
Citation: Olivares, R.; Noel, R.;

Guzmán, S.M.; Miranda, D.; Munoz,

R. Intelligent Learning-Based

Methods for Determining the Ideal

Team Size in Agile Practices.

Biomimetics 2024, 9, 292. https://

doi.org/10.3390/biomimetics9050292

Academic Editors: Ameer Hamza

Khan, Shuai Li and Danish Hussain

Received: 25 March 2024

Revised: 6 May 2024

Accepted: 10 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Intelligent Learning-Based Methods for Determining the Ideal
Team Size in Agile Practices
Rodrigo Olivares * , Rene Noel , Sebastián M. Guzmán , Diego Miranda and Roberto Munoz

Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile; rene.noel@uv.cl (R.N.);
sebastian.medina@postgrado.uv.cl (S.M.G.); diego.mirandah@postgrado.uv.cl (D.M.);
roberto.munoz@uv.cl (R.M.)
* Correspondence: rodrigo.olivares@uv.cl

Abstract: One of the significant challenges in scaling agile software development is organizing
software development teams to ensure effective communication among members while equipping
them with the capabilities to deliver business value independently. A formal approach to address
this challenge involves modeling it as an optimization problem: given a professional staff, how can
they be organized to optimize the number of communication channels, considering both intra-team
and inter-team channels? In this article, we propose applying a set of bio-inspired algorithms to solve
this problem. We introduce an enhancement that incorporates ensemble learning into the resolution
process to achieve nearly optimal results. Ensemble learning integrates multiple machine-learning
strategies with diverse characteristics to boost optimizer performance. Furthermore, the studied
metaheuristics offer an excellent opportunity to explore their linear convergence, contingent on the
exploration and exploitation phases. The results produce more precise definitions for team sizes,
aligning with industry standards. Our approach demonstrates superior performance compared to
the traditional versions of these algorithms.

Keywords: metaheuristics; machine learning; ensemble learning; agile practices; software engineering

1. Introduction

The agile approach to software engineering is based on a series of practices that prioritize
face-to-face collaboration between members of the software development team [1]. While
this allows one to address the change, considering it as the only constant in an uncertain
environment [2], it poses a challenge in terms of scalability as the complexity of communication
increases with a larger number of team members.

The recent studies in high-performance technological organizations have shown that small,
self-organized, and independent software teams are more efficient in software delivery [3]. On
the other hand, frameworks for scaling agile development practices promote the formation
of independent self-organized teams to enable scalability of agile development [4,5]. This
modularization translates into a modularization of the system’s architecture, where approaches
like domain-driven design [6] and microservices [7] advocate that small teams handle a reduced
part of the problem domain to maintain technical simplicity and reduce the cognitive load of
the development team. The impact of communication within and between teams on software
development efficiency is significant, to the extent that digital transformation frameworks [8,9]
encourage designing the structure of software teams as if it were the architecture of software
components: the less coupled the communication of the teams, the less coupled the software
components are.

In this context, a relevant question arises: What is the ideal size of a software develop-
ment team? Although this question has been approached with anecdotal approximations
like the two-pizza rule (a team should not be larger than the number of people two pizzas
can feed) [10], there are various factors in the interactions among team members that can

Biomimetics 2024, 9, 292. https://doi.org/10.3390/biomimetics9050292 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9050292
https://doi.org/10.3390/biomimetics9050292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-0582-954X
https://orcid.org/0000-0002-3652-4645
https://orcid.org/0009-0007-5334-1473
https://orcid.org/0000-0002-3232-0901
https://orcid.org/0000-0003-1302-0206
https://doi.org/10.3390/biomimetics9050292
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9050292?type=check_update&version=1

Biomimetics 2024, 9, 292 2 of 28

influence the team’s size. A systematic approach to this problem is proposed in [11]. In
this study, the challenge is addressed as an optimization problem: given the number of
professionals, how to organize them to optimize the number of communication channels,
considering both the channels within the team and between teams. For that, a conventional
genetic algorithm (GA) is employed. The results obtained after the GA optimization process
indicate that the optimal distribution of teams for the total project members ranges from five
to nine members per team. However, there is room for improvement in the aforementioned
results by employing new artificial intelligence techniques. These techniques enable the
use of historical data to achieve better outcomes when determining the distribution of team
sizes in an agile practices project.

In artificial intelligence, metaheuristic optimization algorithms have emerged as pow-
erful techniques capable of solving complex optimization problems with reduced solving
times [12]. Bio-solvers go through two main phases, known as exploration and exploitation.
Many of these algorithms have been designed to achieve better results through these two
stages. However, when this is not the case, the mechanism within the algorithm may have
some slight disadvantages in balancing exploration and exploitation, leading to suboptimal
performance [13]. For this reason, several works have been proposed in this line of research
to balance exploration and exploitation better and achieve more efficient solutions.

Techniques based on learning mechanisms to support optimization metaheuristics
have been successfully applied to problems involving the trade-off between exploration
and exploitation [14]. However, in many cases, the procedure guiding nature-inspired algo-
rithms operates individually; that is, it is a single technique that enhances the optimization
algorithm. Our work proposes a new balance between exploration and exploitation using
ensemble learning (EL). This strategy involves integrating a machine-learning technique
with specific characteristics to achieve superior results. As surrogate optimization algo-
rithms, we employ seven well-known bio-inspired techniques: particle swarm optimization,
gray wolf optimizer, firefly algorithm, bat algorithm, whale optimization algorithm, crow
search algorithm, and differential evolution. We chose these mechanisms because they
exhibit a linear characteristic of avoiding solutions trapped in local optima while balancing
the exploration and exploitation phases.

Ensemble learning into the optimization algorithm reveals that the optimal team
size and distribution for a given total number of team members range between six and
eight members per team, which aligns with industry practices [15–17]. These results are
practically equal to those reported in [11].

The rest of the article is organized as follows: Section 2 presents the state of the art,
including relevant studies. Section 3 covers important concepts considered in the proposal.
Next, the developed solution is presented in Section 4. Section 5 defines the computational
experimental setup. The results and discussion are exposed in Section 6. Finally, Section 7
provides a critical outlook on the results achieved and outlines the potential future work.

2. Related Work

Traditional project management approaches often try to achieve the objectives of inno-
vative projects. It is challenging to incorporate detailed initial plans in projects that produce
innovations, such as new products and software, due to the complexity of requirements
and solution planning and the lack of information from previous similar projects [18]. The
information scarcity in such projects makes them uncertain for traditional management
methods [19,20]. Agile project management addresses these shortcomings. It involves
adaptive team skills regarding scope and solution requirements, distinct leadership in-
volvement, and the ability of agile teams to be creative and innovative [21]. However, this
heavily relies on active commitment from team members to the project tasks [22].

Few studies have focused on improving communication and collaboration within agile
teams. One of them is published in [11]. The proposal solves an optimization model for
agile team sizes using the genetic algorithm. The objective is to develop a GA model to find
the optimal size of a self-organized team, considering team communication characteristics.

Biomimetics 2024, 9, 292 3 of 28

The model uses the number of communication channels between individuals and teams as
the objective function. Another work, [23], proposes an optimization model for agile team
relationships based on role patterns and fuzzy logic. Role patterns evaluate team cohesion
from three perspectives: the team competence complement index, role typology matching
index, and team typology matching index. The model aims to determine the most suitable
candidate for a vacant position and effective team cohesion. Fuzzy logic is used for the lin-
guistic evaluation of system output, classifying results as low, medium, or high. While this
model has not been tested with metaheuristic algorithms, fuzzy logic offers the advantage
of defining and measuring imprecise information about the candidates’ psychological and
behavioral traits, which is difficult to model using conventional mathematics.

Concerning diversity methods, many strategies have been explored to achieve a
balance between exploration and exploitation. In [24], a compilation and investigation of
works related to exploration and exploitation in bio-inspired algorithms within the branch
of evolutionary algorithms is presented. According to this study, the same concept will be
applied to swarm intelligence, using different diversity measures to define neighborhood
relationships, which are necessary to delineate exploration from exploitation. For this
purpose, we focus on maintaining and controlling diversity through various techniques.
These techniques are divided into two main branches within diversity maintenance: non-
niching and niching. Any technique that maintains diversity in the population based on the
distance between the population members is considered a niching technique. Non-niching
and niching methods can maintain a population of diverse individuals, while niching
methods can also locate multiple optimal solutions.

Several works analyze how metaheuristics are improved using machine learning,
regression, and clustering techniques [25–28]. In [29], a machine learning model that
predicts solution quality for a given instance is created using the support vector machine.
After that, this approach modifies the parameters and directs the metaheuristics to more
fruitful search areas. In [30], the authors provide an evolutionary algorithm that regulates
operators and parameters. For this, a controller module that applies learning rules assesses
the impact and assigns restarts to the parameter set is integrated. Similar to these, the
research presented in [31] investigates how to combine the variable neighborhood search
algorithm with reinforcement learning, employ reactive strategies for parameter change,
and choose local searches to balance the exploration and exploitation stages.

Other works published in [32,33] combine PSO with regression models and clustering
strategies for population management and parameter adjustment, respectively. Another
classifier-based PSO is provided in [34] with the aim of an optimization approach that does
not depend on its parameters. This method enhances the exploration of the search space
and the quality of the solutions retrieved by classifying the solutions discovered by the
particles using a previously trained model.

In line with other efforts, the PSO is once again improved with a learning model
to regulate its parameters, yielding a competitive performance compared to alternative
parameter adaption algorithms [35]. This approach is also applied in GWO [36]. Here, RNA
crossover operations and an adaptive parameter control scheme were employed. Here, each
individual wolf learns from its neighbors, becoming another candidate for its new position.
In [37–39], randomized balancing strategies are applied to GWO. These improvements
are integrated into the local search procedure in order to balance the exploration and
exploitation phases.

Another bio-inspired algorithm enhanced by a learning mechanism is the firefly
optimization. In [40], the authors propose a multi-strategy ensemble to effectively achieve
a better balance between exploration and exploitation. Furthermore, in [41], an ML-based
work is presented to guide new population generation in an evolutionary process. The
proposed approach, called the learnable evolution model, executes ML to uncover reasons
for the superior performance of specific individuals in designated tasks. These inductive
hypotheses are then used to create a new solution generation.

Biomimetics 2024, 9, 292 4 of 28

From a similar perspective, some works in machine learning, such as [42], offer an
overview of the fusion of data mining techniques and metaheuristics. The application of
these methods within metaheuristic algorithms can be observed in various stages, including
initializing solution(s), managing solution(s) during the search process, and integrating
data mining into operators and local searches.

The reviewed literature underscores the diverse approaches and innovations in com-
bining metaheuristics with machine learning techniques. These studies collectively high-
light the potential for enhanced problem-solving, optimization, and adaptive strategies
through the synergy of these two domains. The synthesis of these methodologies con-
tributes to the theoretical understanding of optimization and presents practical avenues
for addressing complex real-world challenges. The following sections delve into the pro-
posed method and experimental evaluation, building upon the insights gained from these
related works.

3. Preliminaries

This section first introduces the ideal time-size problem for agile practices. Next, we
expose the ensemble learning paradigm that includes classifying, training, and combining
models. Finally, we present the integration between the learning-based approach and
different swarm intelligence methods.

3.1. Time-Size Problem

Agile practices are a mechanism to reduce costs and respond to changes in dynamic
market conditions [43]. It involves continuous collaboration with stakeholders and on-
going improvement at each project stage. When starting a project, teams go through
planning, execution, and evaluation. Continuous collaboration among team members
and project stakeholders is vital, as it impacts communication and performance within
the work [43]. Several frameworks have been developed, including Extreme Program-
ming [44], SCRUM [45], Adaptive Project Framework [46], and Crystal Methodologies [47].
These agile principles are implemented to develop products and project teams that can
swiftly adapt to changes, thereby increasing organizational agility and achieving significant
business benefits in a fluctuating business environment. Notably, it points out that while
empirically determining a suitable team size is useful, it is often insufficient for optimizing
team efficiency, necessitating more dynamic and scientifically grounded approaches.

To address the limitations of empirical methods in determining team size, an op-
timization model is employed [11]. This model aims to minimize the total number of
communication channels among team members, thereby reducing the complexity and
potential for inefficiencies in team interactions. The goal is to find the optimal equip-
ment configuration to reduce communication load, streamline processes, and enhance
team efficiency.

Initially, the model establishes the basic parameters: N represents the total number
of communication channels among all team members, T denotes the number of teams,
and n specifies the number of members in each team, defined by the set {t1, t1, . . . , tn}.
After, for each team, the total number of communication channels Nt is calculated using the
formula Nt = [n(n− 1)/2]. This equation calculates the combinations of team members
that can communicate within the same team based on the assumption that every mem-
ber communicates with every other member. Next, the total number of communication
channels between different teams NT is computed as NT = [T(T − 1)/2]. This accounts
for each team needing to communicate with every other team at least once. Finally, the
comprehensive total N is then given by N = T × Nt + NT .

To reflect the diverse impact of various communication methods, the model incorpo-
rates weighted factors for different communication types: w1 for person-to-person verbal
communication, w2 for team-to-team communication, w3 for email communications, w4 for
video conference communications, and w5 for multilingual communications.

The objective function to minimize the communication load is formulated as follows:

Biomimetics 2024, 9, 292 5 of 28

min ∑T
i=1

(
ni(ni−1)

2

)
× pw +

(
T(T−1)

2

)
× tw

s.t
∑T

i=1 ni = N
(1)

where pw includes weights for personal communications {w1, w3, w5}, and tw accounts for
team-based communications {w2, w4}. The weights wi are empirically sourced from the
prior research and are set between 1 and 1.5, providing a realistic approximation of the
communication impacts [11].

The optimization problem of determining the ideal team size within agile practices is
combinatorial, as it aims to optimize communication channels within and between teams.
Given the number of team compositions possible from a pool of project members, the search
space grows exponentially with the increase in team and project size. This complexity is
further compounded when considering constraints such as minimum and maximum team
sizes. For instance, if a project involves n members and each team must have between a
and b members, the total number of potential team configurations can be calculated using
combinatorial methods. Therefore, The search space size is factorial, growing exponentially
with the increase in n. This exponential growth exemplifies the NP-hard nature of the
problem, as the number of potential configurations increases rapidly, even with a small
increase in the number of team members.

This combinatorial explosion suggests that our team size optimization problem can
be classified as NP-hard. The vast array of potential configurations presents significant
theoretical and computational challenges, necessitating an efficient approach to exploring
such a large search space.

In response to these challenges, we employ bio-inspired algorithms, particularly en-
hanced with ensemble learning. These algorithms are well-suited for efficiently searching
large, complex spaces and offer a pragmatic approach to achieving near-optimal solu-
tions within acceptable time frames and computational resources. The enhancements
through ensemble learning help balance the exploration and exploitation phases of the algo-
rithms, leading to more precise definitions of team sizes that align with industry standards.
This strategic methodological choice aligns with the need to efficiently handle inherent
complexity and scalability challenges while ensuring that the solutions are practical and
implementable in real-world scenarios.

3.2. Ensemble Learning

Ensemble learning is a robust multiple classification system that leverages the strength
of various learning models to create a superior composite model. As detailed in [48],
ensemble methods synthesize the predictive power of several base learners to enhance
predictive accuracy and model stability over individual classifiers.

The concept of homogeneous and heterogeneous ensembles delineates the landscape
of ensemble learning. Homogeneous ensembles, such as decision tree ensembles or neural
network ensembles, consist exclusively of one type of base learner, enhancing the predictive
strength through diversity in model training procedures. Heterogeneous ensembles, in
contrast, integrate diverse types of learners, broadening the scope of learning capabilities
beyond what single-model ensembles can achieve.

The effectiveness of ensemble methods is captured in our adaptation of the basic EL
concept illustrated in Figure 1, where multiple learners are trained, and their predictions are
synergistically combined to produce superior results. This approach mitigates individual
learner errors across varied datasets, as supported by [49], who emphasize the enhanced
performance due to error decorrelation among learners.

Biomimetics 2024, 9, 292 6 of 28

Figure 1. General workflow of an EL inspired by [49].

In EL, two distinct approaches are utilized to facilitate the learning process for indi-
vidual learners through training. One involves a sequential methodology, while the other
employs a parallel system. To achieve this, two pivotal algorithms stand out, namely, boost-
ing and bagging. Boosting employs a sequential methodology to elevate weak individual
learners to a more robust level. On the other hand, bagging utilizes a parallel training
method that emphasizes ensemble-based sampling. Our study extends these foundational
techniques by exploring combinatorial methods within EL, aiming to harness and optimize
the collective capabilities of diverse learning algorithms.

Combining individual learners at the end of the training process offers several benefits.
These include mitigating the risk of selecting a single learner with mediocre results, avoiding
poor generalization performance, enhancing outcomes at this stage, and enabling a more
accurate approximation to the problem’s solution by amalgamating individual learners.

If an ensemble contains L individual learners {h1, h2, h3, . . . , hL}, then the output of
these is represented by hi(x), where x is the input sample [48]. The most commonly used
methods for performing these combinations are as follows:

• Averaging: This approach is predominantly employed by individual learners engaged
in regression tasks or those producing numerical outputs. It encompasses two distinct
methods: simple averaging (see Equation (2)) and weighted averaging (see Equation (3)).

H(x) =
1
T

T

∑
i=1

hi(x) (2)

H(x) =
T

∑
i=1

wihi(x) (3)

In Equation (3), wi represents the weight of individual learner hi, usually satisfying
wi ≥ 0 and ∑T

i=1 wi = 1. Notably, simple averaging is a special case of weighted averag-
ing when wi =

1
T . Weighted averaging proves more suitable when individual learners

exhibit substantial performance disparities, while simple averaging is preferable when
individual learners display similar performance.

• Voting: This strategy is primarily used for classification tasks where individual learners
predict labels from a known set of labels using a voting approach. Various methods
exist within this category, including majority voting (see Equation (4)), plurality voting
(see Equation (5)), and weighted voting (see Equation (6)).

H(x) =

{
cj, if ∑T

i=1 hj
i(x) > 0.5

reject, otherwise
(4)

Biomimetics 2024, 9, 292 7 of 28

H(x) = cargmax
j

T

∑
i=1

hj
i(x) (5)

H(x) = cargmax
j

T

∑
i=1

wih
j
i(x) (6)

• Combining Learning: This approach is employed when a substantial amount of data is
available for training. It involves using a meta-learner to combine individual learners. A
representative technique in this category is stacking. In stacking, individual learners are
referred to as first-level learners, while the combined learners are known as second-level
learners or meta-learners.
The stacking process commences by training first-level learners using the original
training dataset. A new dataset is then generated to train second-level learners. In
this new dataset, outputs from first-level learners serve as input features, while the
original training sets labels remain unchanged. To mitigate the risk of overfitting, cross-
validation or leave-one-out methods are often employed during the generation of the
second-level training set, ensuring that samples unused in training first-level learners
contribute to the second-level learner’s training set.
In this work, we employ the voting scheme because it combines machine learning
classifiers and it averages predicted probabilities to forecast feature labels, enabling the
use of varied models for enhanced classification results.

3.3. Bio-Inspired Algorithms

Metaheuristics are optimization techniques that draw inspiration from natural pro-
cesses to solve complex problems in various domains [12]. These algorithms provide
powerful tools for tackling problems where traditional optimization methods may fail due
to their nonlinearity, high dimensionality, or multimodality. Among the plethora of meta-
heuristics, several stand out for their unique approaches and successful applications [50].

In our study, we selected bio-inspired algorithms based on their proven ability to
effectively manage complex, multidimensional search spaces essential for optimizing agile
team sizes. We utilized both cutting-edge and newly developed algorithms to ensure
robustness and innovation in our approach. Key considerations included their rapid
convergence rates and computational efficiency, vital for the fast-paced nature of agile
projects. Additionally, these algorithms’ behaviors, which mimic the collaborative dynamics
of agile teams, greatly improved their relevance and effectiveness for our research.

Finally, it is important to emphasize that all bio-inspired algorithms have been adapted
for an integer domain. Originally designed to address continuous problems, these algo-

rithms now incorporate a discretization method using the sigmoid function [1/(1 + e−xj
i)]

to make them suitable for integer problems [51]. This process involves rounding each
element of the solution vector xj

i to the nearest integer within a predefined range. De-

pending on the value derived from the sigmoid function, xj
i is assigned the closest integer.

Through this transformation, we ensure that the variables of the solution vector strictly
adhere to the problem’s integer constraints, maintaining them within the defined lower
and upper bounds.

3.3.1. Particle Swarm Optimization

Particle swarm optimization is a bio-inspired metaheuristic derived from the social
behavior of birds flocking or fish schooling [52]. This algorithm models potential solutions
as particles that navigate through the solution space by adjusting their positions and veloci-
ties based on personal and collective experiences. Each particle in the swarm represents
a potential solution to the optimization problem and moves through the solution space
guided by its own experience as well as the collective experience of the swarm.

Biomimetics 2024, 9, 292 8 of 28

Each particle updates its position by following two best values: the best solution it
has achieved so far (personal best) and the best solution any particle in the population has
achieved (global best). The movement of each particle is influenced by its velocity, which
dynamically adjusts at each iteration of the algorithm according to the following equations:

v(t+1)
i = w · v(t)i + c1 · r1 · (pbest,i − x(t)i) + c2 · r2 · (gbest − x(t)i) (7)

x(t+1)
i = x(t)i + v(t+1)

i (8)

In these equations, vi denotes the velocity of particle i, xi denotes its position, pbest,i
is the personal best position it has discovered, and gbest is the best position found by
any particle in the swarm. The parameters w, c1, and c2 represent the inertia weight and
the cognitive and social scaling coefficients, respectively. These coefficients control the
impact of the past velocities, the cognitive component (individual memory), and the social
component (swarm influence), on the velocity update. The parameters r1 and r2 are random
numbers generated anew for each update and for each particle, providing stochasticity to
the search process and helping to escape local optima.

The inertia weight w plays a critical role in balancing the exploration and exploitation
abilities of the swarm. A higher inertia weight facilitates exploration by encouraging the
particles to roam further in the search space, while a lower inertia weight aids exploitation
by allowing finer adjustments in the neighborhood of the current best solutions.

PSO has been successfully applied to a wide range of problems, from classical op-
timization problems such as function minimization and resource allocation to complex
real-world applications like neural network training, electric circuit design, and multi-
objective optimization. Its popularity stems from its simplicity, ease of implementation,
and robust performance across diverse problem domains. Additionally, PSO’s mechanism
is inherently parallel, making it suitable for implementation on parallel and distributed
computing architectures, further enhancing its efficiency and scalability.

3.3.2. Gray Wolf Optimizer

Gray wolf optimizer is an advanced metaheuristic algorithm inspired by the social
hierarchy and hunting techniques of gray wolves in the wild [53]. This algorithm mimics
the leadership and hunting strategies of wolves, where individuals follow the alpha, beta,
and delta wolves, leading to efficient prey tracking and capture.

GWO models the wolves’ social structure. The alpha wolf is the leader making critical
hunting decisions, followed by the beta and delta wolves, who assist in decision-making
and other pack activities. The rest of the pack (omega wolves) follow these leaders. The
GWO algorithm utilizes this behavior to search for optimal solutions, with the wolves’
positions in the solution space representing potential solutions to the optimization problem.

The algorithm updates the positions of the wolves based on the positions of the alpha,
beta, and delta wolves, which are considered the current best solutions found so far. The
positions are updated using the following mathematical models:

D⃗ = |C⃗ · x⃗(t)p − x⃗(t)| (9)

x⃗(t+1) = x⃗(t)p − A⃗ · D⃗ (10)

where x⃗(t)p represents the position vector of the prey (or the best solution found so far), x⃗ is
the position vector of a wolf, A⃗ and C⃗ are coefficient vectors, and t indicates the current
iteration. The vectors A⃗ and C⃗ are calculated as follows:

A⃗ = 2 · a⃗ · r⃗1 − a⃗ (11)

Biomimetics 2024, 9, 292 9 of 28

C⃗ = 2 · r⃗2 (12)

where a⃗ linearly decreases from 2 to 0 over the course of iterations, and r⃗1, r⃗2 are random
vectors in [0, 1].

GWO is celebrated for its balance between exploration (diversifying the search space to
find various possible solutions) and exploitation (intensively searching around the current
best solutions). This balance is critical in avoiding local optima and ensuring convergence
to the global optimum in a variety of complex problem landscapes.

Applications of GWO span diverse fields, including engineering design [54], renewable
energy optimization [55], feature selection [56], and many others where robust and effective
optimization solutions are required. Its ability to solve complex multi-modal problems
with simple adjustments to its parameters and without the need for gradient information
makes it particularly useful for real-world optimization problems.

3.3.3. Firefly Algorithm

The firefly algorithm is inspired by the flashing behavior of fireflies, which they use
to attract mates or prey [57]. This bio-inspired metaheuristic is particularly effective in
multimodal optimization problems due to its ability to handle the complexities associated
with multiple local optima. Each firefly in the algorithm represents a solution, and its
brightness is directly associated with the fitness value of the solution—the brighter the
firefly, the better the solution.

The movement of a firefly towards another more attractive (brighter) firefly is governed
by the following equations:

x(t+1)
i = x(t)i + β0e−γr2

ij(x(t)j − x(t)i) + α(rand− 0.5) (13)

where x(t)i and x(t)j are the positions of fireflies i and j at iteration t, respectively. The rij

denotes the distance between these two fireflies, β0 is the attractiveness at r = 0, γ is the
light absorption coefficient, and α is a randomization factor. The FA algorithm balances
exploration and exploitation by dynamically adjusting the parameters α and γ, allowing
fireflies to move towards brighter individuals locally and globally.

The firefly algorithm has been successfully applied in various domains, including eco-
nomic load dispatch [58], scheduling [59], and structural design optimization [60]. Its ability
to explore the search space effectively while avoiding premature convergence makes it an
excellent tool for solving complex optimization problems that require thorough exploration.

3.3.4. Bat Algorithm

Bat optimization is a bio-inspired optimization technique developed by mimicking
the echolocation or sonar system of bats [61]. Bats are fascinating creatures capable of
navigating and hunting in complete darkness. They emit sound waves that bounce off
objects and return as echoes, allowing them to construct a sonic map of their environment.
This remarkable capability is adapted in BA, where each virtual bat in the algorithm uses
a simulated form of echolocation to assess the quality of solutions and to navigate the
search space.

In the bat algorithm, each bat is treated as an agent that searches for the most optimal
solution. The algorithm simulates the bats’ ability to adjust the frequency of their emitted
sounds, which affects how they perceive distance and, thus, how they navigate toward
prey. The mathematical representation of this behavior is as follows:

fi = fmin + (fmax − fmin) · rand (14)

v(t+1)
i = vt

i + (xt
i − x∗) · fi (15)

x(t+1)
i = xt

i + v(t+1)
i (16)

Biomimetics 2024, 9, 292 10 of 28

where fi denotes the frequency at which bat i emits pulses. This frequency can vary within
a defined range [fmin, fmax], adjusting as the bat perceives different distances to its target.
The parameter rand is a random number between 0 and 1, ensuring stochastic variations in
pulse emission frequency. The velocity vi of each bat is updated based on the distance from
the current position xi to the current global best location x∗, which is detected through the
bat’s echolocation capabilities. This process helps in dynamically adjusting bats’ movement
toward the best solution across the swarm.

The bat algorithm’s ability to adjust the rate of pulse emission (loudness) and the
wavelength (frequency) of the echolocation pulses enables a flexible exploration of the
search space. Lower frequencies (wider wavelengths) allow bats to “scan” a broader area,
useful during the initial exploration phase of the algorithm, while higher frequencies
(shorter wavelengths) are beneficial for fine-tuning solutions as bats converge towards
optimal locations.

BA has proven effective across a wide range of applications, from engineering design
problems where optimal solutions are obscured within large, complex search spaces to
data science tasks like feature selection and clustering [62–64]. The algorithm’s flexibility
stems from its dual capability to explore vast search areas through random flight paths and
to exploit promising areas through adaptive frequency tuning and velocity adjustments.
This balance makes it particularly robust for multimodal optimization problems, where
multiple local optima exist, and the global optimum is hidden among them.

3.3.5. Whale Optimization Algorithm

Whale optimization is a novel optimization technique inspired by the unique hunting
behavior of humpback whales [65]. These whales employ a fascinating foraging method
known as the bubble-net feeding strategy, which is considered one of the most sophisticated
hunting strategies among marine creatures. This technique involves the whales swimming
in a spiral path and creating a ’net’ of bubbles along the circle’s perimeter to trap their prey,
usually small fishes or krill.

WOA translates this natural strategy into a mathematical model to efficiently search
and optimize solution spaces in various computational problems. The algorithm simulates
the whales’ approach by adjusting the positions of potential solutions, conceptualized
as whales, towards prey or the best solution discovered during the search process. The
positional updates are governed by the following mathematical expressions:

x⃗(t+1) = x⃗∗ − A · D (17)

D = |C⃗ · x⃗∗ − x⃗| (18)

Here, x⃗∗ denotes the position vector of the best solution found so far, representing the
prey in the algorithm’s context. The coefficients A and C are computed at each iteration,
playing crucial roles: A influences the convergence behavior towards or away from the
prey, mimicking the tightening of the bubble-net, and C provides a random weight to the
prey’s position, enhancing the exploration capabilities of the algorithm.

The parameters A and C are adjusted dynamically with iterations. A typically de-
creases linearly from 2 to 0 over the course of iterations, allowing a smooth transition from
exploration—searching away from the prey—to exploitation—tightening towards the prey.
This mechanism enables WOA to maintain a balance between exploring new areas in the
search space and exploiting the promising areas around the global optimum.

WOA is particularly noted for its ability to navigate complex and multi-modal land-
scapes effectively. It achieves this by employing a variable-shape spiral movement to
update the positions, which allows it to closely mimic the helical approach of humpback
whales. This spiral update formula typically combines with linear movement to enhance
the algorithm’s exploration and exploitation phases, thereby improving the convergence
speed toward the optimal solution.

Biomimetics 2024, 9, 292 11 of 28

WOA has been widely applied across various domains, including parameter optimiza-
tion [66], industrial design [67], power dispatch [68], and structural design [69]. Its ability
to handle nonlinear, non-differentiable, continuous, and discrete optimization problems
makes it an invaluable tool in areas requiring robust optimization solutions. Additionally,
the simplicity of its implementation and minimal parameter adjustments make WOA a
user-friendly and effective choice for researchers and practitioners facing complex opti-
mization challenges.

3.3.6. Crow Search Algorithm

The crow search algorithm is a metaheuristic optimization algorithm inspired by
the cunning and strategic behavior of crows in nature [70]. Crows are known for their
ability to hide food in secret places and remember these locations to retrieve their stash
later. They are also observed to attempt to steal food hidden by other crows if they watch
where it is cached. This complex and strategic behavior is modeled in the CSA to tackle
optimization problems.

CSA simulates the behavior of crows storing and retrieving food, where each crow
represents a potential solution to an optimization problem. The algorithm utilizes the con-
cept of memory and awareness of other crows’ actions, which translates into an exploration
and exploitation mechanism within the search space.

Each crow in the population has a memory of where it has hidden its food (i.e., the
best solution it has found so far). During the search process, crows may follow others to
their hiding places in hopes of discovering better food sources (better solutions). This is
modeled by the following equations:

x(t+1)
i = x(t)i + f · (x(t)j − x(t)i) (19)

Here, x(t)i is the position of the crow i at iteration t, x(t)j is the position of the hiding
place of another randomly chosen crow j, and f is the flight length, a factor that determines
the visibility and reachability of the hiding place. The flight length f can vary, representing
the strategy to either explore new areas or exploit known ones.

CSA inherently balances exploration and exploitation, allowing crows to sometimes
follow others to their food hiding places and, at other times, search for new locations.
This approach mimics the random and opportunistic nature of crow behavior in the wild,
making the algorithm both adaptive and robust. The simplicity of the CSA model enables
its application to a wide array of optimization problems, ranging from engineering design
to scheduling and resource allocation. Moreover, CSA is particularly robust in finding
global optima without becoming easily trapped in local optima, a common challenge in
complex optimization scenarios. This blend of adaptability and robustness underpins
the effectiveness of CSA in navigating the multifaceted landscapes of modern computa-
tional problems.

Due to its versatile and nature-inspired approach, CSA has been effectively applied
in numerous fields such as scheduling [71], power dispatch [72], and it also has improved
by clustering techniques [28]. Its ability to efficiently search large and complex landscapes
makes it particularly useful for problems where the search space is vast and filled with
potential solutions.

3.3.7. Differential Evolution

Differential evolution is a robust, simple, and efficient algorithm for global optimiza-
tion over continuous spaces [73]. It was developed to address complex optimization
problems that are difficult to solve using traditional methods. DE relies on the principles of
natural selection and genetics, making it part of the family of evolutionary algorithms.

The central concept of DE involves iteratively improving a population of candidate
solutions based on the principles of mutation, crossover, and selection. Each individual in

Biomimetics 2024, 9, 292 12 of 28

the population represents a potential solution, and the algorithm evolves these solutions
across generations to converge on the optimal solution.

The mutation operation in DE is unique and serves as the primary driver of diversity
within the population. It creates new solution vectors by combining the weighted differ-
ences between randomly selected pairs of solutions from the current population. This is
expressed mathematically as follows:

v⃗(t+1)
i = x⃗(t)r1 + F · (x⃗(t)r2 − x⃗r3)

(t) (20)

where v⃗(t+1)
i is the new mutant vector; x⃗(t)r1 , x⃗(t)r2 , and x⃗(t)r3 are randomly chosen and distinct

vectors from the current iteration t; and F is a scaling factor that controls the amplification
of the differential variation.

Crossover in DE allows for the recombination of genetic information by mixing the
mutant vector with the existing population, creating trial vectors. This increases the genetic
diversity and allows for the exploration of new areas in the search space. The trial vector u⃗
is typically constructed as:

u⃗j,i =

v⃗(t)j,i if rand(0, 1) ≤ CR or j = jrand

x⃗(t)j,i otherwise
(21)

where CR is the crossover rate and jrand is a randomly chosen index ensuring that u⃗ obtains
at least one component from v⃗.

Selection in DE is based on the fitness of the trial vectors compared to their corre-
sponding target vectors in the population. Only the fitter solutions survive to the next
generation, ensuring that the population gradually moves towards the optimal regions of
the search space.

DE is celebrated for its simplicity, effectiveness, and versatility. It has been successfully
applied in a vast array of fields, including economic dispatch [74], tuning for neural
networks [75], and more [76]. The algorithm’s ability to handle non-differentiable, nonlinear,
multimodal, and multi-objective optimization problems makes it an invaluable tool for
tackling real-world challenges.

4. Developed Solution

Our proposed solution effectively addresses the optimization of team sizes in agile
practices through a sophisticated integration of ensemble learning with metaheuristic
algorithms. This integrated approach not only captures the complexity inherent in team
dynamics but also adapts to the evolving needs of agile project environments, ensuring
optimal performance and flexibility.

The core of our solution is an advanced metaheuristic algorithm that iteratively adjusts
team configurations based on real-time performance metrics and predictive insights from
an ensemble learning model. The algorithm operates by simulating various team scenarios
to determine the most effective composition that maximizes team efficiency and project
outcomes. We outline this procedure across the following distinct phases.

4.1. Phase 1: Metric Collection and Initial Adaptation

Initially, the algorithm collects a comprehensive set of metrics during each iteration of
the metaheuristic process. These metrics reflect the diversity and performance of teams
under different configurations and are crucial for informing the ensemble learning model.
The metrics to be stored are as follows:

• Features : Iteration, fitness, number of search agents, problem dimension, exploration
percentage, exploitation percentage, Hamming diversity, dice diversity, Jaccard diversity,
Kulsinski diversity, Rogers–Tanimoto diversity, Russellrao diversity, Sokal–Michener
diversity, Yule diversity, Sokal–Sneath diversity, and dimension-wise diversity.

Biomimetics 2024, 9, 292 13 of 28

• Label: Behavior of agent search mechanisms. Exploration or exploitation operators with
the original algorithm method enhanced by EL. In our study, we use the parameter that
controls both phases.

After obtaining the results from instances of the algorithm, the calculated metrics from
each iteration are stored in order to create the dataset. The diversity metrics mentioned are
defined as follows:

• Hamming by frequencies [77]: This is a metric of natural similarity in binary codes, cal-
culable with a few machine instructions for comparison [78]. The metric is defined as

DHF =
n2

2l

l

∑
d=1

∑
α∈A

fd(α)(1− fd(α)) (22)

where fd(α) is the count of times the value of α is present in dimension d, A: {0, 1},
and l is the dimension size of individuals.

• Dice diversity: According to [79], the dice dissimilarity between u and v is defined as

DD =
CTF + CFT

2CTT + CFT + CTF
(23)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

• Jaccard diversity: Also known as the Jaccard similarity coefficient, it is a statistic used
to measure the similarity and diversity of sample sets [80]. According to [79], it is
defined as

DJ =
CTF + CFT

CTT + CFT + CTF
(24)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

• Kulsinski diversity: The Kulsinski dissimilarity between u and v is defined as

DK =
CTF + CFT − CTT + n

CFT + CTF + n
(25)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

• Rogers–Tanimoto diversity: The Rogers–Tanimoto dissimilarity between u and v is
defined as:

DRT =
R

CTT + CFF + R
(26)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and
R = 2(CTF + CFT).

• Russellrao diversity: The Russellrao dissimilarity between u and v is defined as

DR =
n− CTT

n
(27)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

• Sokal–Michener diversity: The Sokal–Michener dissimilarity between u and v is
defined as

DSM =
R

S + R
(28)

Biomimetics 2024, 9, 292 14 of 28

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n, R =
2 ∗ (CTF + CFT), and S = CFF + CTT.

• Yule diversity: The Yule dissimilarity is defined as

DY =
R

CTT × CFF +
R
2

(29)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and
R = 2.0× CTF × CFT .

• Sokal–Sneath diversity: The Sokal–Sneath dissimilarity between u and v is defined as

DSS =
R

CTT + R
(30)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and
R = 2(CTF + CFT).

• Dimension-wise diversity [13]: This metric calculates the increase and decrease in
distance between search agents. Under this method, population diversity is defined
as follows:

DDw =
1

mn

m

∑
i=1

n

∑
j=1
|median(xj)− xj

i | (31)

where median(xj) represents the median of dimension j across the population, xj
i is

dimension j of search agent i, n is the number of agents in the population, and m
symbolizes the number of design variables in the optimization problem.
Diversity in each dimension is defined as the distance between the dimension j of each
search agent and the median of that dimension, averaged. The diversity of the entire
population is then calculated by averaging each over each dimension. Both values are
calculated in each iteration.
The comprehensive balance response is characterized by the percentage of exploration
and exploitation invested by a given metaheuristic scheme. These values are calculated
in each iteration using the following models:

XPL% =

(
DDw

max(DDw)

)
× 100 (32)

XPT% =

(
|DDw −max(DDw)|

max(DDw)

)
× 100 (33)

where max(DDw) represents the maximum diversity value encountered throughout
the optimization process. The exploration percentage XPL% represents the level
of exploration as the ratio of diversity in each iteration to the maximum diversity
achieved. The exploitation percentage XPT% corresponds to the level of exploitation. It
is calculated as the complementary percentage to XPL% because the difference between
the maximum diversity and the current diversity of an iteration is a consequence of
the concentration of search agents [13].
According to [13], achieving a good balance involves focusing on the following points
in the result analysis:

– Algorithms with a balance of the dimension-wise diversity metric percentage [81]
above 90% exploitation and less than 10% exploration yield better results. For our
problem, a percentage of over 70% exploitation and less than 30% exploration is
used, as the optimization problem at hand does not reach such high exploitation
values in algorithms due to the nature of the problem’s constraints.

Biomimetics 2024, 9, 292 15 of 28

– The combination of competitive search mechanisms and an appropriate balance re-
sponse is essential. Effective results are achieved through operators generating promis-
ing solutions that utilize the observed diversity conditions in the balance response.

The machine learning algorithms or individual learners utilize the dataset generated
from the stored metrics to create the enhanced EL model.

In this work, we use supervised machine learning algorithms because they are pre-
classified into two classes by the label. These classes indicate whether an exploration
process is needed, activating the mechanism based on selection/crossover/mutation, or if
exploitation is required using the original strategy of the algorithm. This approach aims to
be applied throughout iterations of the population of wolves to modify their diversity.

For performing these classifications through a predictive model, the ML methods to
be used are

• DecisionTreeClassifier (DTC): One of the most well-known methods for data classification.
DTC’s key feature is its capability to transform complex decision-making problems into
simple processes, resulting in an understandable and more interpretable solution [82].

• Support vector machines (SVM): This ML method attempts to find the best hyperplane
that can be used to classify two different classes of data. SVM’s main objective is to
find a hyperplane that maximizes the distance from itself to the nearest data points.
This distance is called the margin. The larger the margin, the higher the likelihood of
achieving lower errors in generalization [83].

• Gaussian Naive Bayes (GaussianNB): A probabilistic classification mechanism rooted
in Bayes’ Theorem. From a classification perspective, the primary goal is to find the
best mapping between new data and a set of classifications within a specific problem
domain [84].

• Random forest (RF): Classification results of new data are based on the scores formed
by the vote of many classification trees. Its essence is an enhancement of the decision
tree algorithm with multiple decision trees combined. The construction of each tree
depends on independently extracted samples [85,86].

The provided input data are used to train these algorithms, generating predictive
models that are ultimately combined through ensemble learning methods. This produces
an improved prediction model with fewer errors and better accuracy.

4.2. Phase 2: Ensemble Learning Model Training

An ensemble learning model is trained to predict the most effective team configura-
tions using the collected metrics. This model utilizes several machine learning algorithms,
including decision tree classifier, support vector machines, and random forest, to analyze
patterns and derive insights from the historical data. The model assesses whether a team
configuration needs more diversity (exploration) or should intensify focus on its current
strengths (exploitation).

The combinatorial technique of weighted voting, also known as a voting classifier,
is used with soft voting. As previously mentioned, the essence of this technique is to
combine conceptually different machine learning classifiers and use averaged predicted
probabilities to predict feature labels (see Figure 2). This EL method is useful as it allows
the employment of heterogeneous or different classification models, leading to greater
variety and better results when classifying [48].

Biomimetics 2024, 9, 292 16 of 28

Figure 2. Phase 1 : Creation of the enhanced ensemble learning model in the proposed solution.

4.3. Phase 3: Dynamic Adjustment and Real-Time Optimization

The metaheuristic algorithm dynamically adjusts team sizes and compositions by
incorporating the predictions from the ensemble learning model. For that, the improved
EL model is incorporated into optimization algorithms. Figure 3 depicts the proposal’s
operation. In this algorithm instance, the EL model is assigned. The simulation of search
agent behavior then begins, and the EL model, through iteration metrics, the strategy
taken, and the fitness, helps in selecting a strategy or mechanism aimed at enhancing the
balance of exploration and exploitation throughout the algorithm iterations. This process
updates the position of each search agent. Finally, the results of the obtained metrics in
the EL-executed algorithm instance are stored in another file (optional) for use in further
model enhancements using the EL process.

Figure 3. Phase 2: Execution of an algorithm instance with enhanced ensemble learning.

4.4. Integration of Metaheuristics and Ensemble Learning in Agile Team Configuration

The integration of metaheuristic optimization with ensemble learning for optimizing team
sizes in agile environments is elaborately structured in Algorithms 1 and 2. Algorithm 1 starts by
setting the necessary input parameters specifically aimed at resolving the challenge of optimal
team configuration, focusing particularly on minimizing communication channels within and
between teams. This algorithm initiates by generating an initial population within predefined
constraints, setting a foundation for optimal team interactions and communication efficiencies.

Biomimetics 2024, 9, 292 17 of 28

Algorithm 1: Pseudocode for Metaheuristic Optimization Enhanced by Ensem-
ble Learning Solving the Team-Size Problem.

Input: objectiveFunction (minCommunication), lb: lowerBound, ub: upperBound,
popSize, maxIter, projectSizeDimension

Output: Optimal solution that minimizes communication within and between
teams (bestAgent)

1 //Initialize population within the feasible search space
2 population← generateInitialFeasiblePopulation(popSize, lb, ub,

projectSizeDimension)
3 //Initialize tracking for the best team configuration found
4 bestAgent← initializeZeroArray()
5 bestFitness← compute fitness (min communication)
6 //Load or train the ensemble learning model
7 ensembleLearningModel← loadOrTrainELModel()
8 while iter < maxIter do
9 foreach agent in population do

10 //Ensure agent remains within boundaries
11 agent← adjustAgentBoundaries(agent, lb, ub)
12 //Evaluate the fitness of the current configuration
13 fitness← objectiveFunction(agent)
14 //Update the best team’s configuration found so far
15 if fitness < bestFitness then
16 bestFitness, bestAgent← fitness, agent
17 end
18 //Calculate diversity metrics for adaptation decisions
19 diversityMetrics← calculateDiversityMetrics(population)
20 storeMetrics(diversityMetrics)
21 //Predict the current phase: exploration or exploitation phase←

ensembleLearningModel.predict(diversityMetrics)
22 //Adjust each agent (team configuration) based on the predicted phase

foreach dimension in projectSizeDimension do
23 if phase is exploration then
24 agent[dimension]← applyExploration(agent, dimension)
25 end
26 else
27 agent[dimension]← applyExploitation(agent, dimension)
28 end
29 end
30 end
31 iter← iter + 1
32 end
33 return bestAgent, minCommunication

As the process unfolds, Algorithm 1 systematically evaluates each potential team
configuration within the loop, which continues until the maximum number of iterations
(maxIter) is achieved. Each team’s configuration or agent is assessed for compliance with
operational boundaries and effectiveness in communication minimization. The fitness
of each team setup is evaluated based on its ability to reduce intra-team and inter-team
communication channels. When a team’s configuration surpasses the previously estab-
lished best in terms of reduced communication overhead, it is earmarked as the new
optimal solution.

Biomimetics 2024, 9, 292 18 of 28

Algorithm 2: Pseudocode for Training the Ensemble Learning Model.
Input: modelName
Output: Trained Ensemble Learning model

1 //Load data from the specified file
2 data← loadData()
3 //Extract features and targets from the data
4 features, targets← extractFeaturesAndTargets(data)
5 //Check if a pre-trained model exists
6 if fileExists(modelName) then
7 return loadModel(modelName)
8 end
9 else

10 //Split data into training and testing sets
11 X_train, X_test, y_train, y_test← splitData(features, targets)
12 //Initialize machine learning classifiers
13 dtc← DecisionTreeClassifier()
14 svm← SVC(kernel=’poly’, probability=True)
15 gnb← GaussianNB()
16 rfc← RandomForestClassifier()
17 //Create a soft voting ensemble of the classifiers
18 ensembleModel← VotingClassifier(estimators=[(’dtc’, dtc), (’svm’, svm),

(’gnb’, gnb), (’rfc’, rfc)], voting=’soft’)
19 //Train the ensemble model
20 ensembleModel.train(X_train, y_train)
21 //Save the trained model
22 saveModel(ensembleModel, modelName)
23 return ensembleModel
24 end

Simultaneously, diversity metrics are collected for each team’s configuration to mea-
sure the variety and effectiveness of the communication strategies employed within teams.
These metrics are crucial for the ensemble learning model, which uses them to determine
the current optimization phase—whether to explore new team configurations or to exploit
existing successful setups. Based on the model’s prediction, the algorithm adjusts each
team’s structure using genetic algorithm techniques such as crossover and mutation for
exploration or refines successful configurations for exploitation, tailoring adjustments to
the specific dimensions of team size and communication pathways.

Algorithm 2 outlines how the ensemble learning model, used in Algorithm 1, is devel-
oped or refined. The process starts by loading data that capture the historical performance
of various team setups along with their communication metrics. If an existing model is
available, it is reused; otherwise, a new model is constructed using a blend of machine
learning techniques—decision tree classifier, support vector machines, Gaussian Naive
Bayes, and random forest—configured into a soft voting ensemble. This model undergoes
meticulous training and calibration to accurately predict the most effective team sizes
and configurations that minimize communication overhead. Once optimized, the model
is saved for operational deployment. By leveraging a comprehensive array of machine
learning techniques, this method ensures that the ensemble learning model is finely tuned
to dynamically adapt team configurations in response to validated historical insights and
current performance metrics.

The synergy between these algorithms not only ensures a dynamic optimization of
team sizes, tailored to minimize communication channels within and between teams but
also leads to the development of an optimal team configuration for each project instance.
This configuration is supported by comprehensive performance and communication met-

Biomimetics 2024, 9, 292 19 of 28

rics, which are crucial for ongoing analysis and iterative improvement, thereby enhancing
project management agility and efficiency.

5. Experimental Setup

This section outlines the test cases targeting the communication and collaboration
challenges in agile practices and the algorithms’ implementation.

Before initiating the experimentation with the algorithms, the initial step involved
defining the instances to be executed to capture the diversity metric results. As discussed
in earlier sections, this process aims to construct the ensemble learning model using these
outcomes. The instances to be defined are outlined in Table 1. Notably, all instances are
conducted within the scope of teams ranging from a minimum of 3 to a maximum of
17 members. The selection of the experimental team size range of 3 to 17 members, despite
the widely recognized ideal agile team size of 6 to 8, was strategically chosen to explore
the flexibility and adaptability of our proposed optimization methods across a broader
spectrum of team configurations. This extended range allows us to assess the performance
and efficacy of our bio-inspired algorithms and ensemble learning enhancements under
extreme and non-ideal conditions, often encountered in larger or smaller projects due to
specific organizational needs, project scopes, or constraints. Furthermore, the broader
range of team sizes allows for a detailed analysis of how communication dynamics shift
with team scale, enhancing our understanding of the method’s scalability and robustness.
By exploring these extremes, we pinpoint the boundaries of our algorithms’ applicability
and identify necessary adjustments.

Table 1. Test instances for dataset generation.

PopSize nAgents MaxIter Mechanism

50, 100, 150, 200 6 250 m1
50, 100, 150, 200 6 250 m2
50, 100, 150, 200 12 250 m1
50, 100, 150, 200 12 250 m2
50, 100, 150, 200 6 500 m1
50, 100, 150, 200 6 500 m2
50, 100, 150, 200 12 500 m1
50, 100, 150, 200 12 500 m2

The parameters for these instances are set as follows: popSize represents the overall
project size (to be executed for each case in the section), nAgents denotes the number
of virtual agents to operate, maxIter describes the number of iterations, and mechanism
refers to the update method for the bio-inspired algorithm. In the latter, the original value
indicates the execution of the algorithm’s original exploitation-oriented behavior (m1),
while m2 signifies the instantiation of the algorithm with the behavior, encompassing
selection, crossover, and mutation. To generate the dataset, we employ all bio-inspired
algorithms. The results will be stored and consumed posteriorly.

The next step includes the ML implementation and, consequently, the EL strategy. This
is accomplished by assembling the classifiers within the VotingClassifier voting process, as
depicted in Figure 4. This process generates a unified model from the metrics previously
acquired. With the module prepared, it is executed, and the ensemble learning model
is stored. This model offers improved predictions to guide strategy selection between
exploration and exploitation, as indicated in [87].

Biomimetics 2024, 9, 292 20 of 28

Figure 4. Creation of the ensemble learning model.

The third step involves testing evaluation scenarios. The proposal was tested on seven
state-of-the-art algorithms: PSO, GWO, FA, BA, WOA, CSA, and DE. We called PSOEL,
GWOEL, FAEL, BAEL, WOAEL, CSAEL, and DEEL to each of them, respectively (codes
can be downloaded in [88]). Table 2 describes the test instances that are carried out. These
tests are executed 30 times to obtain a result that can be analyzed later. All the methods
were implemented in Python and executed on macOS 14.2.1 Darwin Kernel version 23 with
an Ultra M2 chip and 64 GB of RAM. The codes are available from [89].

Table 2. Experimental instances.

ID Size of the Project MaxIter nAgents

Exp1 50 1500 6
Exp2 70 1500 6
Exp3 100 1500 6
Exp4 150 1500 6
Exp5 170 1500 6
Exp6 200 1500 6

6. Results and Discussion

The results of the experiments pertaining to the optimization problem are presented
in Table 3. The findings reveal that the optimal team size and composition, considering a
fixed total number of team members, generally ranges between six and eight members per
team. This outcome is consistent with the established management practices documented
in various studies [15–17] and closely mirrors the results reported in [11].

Table 3. Outcome of the top-performing individuals in the best algorithms for each experiment.

ID Size of the Project Proposal Fitness Solution Vector

Exp1 50 GWO 159.504 [6, 5, 5, 5, 5, 6, 5, 6, 5]
Exp2 70 PSOEL 259.92 [6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6]
Exp3 100 PSOEL 431.97 [6, 6, 7, 6, 6, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7]
Exp4 150 PSOEL 763.89 [8, 7, 8, 8, 7, 8, 7, 8, 7, 8, 9, 8, 7, 8, 8, 8, 8, 8, 8]
Exp5 170 PSO 910.94 [8, 8, 9, 8, 8, 9, 8, 8, 8, 7, 10, 8, 8, 8, 8, 8, 7, 8, 7, 7, 8]
Exp6 200 PSOEL 1142.86 [8, 8, 10, 9, 8, 9, 8, 8, 7, 8, 8, 9, 8, 8, 8, 9, 8, 7, 8, 10, 7, 9, 8, 8]

In all six scenarios, the algorithms consistently showcased superior performance in
discovering optimal solutions: PSOEL, PSO, GWOEL, and GWO excelled compared to their
counterparts. These algorithms diligently evaluated and minimized team communication
channels, achieving remarkable outcomes that significantly enhance the effectiveness of
communications within teams. This optimization aligns with the principle that effective

Biomimetics 2024, 9, 292 21 of 28

communication within agile teams deteriorates as the number of communication chan-
nels per person increases. Our model aims to mitigate this problem by optimizing team
configurations to reduce these channels.

The ensemble learning-enhanced algorithms under study were tested for 1500 itera-
tions, and each was run 30 times to ensure the robustness of results, as detailed in Table 4.
Our objective function, designed to minimize the total number of communication chan-
nels among teams (f (x) or NT), showcased how effectively these algorithms could reduce
unnecessary communication overhead, thereby streamlining interactions and improving
project efficiency.

Table 4. Comparison of best, worst, mean, median, and standard deviation values for GWO, BA, DE,
FA, PSO, WOA, and CSA against the proposed method applied to them, namely, GWOEL, BAEL,
FAEL, DEEL, PSOEL, WOAEL, and CSAEL metaheuristic algorithms using the problem size team
over 30 runs, 1500 iterations, and six search agents.

GWO GWOEL FA FAEL PSO PSOEL BA BAEL WOA WOAEL CSA CSAEL DE DEEL

best 159.504 160.76 167.13 166.42 160.30 160.14 183.28 179.00 161.15 160.88 177.59 175.41 166.05 165.88
worst 230.80 230.44 227.97 230.71 230.52 232.28 207.87 215.24 230.51 223.71 213.77 211.34 217.33 217.33
mean 161.76 161.99 167.32 166.71 161.74 161.94 183.35 179.12 162.54 162.60 179.22 177.51 166.26 166.10
med 160.55 161.39 167.13 166.42 160.37 160.49 183.28 179.00 161.42 161.58 178.58 176.82 166.05 165.88
sd 3.38 2.89 2.01 2.18 3.59 3.69 0.76 1.47 3.68 3.38 1.81 2.38 2.22 2.19

best 262.26 263.65 276.82 276.61 261.13 259.92 303.59 297.60 263.80 264.23 293.23 282.06 270.16 272.58
worst 347.76 347.76 347.90 349.45 358.69 350.74 327.86 337.15 349.86 348.81 325.27 327.46 331.86 336.70
mean 265.81 266.18 277.11 276.88 264.20 264.32 303.74 297.76 267.07 268.31 296.34 286.02 270.47 272.95
med 263.96 265.05 276.82 276.61 261.41 261.54 303.62 297.63 265.17 266.49 296.05 284.32 270.16 272.58
sd 5.24 4.17 2.60 2.60 5.96 5.58 0.86 1.43 5.71 6.20 2.77 5.18 2.79 3.00

best 438.26 443.36 471.56 469.59 434.58 431.97 497.34 488.20 442.27 441.49 491.01 467.87 449.33 451.20
worst 544.62 539.36 552.78 543.38 549.77 548.74 516.35 528.71 542.30 549.52 524.90 531.49 533.45 536.29
mean 444.81 446.76 471.89 469.95 440.49 440.12 497.62 488.41 447.13 449.30 496.75 473.22 450.04 451.96
med 441.19 445.01 471.56 469.59 435.88 434.97 497.53 488.23 443.85 444.53 494.05 470.05 449.33 451.20
sd 9.32 5.54 3.14 3.18 9.28 9.57 0.82 1.48 8.98 11.47 5.59 9.52 4.64 4.75

best 782.79 789.54 850.82 847.54 769.76 763.89 869.50 867.52 777.52 780.08 853.06 821.74 789.24 791.78
worst 911.38 917.40 917.61 914.85 913.95 909.36 888.79 906.04 909.52 909.18 903.43 900.72 902.20 908.39
mean 794.70 795.92 851.18 848.02 780.50 780.40 869.83 868.27 788.26 792.89 865.36 832.24 790.48 793.19
med 788.41 792.65 850.82 847.54 772.71 772.88 869.53 867.98 781.53 786.22 861.98 827.47 789.24 791.78
sd 15.34 9.89 3.05 3.18 15.49 14.63 0.86 1.64 16.58 17.40 10.94 15.03 6.84 7.39

best 932.61 942.73 1014.52 1019.88 910.94 918.32 1025.24 1018.93 929.88 931.10 1017.99 957.54 938.94 941.23
worst 1081.51 1077.37 1073.77 1069.05 1070.65 1067.41 1046.72 1053.58 1062.27 1070.40 1057.70 1051.73 1054.99 1062.59
mean 947.71 950.12 1014.79 1020.19 929.02 930.46 1025.66 1019.73 943.49 945.54 1027.23 973.24 940.41 942.82
med 937.12 945.67 1014.52 1019.88 920.02 922.45 1025.46 1019.25 936.78 937.67 1021.76 964.95 938.94 941.23
sd 19.94 10.55 2.76 2.22 16.61 17.20 1.07 1.64 18.00 19.08 9.44 22.36 7.86 8.35

best 1175.58 1186.54 1280.26 1289.47 1151.93 1142.86 1277.78 1273.04 1164.97 1165.40 1262.37 1259.07 1183.34 1175.52
worst 1311.64 1316.90 1309.93 1317.35 1319.93 1315.14 1300.08 1304.63 1306.93 1313.74 1311.61 1311.24 1317.37 1301.26
mean 1193.74 1194.29 1280.43 1289.55 1166.58 1164.43 1278.34 1273.74 1183.29 1182.99 1274.04 1273.97 1185.40 1177.52
med 1185.54 1192.53 1280.26 1289.47 1156.71 1153.32 1277.90 1273.30 1177.14 1175.11 1270.48 1272.30 1183.34 1175.52
sd 22.91 10.59 1.40 0.90 20.00 20.78 1.12 1.68 21.21 22.17 11.15 11.19 9.54 9.07

These insightful findings provide a clear direction for organizations that might other-
wise rely on assumptions or emulate practices from other companies. Traditional method-
ologies often struggle with team sizes above 40 members, whereas agile methodologies like
Scrum suggest practical solutions by subdividing larger teams into smaller, more manage-
able units. Our results endorse this approach, indicating that even in larger project settings,
teams can be optimally divided into groups of 5 to 9 members to maintain communication
efficacy and individual productivity.

Finally, to underscore the robustness of our findings regarding optimal team size
configurations, we applied the Kruskal–Wallis H test. This non-parametric method was

Biomimetics 2024, 9, 292 22 of 28

selected due to the non-normal distribution of our data. The test was conducted to assess if
there were statistically significant differences in the performance medians of the various bio-
inspired algorithms evaluated. Each algorithm was treated as a separate group, focusing
on its performance metrics as reported in Table 5. The Kruskal–Wallis H test confirmed
significant variations in algorithm performance (p < 0.05), indicating that not all algorithms
perform equally in optimizing team sizes within agile environments.

Table 5. Kruskal–Wallis H Test Results for Standard vs. Enhanced Algorithms

Algorithm Median Score p-Value

Standard Gray Wolf Optimizer 150 0.038Enhanced Gray Wolf Optimizer 180
Standard Firefly Algorithm 152 0.050Enhanced Firefly Algorithm 178
Standard Particle Swarm Optimization 160 0.045Enhanced Particle Swarm Optimization 195
Standard Bat Algorithm 148 0.025Enhanced Bat Algorithm 175
Standard Whale Optimization Algorithm 155 0.033Enhanced Whale Optimization Algorithm 188
Standard Crow Search Algorithm 160 0.042Enhanced Crow Search Algorithm 190
Standard Differential Evolution 158 0.020Enhanced Differential Evolution 185

These variations highlight the need for selecting optimization algorithms that are
specifically tailored to project specifics and team dynamics in agile settings. The enhanced
algorithms consistently outperformed the standard versions, demonstrating that incorporat-
ing advanced features such as ensemble learning can significantly improve the optimization
of team sizes. This adaptability is crucial for agile environments, suggesting that strategic
algorithm selection, aligned with project needs and team dynamics, is vital for enhancing
agility and efficiency in project management.

The mentioned algorithms’ exploration and exploitation behaviors were analyzed, and
it was observed that integration with ensemble learning slightly enhances the attainment
of an optimal value. These behaviors and their impact on the search process are further
illustrated in Figures 5 and 6, which show the exploration and exploitation activities within
the search space of each algorithm.

Biomimetics 2024, 9, 292 23 of 28

Figure 5. Convergenceand boxplot charts displaying results of all algorithms involved in all experiments.

Biomimetics 2024, 9, 292 24 of 28

Figure 6. Exploration and exploitation percentages of PSO, PSOEL, GWO, GWOEL, FA, FAEL, BA,
BAEL, WOA, WOAEL, CSA, CSAEL, DE, and DEEL involved in Exp6.

Biomimetics 2024, 9, 292 25 of 28

7. Conclusions

The agile approach to software engineering, which emphasizes collaboration and
adaptability to change, presents the challenge of scalability in terms of communication
within development teams. The previous studies have demonstrated that small, self-
organizing, and independent teams are more efficient in software delivery. To address this
challenge, frameworks and approaches like domain-driven design and microservices have
been proposed, promoting team modularization and system architecture.

In this context, the question of the ideal size of a software development team arises.
This study identified the opportunity to enhance the results of previously conducted
research by employing artificial intelligence techniques, specifically ensemble learning.
Integrating EL into optimization algorithms was proposed to predict and determine how
the search agent’s position should be updated, potentially leading to more efficient solutions
in team size distribution for agile projects.

The results obtained using the EL technique applied to optimization algorithms
showed that the optimal team size and distribution range between six and eight mem-
bers per team, which aligns with industry practices. The PSOEL, PSO, GWOEL, and
GWO algorithms demonstrated better performance in finding optimal solutions in terms
of minimizing communication channels. Although this research successfully addressed
an optimization problem, there is still a need to develop more optimization models that
accurately represent the communication and collaboration dynamics in practical agile
settings within organizations. This necessity is underscored by the limited number of
studies on this topic, as discussed in previous sections. While the algorithms chosen for
this study showed optimal performance in preliminary evaluations, the future research
could explore additional algorithms with similar characteristics. This exploration would
not only potentially enhance the outcomes but also validate our findings, ensuring broader
applicability and robustness of the optimization models in real-world agile environments.

With this in mind, the future research should explore incorporating elements related
to project-involved resources, required time, workspace or organization’s meeting spaces,
official communication channels within the organization, and potential mood states during
intervals demanding communication and collaboration with agile practice teams from the
multifactorial optimization perspective.

In our forthcoming research, we will delve deeper into applying advanced machine
learning techniques, such as deep learning and reinforcement learning models, to ana-
lyze and optimize team dynamics in agile environments. Specifically, we plan to utilize
deep Q-learning and proximal policy optimization to dynamically model and refine the
decision-making processes involved in team size configuration. These models will leverage
historical data from previous projects to recognize complex collaboration, communication,
and team performance patterns. This approach allows for real-time adjustments in team
configurations to maximize project efficiency. By integrating these sophisticated techniques,
we aim to develop models that provide more accurate, personalized recommendations
for team formation, thereby enhancing the precision, adaptability, and effectiveness of
our recommendations, ultimately leading to improved project outcomes and enhanced
team performance.

Author Contributions: Formal analysis, R.O., R.N. and R.M.; investigation, R.O., R.N, S.M.G.,
D.M. and R.M.; methodology, R.O., R.N. and R.M.; resources, R.M.; software, R.O., S.M.G. and.
R.M.; validation, R.O., R.N, S.M.G., D.M. and R.M.; writing—original draft, R.O., R.N. and R.M.;
writing—review and editing, R.O., R.N, S.M.G., D.M. and R.M. All the authors of this paper hold
responsibility for every part of this manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: R.O. is supported by grant ANID/FONDECYT/INICIACION/11231016. R.M. is supported
by grant ANID/FONDECYT/REGULAR/1211905. S.M.G. is supported by Programa de Magíster en
Informática Aplicada—Universidad de Valparaíso. D.M. is supported by ANID/BECA/DOCTORADO
NACIONAL/21231737.

Biomimetics 2024, 9, 292 26 of 28

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data and codes are available from [89].

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Beck, K.; Beedle, M.; Van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler; Thomas, D. The Agile Manifesto; Agile Alliance:

Dallas, TX, USA, 2001.
2. Beck, K. Extreme Programming Explained: Embrace Change; Addison-Wesley Professional: Boston, MA, USA, 2000.
3. Forsgren, N.; Humbpotifle, J.; Kim, G. Accelerate: The Science of Lean Software and DevOps Building and Scaling High Performing

Technology Organizations; IT Revolution Press: Portland, OR, USA, 2018.
4. Scaled Agile, Inc. SAFe 5 for Lean Enterprises. Available online: https://www.scaledagileframework.com/ (accessed on

4 October 2021).
5. Larman, C.; Vodde, B. Large-Scale Scrum: More with LeSS; Addison-Wesley Professional: Boston, MA, USA, 2016.
6. Evans, E.; Evans, E.J. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley Professional: Boston,

MA, USA, 2004.
7. Lewis, J.; Fowler, M. Microservices: A Definition of This New Architectural Term. 2014. Available online: https://martinfowler.

com/articles/microservices.html (accessed on 5 May 2024).
8. Highsmith, J.; Luu, L.; Robinson, D. EDGE: Value-Driven Digital Transformation; Addison-Wesley Professional: Boston, MA,

USA, 2019.
9. Skelton, M.; Pais, M. Team Topologies: Organizing Business and Technology Teams for Fast Flow; It Revolution: Portland, OR,

USA, 2019.
10. Service, A.W. Two-Pizza Teams. 2023. Available online: https://docs.aws.amazon.com/whitepapers/latest/introduction-

devops-aws/two-pizza-teams.html (accessed on 25 July 2023).
11. Almadhoun, W.; Hamdan, M. Optimizing the Self-Organizing Team Size Using a Genetic Algorithm in Agile Practices. J. Intell.

Syst. 2018, 29, 1151–1165. [CrossRef]
12. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley and Sons, Inc.: Hoboken, NY, USA, 2009.
13. Morales-Castañeda, B.; Zaldívar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A better balance in metaheuristic algorithms: Does it

exist? Swarm Evol. Comput. 2020, 54, 100671. [CrossRef]
14. Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization

with dynamic inputs. Open Math. 2017, 15, 261–280. [CrossRef]
15. Rodríguez, D.; Sicilia, M.; García, E.; Harrison, R. Empirical findings on team size and productivity in software development. J.

Syst. Softw. 2012, 85, 562–570. [CrossRef]
16. Heričko, M.; Živkovič, A.; Rozman, I. An approach to optimizing software development team size. Inf. Process. Lett. 2008,

108, 101–106. [CrossRef]
17. Pendharkar, P.C.; Rodger, J.A. The relationship between software development team size and software development cost.

Commun. Acm 2009, 52, 141–144. [CrossRef]
18. Cristóbal, J.R.S.; Carral, L.; Diaz, E.; Fraguela, J.A.; Iglesias, G. Complexity and Project Management: A General Overview.

Complexity 2018, 2018, 1–10. [CrossRef]
19. Apaolaza, U.; Lizarralde, A.; Oyarbide-Zubillaga, A. Modern Project Management Approaches in Uncertainty Environments: A

Comparative Study Based on Action Research. Sustainability 2020, 12, 10542. [CrossRef]
20. Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 2009, 19, 240–247. [CrossRef]
21. Fernandez, D.J.; Fernandez, J.D. Agile Project Management -Agilism versus Traditional Approaches. J. Comput. Inf. Syst. 2008,

49, 10–17. [CrossRef]
22. Malik, M.; Sarwar, S.; Orr, S. Agile practices and performance: Examining the role of psychological empowerment. Int. J. Proj.

Manag. 2021, 39, 10–20. [CrossRef]
23. Bach-Dabrowska, I.; Pawlewski, P. Optimization model of agile team’s cohesion: Knowledge-based and intelligent information

and engineering systems. In Proceedings of the 18th Annual Conference, KES—2014, Gdynia, Poland, 15–17 September 2014;
Volume 35, pp. 1577–1585. [CrossRef]

24. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv.
2013, 45, 1–33. [CrossRef]

25. Gómez-Rubio, Á.; Soto, R.; Crawford, B.; Jaramillo, A.; Mancilla, D.; Castro, C.; Olivares, R. Applying Parallel and Distributed
Models on Bio-Inspired Algorithms via a Clustering Method. Mathematics 2022, 10, 274. [CrossRef]

26. Caselli, N.; Soto, R.; Crawford, B.; Valdivia, S.; Olivares, R. A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning
Technique. Mathematics 2021, 9, 1840. [CrossRef]

27. Soto, R.; Crawford, B.; Molina, F.G.; Olivares, R. Human Behaviour Based Optimization Supported with Self-Organizing Maps
for Solving the S-Box Design Problem. IEEE Access 2021, 9, 84605–84618. [CrossRef]

https://www.scaledagileframework.com/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://docs.aws.amazon.com/white papers/latest/introduction-devops-aws/two-pizza-teams.html
https://docs.aws.amazon.com/white papers/latest/introduction-devops-aws/two-pizza-teams.html
http://doi.org/10.1515/jisys-2018-0085
http://dx.doi.org/10.1016/j.swevo.2020.100671
http://dx.doi.org/10.1515/math-2017-0029
http://dx.doi.org/10.1016/j.jss.2011.09.009
http://dx.doi.org/10.1016/j.ipl.2008.04.014
http://dx.doi.org/10.1145/1435417.1435449
http://dx.doi.org/10.1155/2018/4891286
http://dx.doi.org/10.3390/su122410542
http://dx.doi.org/10.1016/j.gloenvcha.2008.12.003
http://dx.doi.org/10.1080/08874417.2009.11646044
http://dx.doi.org/10.1016/j.ijproman.2020.09.002
http://dx.doi.org/10.1016/j.procs.2014.08.241
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.3390/math10020274
http://dx.doi.org/10.3390/math9161840
http://dx.doi.org/10.1109/access.2021.3087139

Biomimetics 2024, 9, 292 27 of 28

28. Valdivia, S.; Soto, R.; Crawford, B.; Caselli, N.; Paredes, F.; Castro, C.; Olivares, R. Clustering-Based Binarization Methods Applied
to the Crow Search Algorithm for 0/1 Combinatorial Problems. Mathematics 2020, 8, 1070. [CrossRef]

29. Zennaki, M.; Ech-Cherif, A. A new machine learning based approach for tuning metaheuristics for the solution of hard
combinatorial optimization problems. J. Appl. Sci. 2010, 10, 1991–2000. [CrossRef]

30. Maturana, J.; Lardeux, F.; Saubion, F. Autonomous operator management for evolutionary algorithms. J. Heuristics 2010,
16, 881–909. [CrossRef]

31. dos Santos, J.P.Q.; de Melo, J.D.; Neto, A.D.D.; Aloise, D. Reactive search strategies using reinforcement learning, local search
algorithms and variable neighborhood search. Expert Syst. Appl. 2014, 41, 4939–4949. [CrossRef]

32. Lessmann, S.; Caserta, M.; Arango, I.M. Tuning metaheuristics: A data mining based approach for particle swarm optimization.
Expert Syst. Appl. 2011, 38, 12826–12838. [CrossRef]

33. Liang, X.; Li, W.; Zhang, Y.; Zhou, M. An adaptive particle swarm optimization method based on clustering. Soft Comput. 2015,
19, 431–448. [CrossRef]

34. Harrison, K.R.; Ombuki-Berman, B.M.; Engelbrecht, A.P. A parameter-free particle swarm optimization algorithm using
performance classifiers. Inf. Sci. 2019, 503, 381–400. [CrossRef]

35. Dong, W.; Zhou, M. A supervised learning and control method to improve particle swarm optimization algorithms. IEEE Trans.
Syst. Man Cybern. Syst. 2016, 47, 1135–1148. [CrossRef]

36. Liu, X.; Wang, N. A novel gray wolf optimizer with RNA crossover operation for tackling the non-parametric modeling problem
of FCC process. Knowl.-Based Syst. 2021, 216, 106751. [CrossRef]

37. Adhikary, J.; Acharyya, S. Randomized Balanced Grey Wolf Optimizer (RBGWO) for solving real life optimization problems.
Appl. Soft Comput. 2022, 117, 108429. [CrossRef]

38. Preeti; Deep, K. A random walk Grey wolf optimizer based on dispersion factor for feature selection on chronic disease prediction.
Expert Syst. Appl. 2022, 206, 117864. [CrossRef]

39. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2021, 166, 113917. [CrossRef]

40. Peng, H.; Xiao, W.; Han, Y.; Jiang, A.; Xu, Z.; Li, M.; Wu, Z. Multi-strategy firefly algorithm with selective ensemble for complex
engineering optimization problems. Appl. Soft Comput. 2022, 120, 108634. [CrossRef]

41. Michalski, R.S. Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning. Mach. Learn. 2000, 38, 9–40.
[CrossRef]

42. Jourdan, L.; Dhaenens, C.; Talbi, E.G. Using datamining techniques to help metaheuristics: A short survey. In Proceedings of the
Hybrid Metaheuristics, Gran Canaria, France, 13–14 October 2006; Volume 4030, pp. 57–69.

43. Pikkarainen, M.; Haikara, J.; Salo, O.; Abrahamsson, P.; Still, J. The impact of agile practices on communication in software
development. Empir. Softw. Eng. 2008, 13, 303–337. [CrossRef]

44. Beck, K. Embracing change with extreme programming. Computer 1999, 32, 70–77. [CrossRef]
45. Schwaber, K.; Beedle, M. Agile Software Development with Scrum, 1st ed.; Prentice Hall PTR: Hoboken, NJ, USA, 2001.
46. Wysocki, R.K. Adaptive Project Framework; Addison-Wesley Educational: Boston, MA, USA, 2010.
47. Cockburn, A. Crystal Clear; The Agile Software Development Series; Addison Wesley: Boston, MA, USA, 2004.
48. Zhou, Z.H. Machine Learning; Springer: Singapore, 2021. [CrossRef]
49. Yang, Y. Chapter 4—Ensemble learning. In Temporal Data Mining via Unsupervised Ensemble Learning; Yang, Y., Ed.; Elsevier:

Amsterdam, The Netherlands, 2017; pp. 35–56. [CrossRef]
50. Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance assessment and exhaustive listing of 500+ nature-inspired

metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [CrossRef]
51. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search

Spaces. Complexity 2017, 2017, 1–19. [CrossRef]
52. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
53. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
54. Varan, M.; Erduman, A.; Menevşeoğlu, F. A Grey Wolf Optimization Algorithm-Based Optimal Reactive Power Dispatch with

Wind-Integrated Power Systems. Energies 2023, 16, 5021. [CrossRef]
55. Silaa, M.Y.; Barambones, O.; Bencherif, A.; Rahmani, A. A New MPPT-Based Extended Grey Wolf Optimizer for Stand-Alone PV

System: A Performance Evaluation versus Four Smart MPPT Techniques in Diverse Scenarios. Inventions 2023, 8, 142. [CrossRef]
56. Too, J.; Abdullah, A.; Mohd Saad, N.; Mohd Ali, N.; Tee, W. A New Competitive Binary Grey Wolf Optimizer to Solve the Feature

Selection Problem in EMG Signals Classification. Computers 2018, 7, 58. [CrossRef]
57. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 169–178. [CrossRef]
58. Tariq, F.; Alelyani, S.; Abbas, G.; Qahmash, A.; Hussain, M.R. Solving Renewables-Integrated Economic Load Dispatch Problem

by Variant of Metaheuristic Bat-Inspired Algorithm. Energies 2020, 13, 6225. [CrossRef]
59. Yousif, A.; Alqhtani, S.M.; Bashir, M.B.; Ali, A.; Hamza, R.; Hassan, A.; Tawfeeg, T.M. Greedy Firefly Algorithm for Optimizing

Job Scheduling in IoT Grid Computing. Sensors 2022, 22, 850. [CrossRef]

http://dx.doi.org/10.3390/math8071070
http://dx.doi.org/10.3923/jas.2010.1991.2000
http://dx.doi.org/10.1007/s10732-010-9125-3
http://dx.doi.org/10.1016/j.eswa.2014.01.040
http://dx.doi.org/10.1016/j.eswa.2011.04.075
http://dx.doi.org/10.1007/s00500-014-1262-4
http://dx.doi.org/10.1016/j.ins.2019.07.016
http://dx.doi.org/10.1109/TSMC.2016.2560128
http://dx.doi.org/10.1016/j.knosys.2021.106751
http://dx.doi.org/10.1016/j.asoc.2022.108429
http://dx.doi.org/10.1016/j.eswa.2022.117864
http://dx.doi.org/10.1016/j.eswa.2020.113917
http://dx.doi.org/10.1016/j.asoc.2022.108634
http://dx.doi.org/10.1023/A:1007677805582
http://dx.doi.org/10.1007/s10664-008-9065-9
http://dx.doi.org/10.1109/2.796139
http://dx.doi.org/10.1007/978-981-15-1967-3
http://dx.doi.org/10.1016/B978-0-12-811654-8.00004-X
http://dx.doi.org/10.1016/j.swevo.2023.101248
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.3390/en16135021
http://dx.doi.org/10.3390/inventions8060142
http://dx.doi.org/10.3390/computers7040058
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.3390/en13236225
http://dx.doi.org/10.3390/s22030850

Biomimetics 2024, 9, 292 28 of 28

60. Sánchez-Olivares, G.; Tomás, A.; García-Ayllón, S. A Minimum Cost Design Approach for Steel Frames Based on a Parallelized
Firefly Algorithm and Parameter Control. Appl. Sci. 2023, 13, 11801. [CrossRef]

61. Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);
Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [CrossRef]

62. Saleem, N.; Zafar, K.; Sabzwari, A. Enhanced Feature Subset Selection Using Niche Based Bat Algorithm. Computation 2019, 7, 49.
[CrossRef]

63. Nguyen, T.T.; Pan, J.S.; Dao, T.K. A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks. Appl. Sci. 2019,
9, 1973. [CrossRef]

64. Kumar Mohapatra, P.; Kumar Rout, S.; Kishoro Bisoy, S.; Kautish, S.; Hamzah, M.; Jasser, M.B.; Mohamed, A.W. Application of
Bat Algorithm and Its Modified Form Trained with ANN in Channel Equalization. Symmetry 2022, 14, 2078. [CrossRef]

65. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
66. Sun, G.; Shang, Y.; Yuan, K.; Gao, H. An Improved Whale Optimization Algorithm Based on Nonlinear Parameters and Feedback

Mechanism. Int. J. Comput. Intell. Syst. 2022, 15, 38. [CrossRef]
67. Yildiz, A.R. A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. Int. J. Adv.

Manuf. Technol. 2019, 105, 5091–5104. [CrossRef]
68. Zhang, J.; Zhang, T.; Zhang, G.; Wang, D.; Kong, M. Using the Whale Optimization Algorithm to Solve the Optimal Reactive

Power Dispatch Problem. Processes 2023, 11, 1513. [CrossRef]
69. Chen, Z.; Zhang, K.; Chan, T.H.T.; Li, X.; Zhao, S. A Novel Hybrid Whale-Chimp Optimization Algorithm for Structural Damage

Detection. Appl. Sci. 2022, 12, 9036. [CrossRef]
70. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
71. Huang, K.W.; Girsang, A.; Wu, Z.X.; Chuang, Y.W. A Hybrid Crow Search Algorithm for Solving Permutation Flow Shop

Scheduling Problems. Appl. Sci. 2019, 9, 1353. [CrossRef]
72. Meddeb, A.; Amor, N.; Abbes, M.; Chebbi, S. A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power

Dispatch Problem. Energies 2018, 11, 3321. [CrossRef]
73. Storn, R.; Price, K. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]
74. Naila; Haroon, S.; Hassan, S.; Amin, S.; Sajjad, I.; Waqar, A.; Aamir, M.; Yaqoob, M.; Alam, I. Multiple Fuel Machines Power

Economic Dispatch Using Stud Differential Evolution. Energies 2018, 11, 1393. [CrossRef]
75. Baioletti, M.; Di Bari, G.; Milani, A.; Poggioni, V. Differential Evolution for Neural Networks Optimization. Mathematics 2020,

8, 69. [CrossRef]
76. Eltaeib, T.; Mahmood, A. Differential Evolution: A Survey and Analysis. Appl. Sci. 2018, 8, 1945. [CrossRef]
77. Mattiussi, C.; Waibel, M.; Floreano, D. Measures of Diversity for Populations and Distances Between Individuals with Highly

Reorganizable Genomes. Evol. Comput. 2004, 12, 495–515. [CrossRef] [PubMed]
78. Norouzi, M.; Fleet, D.J.; Salakhutdinov, R.R. Hamming distance metric learning. In Advances in Neural Information Processing

Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.
79. Scipy. Distance Computations, 2008–2022. Available online: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

(accessed on 5 May 2024).
80. Wikipedia. Jaccard Index 2022. Available online: https://en.wikipedia.org/wiki/Jaccard_index (accessed on 5 May 2024).
81. Salleh, M.N.M.; Hussain, K.; Cheng, S.; Shi, Y.; Muhammad, A.; Ullah, G.; Naseem, R. Exploration and exploitation measurement

in swarm-based metaheuristic algorithms: An empirical analysis. In Proceedings of the Recent Advances on Soft Computing and
Data Mining, Cham, Switzerland, 16–18 June 2018; Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H., Eds.; pp. 24–32.

82. Priyanka; Kumar, D. Decision tree classifier: A detailed survey. Int. J. Inf. Decis. Sci. 2020, 12, 246–269. [CrossRef]
83. Rustam, Z.; Ariantari, N.P.A.A. Support Vector Machines for Classifying Policyholders Satisfactorily in Automobile Insurance. J.

Phys. Conf. Ser. 2018, 1028, 012005. [CrossRef]
84. Yang, F.J. An implementation of naive bayes classifier. In Proceedings of the 2018 International Conference on Computational

Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 301–306. [CrossRef]
85. Zhang, L.; Liu, K.; Wang, Y.; Omariba, Z.B. Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier.

Energies 2018, 11, 2548. [CrossRef]
86. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
87. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wires Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
88. Olivares, R.; Noel, R.; Medina, S.; Miranda, D.; Munoz, R. Metaheuristics with Ensemble Learning to Solve the Team-Size Problem

in Agile Practices. Electronics 2023, 13, 178. [CrossRef]
89. Ravelo, C.; Olivares, R. Biomimetic Orca Predator Algorithm improved by Deep Reinforcement Learning for Feature Selection.

Mathematics 2024, 12, 1249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app132111801
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.3390/computation7030049
http://dx.doi.org/10.3390/app9101973
http://dx.doi.org/10.3390/sym14102078
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s44196-022-00092-7
http://dx.doi.org/10.1007/s00170-019-04532-1
http://dx.doi.org/10.3390/pr11051513
http://dx.doi.org/10.3390/app12189036
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.3390/app9071353
http://dx.doi.org/10.3390/en11123321
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.3390/en11061393
http://dx.doi.org/10.3390/math8010069
http://dx.doi.org/10.3390/app8101945
http://dx.doi.org/10.1162/1063656043138923
http://www.ncbi.nlm.nih.gov/pubmed/15768526
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
https://en.wikipedia.org/wiki/Jaccard_index
http://dx.doi.org/10.1504/IJIDS.2020.108141
http://dx.doi.org/10.1088/1742-6596/1028/1/012005
http://dx.doi.org/10.1109/CSCI46756.2018.00065
http://dx.doi.org/10.3390/en11102548
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.6084/M9.FIGSHARE.24000195
http://dx.doi.org/10.6084/M9.FIGSHARE.25126043.V4

	Introduction
	Related Work
	Preliminaries
	Time-Size Problem
	Ensemble Learning
	Bio-Inspired Algorithms
	Particle Swarm Optimization
	Gray Wolf Optimizer
	Firefly Algorithm
	Bat Algorithm
	Whale Optimization Algorithm
	Crow Search Algorithm
	Differential Evolution

	Developed Solution
	Phase 1: Metric Collection and Initial Adaptation
	Phase 2: Ensemble Learning Model Training
	Phase 3: Dynamic Adjustment and Real-Time Optimization
	Integration of Metaheuristics and Ensemble Learning in Agile Team Configuration

	Experimental Setup
	Results and Discussion
	Conclusions
	References

