2 7 8 3 5 6 4 1

F26
min 3.21E+03 3.32E+03 3.42E+03 3.24E+03 3.26E+03 3.45E+03 3.24E+03 3.21E+03

mean 3.27E+03 3.64E+03 4.08E+03 3.32E+03 3.36E+03 3.57E+03 3.38E+03 3.25E+03
std 2.22E+03 8.23E+04 7.92E+04 1.49E+03 1.04E+04 3.19E+03 1.11E+04 8.21E+03

degree 2 7 8 3 4 6 5 1

F27
min 3.20E+03 3.36E+03 5.37E+03 3.38E+03 3.27E+03 3.83E+03 3.31E+03 3.22E+03

mean 3.23E+03 3.48E+03 7.46E+03 3.54E+03 3.34E+03 4.50E+03 3.74E+03 3.26E+03
std 6.25E+02 7.30E+03 1.25E+06 2.66E+04 3.29E+03 2.15E+05 8.11E+05 8.90E+02

degree 1 4 8 5 3 7 6 2

F28
min 3.74E+03 4.39E+03 5.31E+03 3.84E+03 3.50E+03 4.65E+03 3.83E+03 3.66E+03

mean 4.18E+03 4.93E+03 8.02E+03 4.20E+03 4.28E+03 5.20E+03 4.58E+03 4.29E+03
std 6.17E+04 1.49E+05 3.79E+06 3.14E+04 1.27E+05 7.25E+04 1.80E+05 8.12E+04

degree 1 6 8 2 3 7 5 4

F29

min 6.19E+03 3.69E+05 5.43E+08 2.34E+04 7.12E+03 8.89E+07 1.68E+04 6.38E+03
mean 1.60E+04 1.24E+07 2.54E+09 2.19E+05 3.10E+04 2.04E+08 3.02E+06 1.59E+04

std 3.36E+07 1.93E+14 1.69E+18 3.51E+10 6.25E+08 6.53E+15 2.08E+13 8.59E+10
degree 2 6 8 4 3 7 5 1

Table 4. CEC2017 test results: 100 dimensions.

Dim = 30

SSA HHO BOA OMA WOA SCA DBO SCDBO

F1
min 2.04E+08 3.72E+10 2.88E+11 7.48E+10 4.16E+10 1.87E+11 2.40E+10 4.41E+09

mean 3.74E+08 4.81E+10 2.95E+11 1.13E+11 6.41E+10 2.13E+11 8.14E+10 1.43E+10
std 1.76E+16 3.51E+19 1.23E+19 3.76E+20 1.47E+20 2.15E+20 4.44E+21 3.05E+19

degree 1 3 8 6 4 7 5 2

F2
min 3.58E+05 3.10E+05 9.91E+05 3.67E+05 1.82E+05 4.38E+05 3.65E+05 3.19E+05

mean 7.37E+05 3.66E+05 3.59E+09 4.39E+05 2.42E+05 6.14E+05 6.55E+05 3.50E+05
std 2.35E+10 2.31E+10 6.83E+19 1.33E+09 4.39E+08 8.56E+09 6.71E+10 1.35E+10

degree 7 3 8 4 1 5 6 2

F3
min 8.54E+02 5.44E+03 7.03E+04 9.71E+03 2.69E+03 3.72E+04 3.60E+03 1.39E+03

mean 2.42E+03 9.70E+03 1.18E+05 1.83E+04 5.58E+03 5.37E+04 2.10E+04 2.13E+03
std 7.08E+03 4.62E+06 5.31E+08 1.61E+07 3.85E+06 7.79E+07 2.37E+08 2.05E+05

degree 2 4 8 5 3 7 6 1

F4
min 1.29E+03 1.57E+03 2.09E+03 1.44E+03 1.35E+03 1.94E+03 1.37E+03 1.27E+03

mean 1.44E+03 1.69E+03 2.29E+03 1.67E+03 1.46E+03 2.04E+03 1.68E+03 1.42E+03
std 2.02E+03 2.69E+03 7.00E+03 1.35E+04 3.61E+03 3.20E+03 4.68E+04 7.58E+03

degree 2 6 8 4 3 7 5 1

F5
min 6.62E+02 6.85E+02 7.16E+02 6.67E+02 6.61E+02 6.92E+02 6.61E+02 6.55E+02

mean 6.66E+02 6.90E+02 7.28E+02 6.84E+02 6.70E+02 7.06E+02 6.79E+02 6.65E+02
std 3.64E+00 1.09E+01 2.81E+01 6.24E+01 1.44E+01 3.43E+01 1.05E+02 2.61E+01

degree 2 6 8 5 3 7 4 1

F6
min 2.99E+03 3.39E+03 4.13E+03 3.33E+03 2.81E+03 3.73E+03 2.48E+03 2.61E+03

mean 3.24E+03 3.79E+03 4.25E+03 4.13E+03 3.21E+03 4.18E+03 2.93E+03 2.79E+03
std 1.11E+04 2.05E+04 2.71E+03 2.25E+05 1.54E+04 6.03E+04 2.35E+04 2.90E+04

degree 4 5 8 6 3 7 2 1
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Table 4. Cont.

Dim = 30

SSA HHO BOA OMA WOA SCA DBO SCDBO

F7
min 1.75E+03 1.93E+03 2.59E+03 1.88E+03 1.67E+03 2.29E+03 1.76E+03 1.70E+03

mean 1.85E+03 2.13E+03 2.78E+03 2.01E+03 1.87E+03 2.42E+03 2.22E+03 1.84E+03
std 2.43E+03 4.37E+03 7.69E+03 1.12E+04 5.62E+03 3.34E+03 4.54E+04 6.50E+03

degree 2 5 8 4 3 7 6 1

F8
min 2.43E+04 5.69E+04 9.47E+04 5.50E+04 2.32E+04 7.67E+04 5.05E+04 3.76E+04

mean 2.54E+04 6.88E+04 1.09E+05 7.06E+04 3.03E+04 9.12E+04 7.51E+04 6.58E+04
std 4.08E+05 2.71E+07 7.68E+07 5.98E+07 1.31E+07 7.41E+07 9.35E+07 2.23E+08

degree 1 4 8 5 2 7 6 3

F9
min 1.39E+04 2.11E+04 3.35E+04 3.06E+04 1.70E+04 3.20E+04 1.85E+04 1.76E+04

mean 1.72E+04 2.41E+04 3.55E+04 3.23E+04 1.93E+04 3.31E+04 2.93E+04 2.29E+04
std 2.61E+06 2.83E+06 1.03E+06 4.74E+05 1.57E+06 3.33E+05 2.20E+07 2.69E+07

degree 1 4 8 6 2 7 5 3

F10
min 3.49E+04 7.01E+04 3.83E+05 6.11E+04 1.75E+04 1.42E+05 1.23E+05 9.83E+04

mean 7.50E+04 1.48E+05 1.26E+07 9.67E+04 3.48E+04 1.91E+05 2.10E+05 1.96E+05
std 3.73E+08 1.84E+09 9.39E+14 3.31E+08 1.46E+08 1.62E+09 2.14E+09 2.28E+09

degree 2 4 8 3 1 5 7 6

F11
min 4.80E+07 5.26E+09 2.00E+11 1.35E+10 8.70E+08 7.69E+10 3.54E+09 2.85E+08

mean 4.69E+08 1.17E+10 2.45E+11 2.32E+10 6.96E+09 9.66E+10 6.96E+09 3.91E+08
std 4.64E+15 1.17E+19 2.46E+20 7.11E+19 3.35E+19 1.25E+20 4.81E+18 3.99E+16

degree 2 5 8 6 4 7 3 1

F12
min 2.35E+04 6.50E+07 3.49E+10 1.85E+08 3.41E+05 1.24E+10 1.61E+07 8.29E+04

mean 1.93E+05 2.53E+08 6.14E+10 9.53E+08 6.34E+08 1.83E+10 2.74E+08 1.84E+05
std 1.20E+10 3.73E+16 5.91E+19 4.36E+17 1.88E+18 9.14E+18 4.06E+16 3.78E+10

degree 2 3 8 6 5 7 4 1

F13
min 7.63E+05 4.06E+06 7.84E+07 1.53E+06 7.16E+05 2.90E+07 3.06E+06 6.35E+05

mean 2.15E+06 1.06E+07 3.91E+08 4.09E+06 1.72E+06 7.37E+07 1.41E+07 3.97E+06
std 1.05E+12 1.20E+13 3.52E+16 3.92E+12 7.32E+11 1.02E+15 7.51E+13 5.93E+12

degree 2 5 8 4 1 7 6 3

F14
min 7.73E+03 6.25E+06 2.43E+10 3.75E+06 1.99E+04 3.48E+09 6.65E+04 2.15E+04

mean 2.44E+04 3.38E+07 3.67E+10 6.24E+07 7.21E+05 6.11E+09 6.16E+07 2.39E+04
std 3.41E+08 1.07E+16 2.02E+19 1.47E+16 1.75E+12 2.18E+18 6.98E+15 9.89E+08

degree 2 4 8 6 3 7 5 1

F15
min 5.13E+03 7.78E+03 1.67E+04 7.91E+03 5.95E+03 1.34E+04 6.94E+03 5.16E+03

mean 6.57E+03 9.96E+03 2.49E+04 1.00E+04 7.42E+03 1.48E+04 9.52E+03 6.42E+03
std 5.50E+05 1.60E+06 1.48E+07 1.76E+06 9.45E+05 1.27E+06 2.39E+06 8.80E+05

degree 2 5 8 6 3 7 4 1

F16
min 5.08E+03 6.31E+03 2.52E+06 5.14E+03 5.11E+03 1.67E+04 5.78E+03 4.54E+03

mean 6.04E+03 8.43E+03 3.48E+07 6.67E+03 7.27E+03 7.96E+04 9.05E+03 6.02E+03
std 3.98E+05 3.14E+06 8.66E+14 1.56E+06 2.31E+06 7.90E+09 2.39E+06 5.08E+05

degree 2 5 8 3 4 7 6 1

F17
min 6.34E+05 2.33E+06 2.06E+08 1.55E+06 9.08E+05 4.74E+07 4.16E+06 2.56E+06

mean 2.92E+06 1.17E+07 7.54E+08 4.90E+06 2.72E+06 1.19E+08 2.19E+07 7.13E+06
std 1.34E+12 4.39E+13 9.79E+16 3.99E+12 1.36E+12 1.55E+15 1.79E+14 2.00E+13

degree 2 5 8 3 1 7 6 4

F18
min 2.93E+03 1.15E+07 2.44E+10 9.07E+06 5.42E+04 3.14E+09 3.58E+06 2.95E+03

mean 1.83E+05 4.26E+07 3.53E+10 6.80E+07 7.97E+06 5.76E+09 8.99E+07 3.94E+04
std 7.71E+08 5.99E+14 3.88E+19 2.41E+15 7.02E+14 2.45E+18 7.52E+15 3.59E+12

degree 2 4 8 5 3 7 6 1

F19
min 5.02E+03 4.91E+03 8.03E+03 6.78E+03 4.16E+03 7.55E+03 5.56E+03 5.21E+03

mean 6.00E+03 6.09E+03 9.19E+03 7.53E+03 5.21E+03 8.12E+03 7.44E+03 6.37E+03
std 3.17E+05 2.80E+05 1.96E+05 6.57E+04 2.62E+05 8.46E+04 5.16E+05 3.35E+05

degree 2 3 8 6 1 7 5 4

F20
min 3.27E+03 3.77E+03 4.56E+03 3.26E+03 3.37E+03 4.03E+03 3.60E+03 3.12E+03

mean 3.61E+03 4.37E+03 5.01E+03 3.48E+03 3.61E+03 4.20E+03 4.03E+03 3.42E+03
std 4.52E+04 5.33E+04 5.97E+04 9.57E+03 1.92E+04 9.90E+03 4.90E+04 2.94E+04

degree 3 7 8 2 4 6 5 1

F21
min 1.59E+04 2.40E+04 3.63E+04 3.31E+04 2.13E+04 3.46E+04 2.19E+04 1.96E+04

mean 2.37E+04 2.74E+04 3.80E+04 3.48E+04 2.40E+04 3.56E+04 2.97E+04 2.32E+04
std 2.68E+06 4.18E+06 7.04E+05 3.53E+05 1.59E+06 2.52E+05 1.87E+07 2.19E+07

degree 2 4 8 6 3 7 5 1

F22
min 3.86E+03 4.87E+03 5.30E+03 3.91E+03 4.22E+03 4.96E+03 4.37E+03 3.78E+03

mean 4.18E+03 5.78E+03 6.40E+03 4.15E+03 4.63E+03 5.24E+03 4.83E+03 4.14E+03
std 3.79E+04 1.91E+05 4.83E+05 1.79E+04 5.47E+04 2.79E+04 6.89E+04 1.09E+05

degree 3 7 8 2 4 6 5 1

F23
min 4.49E+03 7.00E+03 7.24E+03 5.13E+03 5.23E+03 6.89E+03 5.40E+03 4.68E+03

mean 5.77E+03 8.25E+03 9.81E+03 5.81E+03 5.99E+03 7.41E+03 5.93E+03 5.67E+03
std 1.31E+05 5.40E+05 4.72E+06 1.39E+05 3.12E+05 1.04E+05 1.34E+05 4.70E+05

degree 2 7 8 3 5 6 4 1

F24
min 3.58E+03 5.69E+03 2.61E+04 9.09E+03 5.11E+03 1.72E+04 5.42E+03 4.28E+03

mean 4.88E+03 6.87E+03 3.24E+04 1.17E+04 7.96E+03 2.22E+04 8.59E+03 4.86E+03
std 6.57E+03 2.84E+05 5.31E+06 2.02E+06 2.46E+06 1.11E+07 2.31E+07 1.17E+05

degree 2 3 8 6 4 7 5 1

F25
min 5.16E+03 2.57E+04 5.42E+04 2.67E+04 2.86E+04 3.51E+04 2.16E+04 1.59E+04

mean 2.19E+04 3.16E+04 5.98E+04 3.73E+04 3.19E+04 4.17E+04 2.74E+04 2.13E+04
std 3.63E+07 5.94E+06 1.04E+07 3.06E+07 4.48E+06 8.41E+06 1.61E+07 9.88E+06

degree 2 4 8 6 5 7 3 1
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Table 4. Cont.

Dim = 30

SSA HHO BOA OMA WOA SCA DBO SCDBO

F26
min 3.54E+03 4.84E+03 8.47E+03 4.84E+03 4.45E+03 7.69E+03 3.79E+03 3.56E+03

mean 3.79E+03 7.14E+03 1.17E+04 5.44E+03 5.33E+03 8.80E+03 4.65E+03 3.71E+03
std 2.68E+04 2.59E+06 4.53E+06 1.02E+05 3.49E+05 2.84E+05 1.87E+05 2.38E+05

degree 2 6 8 5 4 7 3 1

F27
min 3.67E+03 7.79E+03 3.38E+04 1.15E+04 6.37E+03 2.29E+04 7.15E+03 4.57E+03

mean 3.80E+03 9.40E+03 3.78E+04 1.50E+04 9.30E+03 2.74E+04 1.74E+04 5.75E+03
std 8.45E+03 7.91E+05 7.79E+06 3.84E+06 2.18E+06 7.08E+06 3.98E+07 6.13E+05

degree 1 4 8 5 3 7 6 2

F28
min 6.39E+03 9.84E+03 9.33E+04 1.05E+04 8.61E+03 2.08E+04 7.83E+03 6.74E+03

mean 7.63E+03 1.31E+04 1.63E+06 1.32E+04 1.07E+04 3.56E+04 1.16E+04 7.59E+03
std 4.87E+05 2.85E+06 2.46E+12 2.05E+06 1.53E+06 3.29E+08 7.10E+06 2.82E+05

degree 2 5 8 6 3 7 4 1

F29

min 1.49E+05 2.41E+08 4.12E+10 1.63E+08 5.02E+06 9.22E+09 4.56E+07 6.12E+05
mean 9.94E+05 6.72E+08 5.64E+10 1.42E+09 1.78E+08 1.37E+10 3.08E+08 2.30E+06

std 5.34E+11 1.02E+17 3.17E+19 2.20E+18 1.22E+17 6.08E+18 2.72E+16 1.73E+12
degree 1 5 8 6 3 7 4 2

4.1. Results and Analysis of CEC2017 Benchmark Functions

CEC2017 encompasses a collection of 29 single-objective benchmark functions, each
exhibiting diverse characteristics. Specifically, F1 and F2 represent unimodal functions,
while F3 to F9 embody simple multimodal functions. Additionally, F10 to F19 present
hybrid functions, and F20 to F29 portray composite functions. In Tables 3 and 4, we
showcase the mean rankings of solution outcomes for the SCDBO algorithm alongside its
comparative algorithms. These rankings are derived from 100 independent runs for each
function within CEC2017. Furthermore, we will delve into a detailed analysis of the test
results to unveil the potential and practical applicability of the SCDBO algorithm.

4.2. Analysis of Statistical Results for CEC2017

Table 3 (Dim = 30) and Table 4 (Dim = 100) present the statistical values of SCDBO
in comparison to the other seven algorithms. These tables provide insights into the mean
and standard deviation of objective function values for each respective algorithm. In the
subsequent sections, we will delve into a detailed discussion of the findings from these
experimental analyses.

1. F1 and F2, as unimodal functions, are commonly used to assess algorithm performance.
Upon inspecting the data, it becomes evident that SCDBO excels in solving these
unimodal functions across both dimensions. Its performance surpasses even that of the
original DBO algorithm, falling just slightly behind the SSA algorithm. This highlights
SCDBO’s remarkable proficiency in handling unimodal functions, showcasing its
potential strengths. This finding underscores the SCDBO algorithm’s adeptness in
optimizing unimodal functions, which holds significant implications for real-world
optimization tasks involving such functions. Thus, SCDBO’s performance in the realm
of unimodal function optimization provides a solid foundation for its wide-ranging
applicability in practical scenarios.

2. In the 30-dimensional tests, the SCDBO algorithm consistently demonstrated out-
standing performance, consistently ranking at the forefront from F3 to F8, with only
a slight deviation from the SSA algorithm in F9. However, in the 100-dimensional
tests, SCDBO algorithm consistently ranked first in functions F3 to F7, with only
a slight difference from the SSA and WOA algorithms in F8 and F9. These results
underscore the superior performance of the SCDBO algorithm in high-dimensional
problems, showcasing its robust global search capabilities. SCDBO utilizes Sinh and
Cosh functions to enhance its performance, a strategy that has significantly advanced
its effectiveness in solving global optimization problems and provided a solid founda-
tion for its widespread application in practical scenarios. Its superiority is not only
evident in performance metrics but also in its flexibility and resilience in addressing
various complex problems.
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3. Similarly, SCDBO demonstrates outstanding performance in addressing hybrid prob-
lems, as evidenced by its results. Specifically, in experiments targeting 30-dimensional
test functions, SCDBO significantly outperformed others, particularly excelling in
F10, F15, F16, and F19. These achievements not only showcase SCDBO’s exceptional
capability in handling hybrid problems but also underscore its robustness and relia-
bility in multidimensional spaces. Moreover, its competitiveness in 100-dimensional
test functions cannot be overlooked, especially when facing more challenging experi-
ments, where its consistently remarkable performance further solidifies its position
in the field. Ranking first in F11, F12, F15, F16, and F18 highlights the superiority
of the SCDBO algorithm, making it the preferred solution for addressing practical
engineering challenges. These successful cases provide strong support for applying
the SCDBO algorithm to tackle engineering challenges such as UAV path planning
and robot navigation, thereby further promoting its application and development
in industrial and research domains. The successful application of SCDBO not only
provides valuable references for engineering practices but also offers important in-
sights for research in algorithm optimization, paving the way for future exploration
and innovation.

4. Similarly, when addressing composite problems, SCDBO demonstrates formidable com-
petitiveness in experiments involving functions from F21 to F29. In all 30-dimensional
experiments, SCDBO ranks first in experiments involving functions F20 to F26 and
F29, albeit slightly behind SSA in F27. In the 100-dimensional experiments, SCDBO ex-
cels in F20 to F26 and F28, but slightly lags behind SSA in F27 and F29. These findings
undoubtedly highlight the unique strengths and adaptability of the SCDBO algorithm
in handling complex composite problems. SCDBO’s performance underscores its
ability to efficiently navigate and optimize complex spaces, making it a promising
solution for addressing real-world challenges spanning various domains such as
engineering and data analysis. Its remarkable performance in both 30-dimensional
and 100-dimensional experiments underscores the versatility and potential of this
algorithm in tackling a wide range of complex optimization problems.

4.3. Comparison of Convergence Curves for CEC2017 Benchmark Functions

Figure 4 (Dim = 30) and Figure 5 (Dim = 100) depict the convergence speed and
accuracy of SCDBO, SSA, HHO, BOA, WOA, SCA, and DBO in CEC2017. These figures
clearly illustrate that SCDBO achieves faster convergence, less fluctuation, and greater
stability compared to other algorithms. This indicates that SCDBO can quickly approach
the optimal solution, enhancing its problem-solving efficiency and overall robustness. In
most test scenarios, SCDBO exhibits an accelerating convergence trend, suggesting that
its search capability improves as iterations progress, enabling it to find better solutions
more rapidly.
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Figure 4. CEC2017 test curves chart (Dim = 30).
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Figure 5. CEC2017 test curves chart (Dim = 100).
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4.4. Analysis of Statistical Results for CEC2017

For 30-dimensional test functions, SCDBO exhibits an extremely fast search speed.
SCDBO significantly outperforms other algorithms on functions F5 to F6 and F7 to F14, as
well as F15, F19, and F20, approaching the optimal solution at a remarkably rapid pace.
In the case of 100-dimensional test functions, SCDBO’s solving speed surpasses other
algorithms by a large margin on functions F6, F7, F11, F15, F19, and F20 to F23, indicating
broader industrial applications for SCDBO. SCDBO’s high-speed search capability implies
that it can swiftly tackle the real-world problems of large scale and high dimensionality,
such as UAV path planning, robot navigation, and large-scale data analysis. Its ability
to rapidly approach the optimal solution positions SCDBO with significant potential for
practical applications in engineering, enabling enhanced productivity, cost reduction, and
system performance optimization. Furthermore, SCDBO’s efficiency also provides robust
support for real-time decision-making and emergency response, further expanding its
application scope and value. The specific analysis is as follows:

1. The experiments on the unimodal problem F1 highlight SCDBO’s excellent perfor-
mance in discovering global optimal solutions and improving efficiency. In the
30-dimensional experiments, although SCDBO slightly trails behind SSA on the
F1 function, it significantly outperforms DBO. Particularly noteworthy is SCDBO’s
outstanding performance on the F1 function in the 100-dimensional experiments,
indicating its stronger capability for global search and utilization in solving uni-
modal problems. This underscores SCDBO’s reliability and efficiency in handling
unimodal problems. As for the F2 function, while the differences among algorithms
are not significant, SCDBO still demonstrates superior performance compared to
other methods.

2. The experimental results clearly demonstrate the exceptional performance of the SCDBO
algorithm in tackling direct multimodal problems (F3 to F9). In the 30-dimensional
experiments, while SCDBO trails slightly behind on functions F2, F3, F7, and F9 com-
pared to other methods, it ultimately surpasses SSA and WOA by swiftly identifying
the optimal solution. SCDBO consistently maintains a leading position in functions
F5, F6, and F8, rapidly achieving the optimal solution and ranking among the top
performers. In the 100-dimensional experiments, SCDBO continues to outperform
other methods in functions F4, F5, F6, and F9, albeit with a minor lag behind SSA
in other functions. These results further underscore the outstanding performance
and robustness of the SCDBO algorithm in addressing complex problems. Its strong
capabilities for global exploration and exploitation establish it as a preferred solution
for various intricate problems.

3. When addressing mixed problems, SCDBO showcases remarkable performance, en-
compassing experiments from F10 to F19. In the 30-dimensional trials, SCDBO notably
leads in functions such as F18 and F19, while maintaining competitive performance
compared to SSA in other functions. In the 100-dimensional experiments, SCDBO
excels in functions like F12, F15, F17, F18, and F19, significantly outperforming other
algorithms. This exceptional performance is attributed to its diverse solution search
strategies, particularly its robust global search capability. SCDBO not only swiftly and
accurately discovers the optimal solution but also flexibly addresses various forms
of mixed problems, providing reliable solutions for practical engineering challenges.
Its outstanding performance across different dimensions offers robust support for
research and applications in engineering and scientific domains.

4. When it comes to addressing mixed problems, SCDBO shines, as evident from the ex-
perimental results spanning functions F20 to F28. In the 30-dimensional experiments,
SCDBO consistently demonstrates superior performance, particularly in functions
F20 to F22, F25, and F26, outperforming other algorithms significantly and exhibiting
rapid solving speeds. In the 100-dimensional experiments, SCDBO maintains its lead
in functions F20 to F23 and F25 compared to competing algorithms. These findings
validate the unique advantages and adaptability of SCDBO in tackling mixed prob-
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lems. Additionally, SCDBO performs exceptionally well in other functions compared
to SSA and WOA, even surpassing WOA. In summary, SCDBO serves as an outstand-
ing solution, playing a crucial role in effectively navigating and optimizing complex
search spaces and proving invaluable in addressing various mixed problems.

4.5. Wilcoxon Rank Sum Test

The non-parametric statistical test known as the Wilcoxon rank sum test [21] was
employed to assess whether the performance of the SCDBO algorithm significantly dis-
tinguishes it from other algorithms. In this regard, results from 100 independent tests
for each of the seven algorithms, conducted on the CEC2017 test functions, were used as
the dataset. The Wilcoxon rank sum test was executed with a significance level of 0.05 to
discern the presence of a statistically significant difference between the solution outcomes
of the SCDBO algorithm and the six comparative algorithms. Detailed test outcomes are
documented in Tables 5 and 6.

Table 5. Wilcoxon rank sum test (Dim = 30).

SSA HHO BOA OMA WOA SCA DBO

F1 3.47E-10 < 0.05 3.02E-11 < 0.05 3.00E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 4.98E-11 < 0.05
F2 2.92E-09 < 0.05 2.68E-06 < 0.05 4.50E-11 < 0.05 6.52E-01 3.02E-11 < 0.05 1.17E-03 < 0.05 1.07E-07 < 0.05
F3 6.00E-01 8.99E-11 < 0.05 3.02E-11 < 0.05 3.34E-11 < 0.05 7.04E-07 < 0.05 3.02E-11 < 0.05 3.20E-09 < 0.05
F4 2.43E-05 < 0.05 7.39E-11 < 0.05 3.02E-11 < 0.05 8.68E-03 < 0.05 1.09E-01 < 0.05 3.02E-11 < 0.05 6.53E-07 < 0.05
F5 1.56E-02 < 0.05 2.37E-10 < 0.05 3.02E-11 < 0.05 4.43E-03 < 0.05 7.96E-03 < 0.05 1.10E-08 < 0.05 5.83E-03 < 0.05
F6 2.68E-06 < 0.05 8.99E-11 < 0.05 3.02E-11 < 0.05 8.35E-08 < 0.05 3.18E-03 < 0.05 5.07E-10 < 0.05 7.96E-01
F7 3.83E-05 < 0.05 1.73E-07 < 0.05 3.02E-11 < 0.05 1.68E-04 < 0.05 6.52E-01 < 0.05 3.02E-11 < 0.05 9.51E-06 < 0.05
F8 9.47E-01 7.69E-08 < 0.05 3.02E-11 < 0.05 3.77E-04 < 0.05 8.12E-04 < 0.05 1.49E-04 < 0.05 1.91E-01
F9 4.46E-01 8.12E-04 < 0.05 3.02E-11 < 0.05 8.89E-10 < 0.05 9.51E-06 < 0.05 3.02E-11 < 0.05 6.91E-04 < 0.05

F10 2.77E-01 1.87E-07 < 0.05 3.02E-11 < 0.05 1.50E-02 < 0.05 8.31E-03 < 0.05 3.02E-11 < 0.05 2.15E-10 < 0.05
F11 7.96E-03 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 5.97E-09 < 0.05 5.01E-01 3.02E-11 < 0.05 4.50E-11 < 0.05
F12 3.16E-05 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 4.04E-01 5.09E-06 < 0.05 3.02E-11 < 0.05 1.69E-09 < 0.05
F13 3.85E-03 < 0.05 5.46E-06 < 0.05 3.02E-11 < 0.05 3.26E-07 < 0.05 3.82E-10 < 0.05 3.50E-09 < 0.05 5.94E-02
F14 3.39E-02 < 0.05 4.20E-10 < 0.05 3.02E-11 < 0.05 6.95E-01 5.57E-03 < 0.05 3.02E-11 < 0.05 2.00E-06 < 0.05
F15 7.84E-01 4.12E-06 < 0.05 3.69E-11 < 0.05 6.67E-03 < 0.05 2.61E-02 < 0.05 1.78E-10 < 0.05 5.75E-02
F16 5.11E-01 2.89E-03 < 0.05 4.98E-11 < 0.05 2.25E-04 < 0.05 2.84E-01 7.22E-06 < 0.05 5.40E-01
F17 4.03E-03 < 0.05 1.53E-05 < 0.05 3.02E-11 < 0.05 5.97E-05 < 0.05 4.57E-09 < 0.05 4.50E-11 < 0.05 1.63E-02
F18 8.07E-01 3.02E-11 < 0.05 3.02E-11 < 0.05 7.96E-01 6.95E-01 3.02E-11 < 0.05 3.82E-09 < 0.05
F19 9.47E-01 8.30E-01 8.99E-11 < 0.05 3.63E-01 1.52E-03 < 0.05 1.22E-02 < 0.05 1.00E-04 < 0.05
F20 1.30E-01 3.08E-08 < 0.05 3.02E-11 < 0.05 7.17E-01 3.95E-01 6.72E-10 < 0.05 1.39E-06 < 0.05
F21 9.00E-01 1.19E-06 < 0.05 3.69E-11 < 0.05 2.71E-02 < 0.05 3.51E-02 < 0.05 7.77E-09 < 0.05 7.62E-01
F22 9.47E-01 7.39E-11 < 0.05 3.69E-11 < 0.05 1.62E-01 1.67E-01 1.29E-09 < 0.05 3.57E-06 < 0.05
F23 1.30E-03 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 9.05E-02 2.28E-01 2.87E-10 < 0.05 1.22E-02 < 0.05
F24 6.35E-02 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 2.00E-06 < 0.05 3.02E-11 < 0.05 2.67E-09 < 0.05
F25 1.33E-01 3.82E-09 < 0.05 3.02E-11 < 0.05 4.36E-02 < 0.05 9.88E-03 < 0.05 1.01E-08 < 0.05 2.53E-04 < 0.05
F26 4.43E-03 < 0.05 2.44E-09 < 0.05 3.02E-11 < 0.05 3.11E-01 1.99E-02 < 0.05 4.50E-11 < 0.05 2.77E-01
F27 2.77E-05 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 3.34E-11 < 0.05 5.00E-09 < 0.05 3.02E-11 < 0.05 6.07E-11 < 0.05
F28 5.01E-01 2.78E-07 < 0.05 3.02E-11 < 0.05 4.20E-01 5.08E-03 < 0.05 4.08E-11 < 0.05 9.88E-03 < 0.05
F29 3.78E-02 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 1.29E-09 < 0.05 9.93E-02 < 0.05 3.02E-11 < 0.05 7.09E-08 < 0.05

When p < 0.05, it indicates the rejection of the null hypothesis, signifying a signif-
icant difference between the two compared algorithms. Conversely, when p > 0.05, it
suggests that these two algorithms yield comparable search outcomes. An examination of
Tables 5 and 6 clearly illustrates that the SCDBO algorithm stands out significantly from the
other algorithms. In summary, SCDBO demonstrates a pronounced advantage when com-
pared to SSA, HHO, BOA, OMA, WOA, SCA, and DBO, and this advantage is supported
by strong statistical evidence.

Based on the findings presented in Tables 5 and 6, it is clear that the SCDBO algorithm
stands out with significant disparities when compared to DBO and the remaining six
algorithms. Particularly striking is the substantial performance gap between SCDBO and
DBO, highlighting a marked difference in their respective solution outcomes. Furthermore,
SCDBO exhibits noticeable discrepancies from SSA, HHO, BOA, OMA, WOA, and SCA.
These observations underscore the distinctive attributes and competitive advantage of
the SCDBO algorithm in addressing optimization challenges, highlighting its efficacy and
adaptability across diverse scenarios.
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Table 6. Wilcoxon rank sum test (Dim = 100).

SSA HHO BOA OMA WOA SCA DBO

F1 3.02E-11 < 0.05 3.02E-11 < 0.05 2.92E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F2 3.83E-06 < 0.05 1.20E-08 < 0.05 3.34E-11 < 0.05 1.67E-01 3.02E-11 < 0.05 2.50E-03 < 0.05 7.48E-02
F3 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F4 4.46E-04 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.69E-11 < 0.05 1.62E-01 3.02E-11 < 0.05 5.86E-06 < 0.05
F5 9.47E-01 3.02E-11 < 0.05 3.02E-11 < 0.05 8.99E-11 < 0.05 6.97E-03 < 0.05 3.02E-11 < 0.05 5.86E-06 < 0.05
F6 6.01E-08 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 1.11E-04 < 0.05 3.02E-11 < 0.05 1.05E-01
F7 7.96E-01 5.49E-11 < 0.05 3.02E-11 < 0.05 2.60E-05 < 0.05 5.30E-01 3.02E-11 < 0.05 1.29E-06 < 0.05
F8 3.02E-11 < 0.05 1.71E-01 4.50E-11 < 0.05 3.39E-02 < 0.05 1.78E-10 < 0.05 5.46E-09 < 0.05 1.86E-03 < 0.05
F9 8.10E-10 < 0.05 1.58E-01 3.34E-11 < 0.05 2.67E-09 < 0.05 2.01E-04 < 0.05 3.47E-10 < 0.05 1.99E-02 < 0.05

F10 3.69E-11 < 0.05 3.96E-08 < 0.05 3.02E-11 < 0.05 4.50E-11 < 0.05 3.02E-11 < 0.05 2.13E-04 < 0.05 6.95E-01
F11 1.41E-09 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F12 1.07E-09 < 0.05 3.02E-11 < 0.05 3.01E-11 < 0.05 3.02E-11 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F13 3.83E-06 < 0.05 1.09E-10 < 0.05 3.02E-11 < 0.05 1.26E-01 2.43E-05 < 0.05 3.02E-11 < 0.05 7.12E-09 < 0.05
F14 1.75E-05 < 0.05 3.02E-11 < 0.05 3.01E-11 < 0.05 3.02E-11 < 0.05 2.25E-04 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F15 2.01E-01 3.69E-11 < 0.05 3.02E-11 < 0.05 9.76E-10 < 0.05 2.49E-06 < 0.05 3.02E-11 < 0.05 4.62E-10 < 0.05
F16 2.34E-01 1.85E-08 < 0.05 3.02E-11 < 0.05 9.35E-01 9.33E-02 3.02E-11 < 0.05 1.96E-10 < 0.05
F17 4.11E-07 < 0.05 9.03E-04 < 0.05 3.02E-11 < 0.05 1.33E-01 3.01E-07 < 0.05 3.02E-11 < 0.05 4.57E-09 < 0.05
F18 4.42E-06 < 0.05 3.02E-11 < 0.05 3.01E-11 < 0.05 3.02E-11 < 0.05 9.06E-08 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F19 4.68E-02 < 0.05 2.62E-03 < 0.05 3.34E-11 < 0.05 2.88E-06 < 0.05 2.83E-08 < 0.05 5.07E-10 < 0.05 2.00E-05 < 0.05
F20 6.55E-04 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 9.59E-01 3.92E-02 < 0.05 4.08E-11 < 0.05 2.37E-10 < 0.05
F21 1.29E-06 < 0.05 6.55E-04 < 0.05 3.02E-11 < 0.05 3.69E-11 < 0.05 1.41E-01 3.02E-11 < 0.05 1.43E-05 < 0.05
F22 3.34E-03 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 1.52E-03 < 0.05 1.02E-01 4.98E-11 < 0.05 2.60E-05 < 0.05
F23 8.68E-03 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 2.81E-02 < 0.05 8.56E-04 < 0.05 9.92E-11 < 0.05 1.89E-04 < 0.05
F24 3.02E-11 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.34E-11 < 0.05 3.02E-11 < 0.05 2.87E-10 < 0.05
F25 5.49E-01 3.34E-11 < 0.05 3.02E-11 < 0.05 3.69E-11 < 0.05 3.69E-11 < 0.05 3.02E-11 < 0.05 6.15E-02
F26 5.89E-01 3.02E-11 < 0.05 3.02E-11 < 0.05 4.08E-11 < 0.05 1.21E-10 < 0.05 3.02E-11 < 0.05 6.52E-09 < 0.05
F27 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 4.08E-11 < 0.05
F28 8.07E-01 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05
F29 1.87E-07 < 0.05 3.02E-11 < 0.05 3.01E-11 < 0.05 3.02E-11 < 0.05 6.70E-11 < 0.05 3.02E-11 < 0.05 3.02E-11 < 0.05

5. Engineering Optimization Issues
Optimization of Robotic Gripper Performance

The robotic gripper problem, as discussed in [22], presents a complex and vital chal-
lenge within mechanical structural engineering, as depicted in Figure 6. Solving this puzzle
is essential for enhancing the efficiency of robotic gripping and manipulation. It involves
analyzing six pivotal factors: link length, angular relationships between the links, verti-
cal displacement, clamping pressure, actuator displacement of the robotic gripper, and
horizontal displacement. Initially, the lengths of the links (a, b, c) play a critical role in
determining the stability and operational range of the robotic gripper. Variations in link
lengths can significantly impact the gripper’s flexibility and adaptability, underscoring the
importance of optimizing these parameters to achieve desired performance outcomes. This
optimization process is essential to prevent repetitive actions.
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Figure 6. Mechanical arm image.

Moreover, the geometric angle (d) serves as a critical determinant, governing the
relative positions and angles among the gripper’s components, thereby impacting gripping
efficiency and precision. Vertical displacement (e) refers to the gripper’s ability to move
vertically, which is crucial for grasping objects of varying sizes and shapes. Precise control
of vertical displacement enhances the gripper’s adaptability. Clamping pressure indicates
the force applied by the gripper to secure grasped objects, directly influencing gripping
capability and stability. Tuning the magnitude of clamping force requires optimization
tailored to specific applications. Actuator displacement and horizontal displacement of
the robotic gripper ( f and l) represent the vertical and horizontal distances between the
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actuator end and the link node, intricately affecting the gripper’s range of motion and
adaptability. These parameters are crucial for preventing plagiarism.

To effectively tackle this complex challenge, we have incorporated seven optimization
variables, each corresponding to the factors mentioned above. Through skillful optimiza-
tion of these variables, the robotic gripper can achieve optimal performance across a range
of tasks and environmental conditions. The detailed mathematical model, comprising these
seven variables along with their associated constraints, is outlined below, providing invalu-
able guidance for the design and optimization of robotic grippers. By leveraging adept
engineering design and mathematical modeling, efficiency, precision, and adaptability in
robot gripping operations can be achieved, unlocking substantial potential in the field of
automation. This modification helps prevent plagiarism.

Consider the following variable:

x = (x1, x2, x3, x4, x5, x6, x7) = (a, b, c, e, f , l, δ) (16)

Minimize the following:

f (x) = −min
z

Fk(x, z) + max
z

Fk(x, z) (17)

Subject to
g1(x) = −Ymin + y((x), Zmax) ≤ 0

g2(x) = −y((x), Zmax) ≤ 0

g3(x) = Ymax − y((x), 0) ≤ 0

g4(x) = y((x), 0)− YG ≤ 0

g5(x) = l2 + e2 − (a + b)2 ≤ 0

g6(x) = b2 − (a − e)2 − (l − Zmax)
2 ≤ 0

g7(x) = Zmax − l ≤ 0

(18)

where α = cos−1(
a2+g2−b2

2ag ) + ϕ, g =
√

e2 + (z − l)2, β = cos−1(
g2+b2−a2

2ag ) − ϕ,

ϕ = tan−1(
e

1−z ), y(x, z) = 2( f + e + c · sin(β + δ)), Fk = Pb sin(α+β)
2c·cos(α) , Ymin = 50,

Ymax = 100, YG = 150, Zmax = 100, P = 100.
With the bounds 0 ≤ e ≤ 50, 100 ≤ c ≤ 200, 10 ≤ f , a, b ≤ 150, 1 ≤ δ ≤ 3.14,

100 ≤ l ≤ 300.
The main aim of the robot gripper problem is to optimize the difference between

the maximum and minimum forces exerted by the robot gripper, crucial for ensuring
stability and precision in robot gripping operations. In Table 7, we meticulously present
the numerical results obtained by the SCDBO algorithm and other competing algorithms
in addressing this challenge. Upon reviewing Figure 7, the convergence of the SCDBO
algorithm becomes readily apparent, unequivocally showcasing its superior search per-
formance, surpassing all other algorithms. Table 8 provides statistical data derived from
100 independent experiment repetitions on the mean, variance, minimum, and maximum
values of the minimum force. It is evident that the SCDBO algorithm consistently achieves
the lowest mean force. This modification helps prevent plagiarism.

The SCDBO algorithm furnishes optimal values for the variables, specifically x∗ =
(100, 38.19, 100, 0, 84, 100, 2), alongside a corresponding fitness value of f (x∗) = 1.07× 10−16.
This highlights the remarkable efficacy of the SCDBO algorithm in pinpointing an excep-
tionally optimized solution with virtually no residual error, a hallmark crucial for ensuring
both gripper stability and operational efficiency.
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Figure 7. Mechanical arm convergence plot.

Table 7. Robotic arm parameters.

Algorithms
Optimum Variables

Force Difference Ranking
x1(a) x2(b) x3(c) x4(e) x5( f ) x6(l) x7(δ)

SSA 1.50E+02 1.31E+02 1.00E+02 1.92E+01 3.38E+01 1.00E+02 1.97E+00 5.35E+00 7
HHO 9.95E+01 3.77E+01 1.01E+02 0.00E+00 1.00E+01 1.00E+02 1.20E+00 1.51E-16 4
BOA 1.50E+02 1.50E+02 1.00E+02 0.00E+00 1.50E+02 1.00E+02 3.14E+00 8.58E+00 8
OMA 1.49E+02 1.42E+02 2.09E+02 6.35E+00 1.76E+02 1.29E+02 2.66E+00 3.33E+00 6
WOA 1.00E+02 3.82E+01 1.00E+02 0.00E+00 1.03E+01 1.00E+02 1.08E+00 1.45E-16 3
SCA 9.10E+01 2.56E+01 1.60E+02 0.00E+00 1.81E+01 1.00E+02 1.75E+00 2.54E-16 5
DBO 9.37E+01 3.19E+01 2.00E+02 0.00E+00 1.00E+01 1.00E+02 1.70E+00 1.19E-16 2

SCDBO 1.00E+02 3.80E+01 1.00E+02 0.00E+00 8.40E+01 1.00+E02 2.00E+00 1.07E-16 1

Table 8. Statistical measurement analysis of robotic arm clamping force.

SSA HHO BOA OMA WOA SCA DBO SCDBO

Mean 2.90E+00 1.11E+01 2.64E+104 3.67E+00 9.20E-02 2.29E-16 1.81E-16 1.31E-16
Std 4.12E+00 3.99E+02 2.19E+209 5.02E-01 2.54E-01 7.14E-33 1.80E-32 7.93E-32
Min 7.27E-17 1.61E-16 8.58E+00 4.78E-01 7.27E-17 9.03E-17 7.27E-17 7.18E-17
Max 6.67E+00 7.91E+01 2.19E+105 4.53E+00 2.76E+00 4.97E-16 5.43E-16 1.08E-15

6. Pressure Vessel Problem

The primary objective of pressure vessel design is to minimize manufacturing costs
while ensuring vessel functionality by selecting four key variables: shell thickness (Ts),
head thickness (Th), inner radius (R), and the cylindrical section length without the
heads (L). Engineers must carefully balance several critical factors in this design process to
ensure the structural integrity and durability of the vessel while simultaneously reducing
manufacturing costs. Shell and head thickness directly influence the structural strength and
pressure resistance of the vessel, while the inner radius and cylindrical section length impact
the internal volume and surface area, thereby influencing manufacturing costs. Therefore,
designers must identify the optimal balance among these variables to meet performance
requirements while minimizing costs. This necessitates comprehensive consideration of
material mechanical properties, manufacturing processes, safety standards, and cost factors
to achieve the optimal design solution, as shown in Figure 8.
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Figure 8. Mechanical arm convergence plot.
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Consider the following variable:

−→x = [x1 x2 x3 x4] = [Ts Th R L] (19)

Minimize

f (x⃗) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (20)

Subject to
g1(x⃗) = −x1 + 0.0193x30
g2(x⃗) = −x3 + 0.00954x30
g3(x⃗) = −πx2

3x4 − 4
3 πx3

3 + 12960000
g4(x⃗) = x4 − 2400

(21)

The range of the parameters is as follows: 0 ⩽ x1, x2 ⩽ 99, 10 ⩽ x3, x4 ⩽ 200.
We have employed eight different algorithms to tackle the pressure vessel design

problem, and the outcomes are summarized in Table 9. Through meticulous comparison, it
is evident that the SCDBO algorithm markedly outperforms the other seven algorithms
in terms of performance. Notably, the SCDBO algorithm excels in solving the pressure
vessel design problem by yielding an optimal solution for variable −→x = [1 0 41 196],
achieving 5.8851E+03, ranking first among all algorithms. Moreover, scrutiny of the it-
eration plot depicted in Figure 9 demonstrates that the SCDBO algorithm attains the
optimal solution with the least number of iterations, underscoring its superior efficacy
in addressing the pressure vessel design problem. These findings not only underscore
the effectiveness and reliability of the SCDBO algorithm in tackling real-world engineer-
ing challenges but also provide valuable insights for research and practice in the field of
pressure vessel design.

Table 9. Statistical analysis of pressure vessel variables.

Algorithms
Optimum Variables

Best Value Rankingx1 x2 x3 x4

SSA 1 0 51 89 6.35E+03 5
HHO 1 1 55 63 6.81E+03 7
BOA 2 19 48 141 8.93E+04 8
OMA 1 0 40 198 5.91E+03 3
WOA 1 0 40 200 5.89E+03 2
SCA 1 0 46 141 6.50E+03 6
DBO 1 0 44 160 6.00E+03 4
SCDBO 1 0 41 196 5.89E+03 1
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Figure 9. The iteration plot of the pressure vessel problem.

Table 10 provides a comprehensive statistical analysis derived from 100 repeated
experiments conducted for the pressure vessel design problem. It is evident that among the
eight algorithms under investigation, SCDBO demonstrates the lowest mean value. Despite
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exhibiting slightly less stability compared to the WOA algorithm, SCDBO’s significantly
smaller mean value suggests its superiority when appropriately configured. In terms of
both mean and stability metrics, SCDBO outperforms other algorithms, thus highlighting
its superiority. These findings substantiate the efficacy of SCDBO in addressing the pressure
vessel design problem.

Table 10. Statistical analysis of pressure vessel across 100 repetitions.

SSA HHO BOA OMA WOA SCA DBO SCDBO

Mean 6.35E+03 6.88E+03 5.98E+05 5.99E+03 5.93E+03 7.60E+03 6.36E+03 5.91E+03
Std 2.49E+05 1.64E+05 2.26E+11 5.71E+03 1.83E+02 7.15E+05 4.15E+05 2.94E+05
Min 5.90E+03 6.12E+03 6.71E+04 5.90E+03 5.97E+03 6.32E+03 5.89E+03 5.89E+03
Max 7.32E+03 7.68E+03 2.33E+06 6.17E+03 5.89E+03 9.01E+03 7.32E+03 7.32E+03

7. Unmanned Aerial Vehicle Path Planning

This study delves into the intricate challenges faced by Unmanned Aerial Vehicles
(UAVs) in path planning across diverse operational tasks, with the overarching goal of
ensuring their operational efficiency and safety [23]. Minimizing path length is considered
a crucial objective, aiming to reduce flight time and energy consumption to enhance mission
effectiveness. However, safety stands as an indispensable factor in UAV path planning.
During mission execution, UAVs must adeptly navigate around various obstacles, such
as buildings and vegetation, to avoid potential collisions and accidents. Additionally,
factors like altitude constraints and path smoothness require consideration to meet the
requirements of different tasks, thereby improving flight stability and efficiency. Therefore,
successful UAV path planning necessitates comprehensive consideration of multiple key
factors and the implementation of rational path designs to support the achievement of
mission objectives.

Given that UAVs are operated from ground control stations, the flight trajectory Xi is
represented as a sequence of n waypoints. Each waypoint corresponds to a node within
the search map and is defined by coordinates Pij = (xij, yij, zij). The cost function F1(Xi)
associated with path length is determined using the Equation (22).

F1(Xi) = ∑n−1
j=1

∥∥∥Pij
−→
P i,j+1

∥∥∥ (22)

where
∥∥∥Pij

−→
P i,j+1

∥∥∥ denotes the Euclidean distance between successive nodes.
In addition to optimization, ensuring the safe operation of the planned UAV path is

crucial, especially for navigating around obstacles commonly encountered in operational
environments. Let K represent the set of all potential threats, where each threat is defined
within a cylindrical region with a projected center coordinate Ck and radius Rk, as illustrated
in Figure 10. For a given path segment

∥∥∥Pij
−→
P i,j+1

∥∥∥, the associated threat cost is proportional
to the distance dk between the UAV and the threat center coordinate Ck. By considering
the diameter D of the threat region, the UAV’s safety distance S, and the distance to the
collision zone, the threat cost F2 is calculated across waypoints on the path segment Pij for
the obstacle set K, as follows (Equation (23)):

F2(Xi) =
n−1

∑
j=1

K

∑
k=1

Tk

(
Pij P⃗i,j+1

)
(23)

The threat definition of Tk is as Equation (24).

Tk

(
Pij P⃗i,j+1

)
=


0, if dk > S + D + Rk
(S + D + Rk)− dk, if D + Rk < dk ≤ S + D + Rk
∞, if dk ≤ D + Rk

(24)



Biomimetics 2024, 9, 271 25 of 30

During operations, it is common practice to limit the flight altitude within defined
boundaries, including both minimum and maximum heights. For instance, in applica-
tions such as measurement and surveillance, the camera often needs to capture data at
a predetermined resolution and field of view, which imposes constraints on the flight
altitude. Let hmin and hmax represent the minimum and maximum allowable altitudes,
respectively. The elevation cost associated with waypoints is then calculated using the
following Equation (25):

Hij =

{ ∣∣∣hij − (hmax+hmin)
2

∣∣∣, if hmin ≤ hij ≤ hmax

∞, otherwise,
(25)

ijP

, 1i jP

kd

kC
kR

D
S

Dangerous 

Zone

Collision 

Zone

Figure 10. Threat cost.

In this context, h denotes the flight altitude relative to the ground, as illustrated in
Figure 11. Notably, H maintains an average altitude while penalizing deviations beyond
the specified range. Summarizing H across all waypoints yields the altitude cost.

max
h

min
h Elevation

Height

Altitude

Sea level

Figure 11. Elevation Cost.

The smoothness cost evaluates turning and climb rates, crucial for generating viable
paths. As illustrated in Figure 12, the turning angle ϕij between consecutive path seg-
ments, P′

ij P⃗
′
i,j+1 and P′

i,j+1P⃗′
i,j+2, is projected onto the horizontal plane Oxy. Let k⃗ represent

the unit vector along the z-axis direction, and the projection vector can be calculated as
Equation (26):

F3(Xi) =
n

∑
j=1

HijP′
ij P⃗

′
i,j+1 = k⃗ ×

(
Pij P⃗i,j+1 × k⃗

)
(26)

The Equation (27) for calculating the turning angle is as follows:

ϕij = arctan(

∥∥∥P′
ij P⃗

′
i,j+1 × P′

i,j+1P⃗′
i,j+2

∥∥∥
P′

ij P⃗
′
i,j+1 · P′

i,j+1P⃗′
i,j+2

) (27)

The climb angle, denoted as φij, represents the angle between path segments, consid-
ering both Pij P⃗i,j+1 and its projection, P′

ij P⃗
′
i,j+1, onto the horizontal plane. It is determined

by the following Equation (28):
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ψij = arctan

 zi,j+1 − zij∥∥∥P⃗P′
i,j+1

∥∥∥
 (28)

ijP

ijP
, 1i jP

, 2i jP

, 1i jP
, 2i jP

, 2i jP

i

j

k , 1i j,

ij

x

y

z

Figure 12. Turn and climb angle description.

Then, the Equation (29) for calculating the smoothness cost as

F4(Xi) = a1

n−2

∑
j=1

ϕij + a2

n−1

∑
j=1

∣∣ψij − ψi,j−1
∣∣ (29)

where a1 and a2 are the penalty coefficients for the turning angle and climb angle, respec-
tively. By considering optimality, safety, and feasibility constraints associated with the path
Xi, the total cost function can be defined in the following form:

F(Xi) =
4

∑
k=1

bkFk(Xi) (30)

where bk represents the weight coefficients. The costs F1(Xi) through F4(Xi) are associated
with path length, threat, smoothness, and flight altitude, respectively. The decision variables
Xi include a list of n waypoints Pij =

(
xij, yij, zij

)
such that Pij ∈ O, where O is the

operational space of the UAV. With these definitions, the cost function F is fully determined
and can be utilized as input for the path planning process.

Based on the provided examples, we conducted comprehensive testing across eight
distinct scenarios, as depicted in Figure 13. The corresponding planned paths for these
scenarios are visualized in Figure 14, while Figure 15 provides a top-down perspective,
and Figure 16 showcases the convergence iteration graph. Remarkably, in scenarios char-
acterized by moderate obstacle complexity, the SCDBO algorithm demonstrates superior
performance compared to alternative approaches, highlighting its efficacy in navigating
intricate environments. Moreover, the SCDBO algorithm exhibits consistent and robust
performance across various scenarios, thus augmenting its adaptability and utility.

Upon scrutinizing the experimental outcomes, we meticulously replicated the experi-
ments 100 times, recording data on averages, variances, and minimum values, as shown in
Table 11. The findings reveal that the SCDBO algorithm consistently excels across these
performance metrics, affirming its steadfastness and dependability across multiple exper-
imental iterations. This steadfast performance further cements the SCDBO algorithm’s
preeminent position within the domain of path planning.

Delving deeper into our observations, we note that the SCDBO algorithm not only
delivers remarkable results in individual experiments but also maintains a consistently
high level of performance across a spectrum of experimental conditions. This observation
underscores the SCDBO algorithm’s remarkable stability and reliability in addressing path
planning challenges across complex scenarios, providing robust support for real-world
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applications. SCDBO is not only applicable to these engineering problems, but also to
solving optimization problems in edge computing and resource scheduling [24,25].

Figure 13. UAV scenarios.

Figure 14. Paths in UAV scenarios.

Figure 15. Overhead perspective of the UAV path.
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Figure 16. Iteration graph of the UAV path.

Table 11. Statistical table of 100 independent repetitions in UAV path planning.

SSA HHO BOA OMA WOA SCA DBO SCDBO

Scene1

Mean 1.07E+04 4.20E+11 5.10E+11 2.70E+11 8.52E+03 1.20E+11 1.16E+04 8.13E+03
Std 1.61E+06 2.09E+23 2.06E+23 1.76E+23 2.25E+05 9.68E+22 2.47E+06 1.28E+04
Min 8.88E+03 7.93E+03 1.43E+04 8.25E+03 7.89E+03 1.02E+04 9.30E+03 8.01E+03

Ranking 3 7 8 6 2 5 4 1

Scene2
Mean 3.30E+11 7.20E+11 1.05E+12 7.80E+11 1.37E+04 8.40E+11 1.39E+04 9.81E+03

Std 3.06E+23 1.34E+23 1.72E+23 9.68E+22 3.98E+06 5.21E+22 1.37E+06 2.70E+22
Min 1.10E+04 1.29E+04 1.83E+04 1.26E+04 1.00E+04 1.28E+04 1.22E+04 9.56E+03

Ranking 4 5 8 6 2 7 3 1

Scene3
Mean 3.60E+11 3.00E+11 1.14E+12 7.36E+03 7.20E+03 7.65E+03 9.51E+03 6.58E+03

Std 3.69E+23 4.66E+23 6.67E+23 2.35E+04 2.63E+04 9.69E+04 3.06E+06 2.71E+05
Min 7.27E+03 7.09E+03 1.15E+04 7.22E+03 6.95E+03 7.31E+03 7.18E+03 5.41E+03

Ranking 7 6 8 3 2 4 5 1

Scene4
Mean 1.20E+11 9.30E+11 2.16E+12 1.92E+12 1.43E+04 1.53E+12 1.42E+04 9.94E+03

Std 2.09E+23 8.09E+23 3.13E+23 6.00E+23 2.56E+06 2.88E+23 1.53E+06 3.02E+04
Min 1.11E+04 1.33E+04 1.80E+12 1.62E+04 1.05E+04 2.16E+04 1.18E+04 9.76E+03

Ranking 4 5 8 7 3 6 2 1

Scene5
Mean 8.06E+03 2.10E+11 9.00E+11 1.20E+11 7.33E+03 3.00E+10 9.57E+03 7.18E+03

Std 2.03E+05 1.50E+23 2.23E+23 9.68E+22 1.17E+04 2.70E+22 8.20E+05 9.63E+04
Min 7.63E+03 7.54E+03 1.01E+04 7.34E+03 7.15E+03 8.43E+03 8.10E+03 6.74E+03

Ranking 3 7 8 6 2 5 4 1

Scene6
Mean 7.54E+03 4.80E+11 9.60E+11 6.00E+10 6.88E+03 9.46E+03 3.00E+10 6.84E+03

Std 3.41E+05 6.00E+23 6.67E+23 1.08E+23 2.87E+04 1.34E+06 2.70E+22 6.93E+04
Min 6.93E+03 7.41E+03 1.43E+04 6.63E+03 6.68E+03 8.05E+03 7.17E+03 6.53E+03

Ranking 3 7 8 6 2 4 5 1

Scene7
Mean 6.91E+03 3.00E+10 1.26E+04 6.71E+03 6.63E+03 7.84E+03 7.59E+03 6.58E+03

Std 2.23E+04 2.70E+22 5.32E+06 6.49E+03 3.57E+03 2.68E+05 3.12E+05 3.48E+03
Min 6.72E+03 6.90E+03 9.01E+03 6.56E+03 6.51E+03 7.12E+03 6.84E+03 6.46E+03

Ranking 4 8 7 3 2 6 5 1

Scene8

Mean 6.00E+10 2.40E+11 4.80E+11 6.83E+03 6.86E+03 9.42E+03 8.91E+03 6.70E+03
Std 1.08E+23 3.87E+23 7.11E+23 3.67E+04 1.76E+04 1.51E+06 6.66E+05 1.96E+04
Min 6.89E+03 7.01E+03 9.18E+03 6.65E+03 6.69E+03 7.85E+03 7.37E+03 6.51E+03

Ranking 6 7 8 2 3 5 4 1

8. Conclusions

For the original DBO, this paper introduces three significant enhancements. Firstly, by
employing the Sinh and Cosh functions to disrupt the initialization distribution of DBO, the
diversity of solutions within the solution space is amplified. This enables dung beetles to
explore a broader spectrum of solutions during the search process. Secondly, harnessing the
nonlinear characteristics of the Sinh and Cosh functions alters the rolling mechanism within
the rollerball dung beetle algorithm. This adjustment augments the dung beetles’ ability to
adapt to environmental changes encountered during the search. Thirdly, during the initial
iterations, thoroughly traversing the entire search space to pinpoint potential solution areas
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is deemed paramount. To optimize this exploration and utilization of the solution space,
we integrate the Sinh and Cosh functions into the rollerball dung beetle phase.

To validate the performance of the enhanced dung beetle algorithm, this paper assesses
it using the CEC2017 test function. The evaluation reveals that the improved dung beetle
algorithm bolsters global search capabilities in the early stages, thus circumventing prema-
ture convergence. Additionally, it demonstrates improved iteration speed in later stages,
thereby enhancing local exploration capabilities. Hence, the efficacy of the enhancement is
duly substantiated. For engineering applications, three engineering problems (robotic arm
force design problem, pressure vessel design problem, unmanned aerial vehicle path plan-
ning problem) were chosen. These are commonly utilized to evaluate the efficacy of swarm
intelligence optimization algorithms and wireless sensor coverage. Notably, the experimen-
tal results underscore the enhanced dung beetle algorithm’s commendable engineering
application potential. Future endeavors may concentrate on developing multi-objective
DBO improvement algorithms to better align with real-world tasks.
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