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Abstract: With the increasing dominance of artificial intelligence (AI) techniques, the important
prospects for their application have extended to various medical fields, including domains such
as in vitro diagnosis, intelligent rehabilitation, medical imaging, and prognosis. Breast cancer is
a common malignancy that critically affects women’s physical and mental health. Early breast
cancer screening—through mammography, ultrasound, or magnetic resonance imaging (MRI)—can
substantially improve the prognosis for breast cancer patients. AI applications have shown excellent
performance in various image recognition tasks, and their use in breast cancer screening has been
explored in numerous studies. This paper introduces relevant AI techniques and their applications in
the field of medical imaging of the breast (mammography and ultrasound), specifically in terms of
identifying, segmenting, and classifying lesions; assessing breast cancer risk; and improving image
quality. Focusing on medical imaging for breast cancer, this paper also reviews related challenges
and prospects for AI.

Keywords: artificial intelligence network; deep learning; machine learning; breast cancer; ultrasound
image; mammography image

1. Introduction

Breast cancer is one of the most common cancers identified in women across the globe,
and it is now the leading cause of death among women [1–3]. In addition to being the
most commonly diagnosed cancer in 154 countries (out of 185 countries), breast cancer
is the main cause of cancer-related death in more than 100 countries [4]. Approximately
600 men and 40,000 women die of breast cancer annually according to the findings of the
American Cancer Society [2]. Therefore, early screening and treatment of breast cancer is a
global health concern. Accurate diagnosis of breast cancer, especially early detection and
treatment, can critically affect its prognosis. The clinical cure rate of breast cancer in the
early stage is highly optimistic and exceeds 90%. Meanwhile, the clinical cure rate in the
middle stage ranges from 50% to 70%, and treatment is typically not effective for those in the
late stage. Mammography, ultrasound, and MRI are crucial screening and supplementary
diagnostic tools that serve as significant methods for the detection and staging of breast
cancer, evaluation of treatment efficacy, and follow-up examination [5]. Breast cancer can
be classified as benign, normal, in situ carcinoma, or invasive carcinoma [3]. A benign
tumor will cause a slight alteration to the breast anatomy; however, there is no harmful
substance, so it cannot be referred to as a dangerous tumor [6]. On the other hand, in situ
carcinomas affect only the mammary duct lobules and do not spread to other tissues [7].
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As long as it is detected at an early stage, this type of cancer is not very dangerous and can
be treated. Invasive carcinoma is the most severe form of breast cancer, as it can spread to
every organ in the body [8].

AI refers to the capability of a computer system to accurately interpret and learn
from external data and to flexibly adapt obtained knowledge to execute specific tasks. The
remarkable advancements in computational functions related to the rise of big data over the
past five decades have propelled the application of AI into new domains [9]. For example,
AI is available for face and voice recognition, among other new technologies. The use of AI
methods in medical imaging has gained increasing research interest. Significant progress
has been made in applying AI algorithms, particularly deep learning (DL) algorithms, to
image recognition tasks. The availability of various methods in the field of medical image
analysis, ranging from convolutional neural networks (CNNs) to variational autoencoders,
has contributed to rapid developments in medical imaging [10]. Furthermore, various
types of cancers, such as ovarian cancer, can be diagnosed using AI and machine learning
(ML) tools [11–14].

Radiologists read and analyze breast images and use them for diagnosis. However,
their substantial workload and long hours can cause fatigue, leading to misjudgment and
misdiagnoses or missed diagnoses. Using AI, or, in this case, computer-aided diagnosis
(CAD), for this purpose can alleviate potential human errors. In a CAD system, a suitable
algorithm completes the processing and analysis of images [15,16]. Recent breakthroughs
with DL in AI, especially CNNs, have significantly advanced the field of medical imag-
ing [17,18]. AI refers to the capability of applications or machines to replicate humans
(or human brain functions) in order to learn and solve problems [19]. The concept of
AI was introduced in 1956 by John McCarthy. AI technologies have made remarkable
progress since then, especially over the past decade. As AI has become a key part of
computer science, there have been continuous efforts to create new kinds of intelligent
machines that can imitate the human brain, extending to diverse applications such as
image recognition, data mining, expert systems, natural language processing, language
recognition, pattern recognition, and robotics [20]. In the medical field, AI can be used for
early disease prediction, disease screening, clinical decision support, health management,
hospital management, medical imaging, and medical record or literature analysis. Apart
from assisting doctors in making accurate diagnoses, AI can be used to analyze medical
images and information for disease screening and prediction. Focusing on the application
of AI in breast imaging, Al-antari et al. reported high accuracy for a complete integrated
CAD system (>92%) in the detection, segmentation, and classification of masses seen on
mammograms [21]. Based on 2654 exams and readings by 101 radiologists, Rodriguez-Ruiz
et al. reported a significant reduction in radiologists’ workload (of 17%) when using a
trained AI system with automatic preselection (with an AI score of 2 as the threshold when
scoring the possibility of cancer from 1 to 10) [22].

One of the most notable ways AI is used is in the implementation of ML, which consists
of unsupervised and supervised ML techniques. Unsupervised ML does not require any
information to be provided or determined by a set of historical imaging data, similar to the
data under study, in order to categorize radiomic features, as shown in Figure 1. Supervised
ML involves training using available data labeled with corresponding correct outputs.

The selected method must reach a balance between its ability to fit the training set with
its power to generalize in the case of new data; until then, all parameters in the algorithm
are subjected to tuning. For instance, sparsity-enhancing regularization networks can
concurrently make predictions and recognize extracted features that significantly affect
predictions [22]. ML includes computational algorithms, such as artificial neural networks
(ANNs), decision trees, k-means, linear regression, principal component analysis (PCA),
random forests, and support vector machines (SVMs), which utilize the image features
extracted by radiomics as input to produce output predictions concerning disease outcomes.
As AI systems are based on neural networks, DL approaches involve developing models
that can imitate the human brain, which is the most recent technology used for image
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classification. A simulation model known as a perceptron was the first model to be used
to simulate neural networks and the human brain. A neural network has a variable
number of layers. The input layer processes the multi-dimensional data used as input. The
hidden layer consists of several layers. In a convolutional layer, a feature map is created
and passed through a non-linear activation function before it reaches the pooling layer
for down sampling. The output can then be transferred to a fully connected layer for
classification. Finally, the output layer yields the results of the analysis. For more complex
problem solving, layers with perceptrons with all nodes fully connected can be created and
arranged to form a multi-layer perceptron [23]. In addition, CNNs can be either supervised
or unsupervised learning models. Supervised learning is a model-training procedure
that requires the observed training data and the associated ground truth labels for the
data (also described as “objects”). In unsupervised learning, there are no diagnoses or
normal/abnormal labels for the training data. Supervised learning is typically considered
for image classification tasks [24]. This paper discusses AI (DL and ML) and its applications
in medical imaging of the breast (mammography and ultrasound), as well as the challenges
and prospects related to applying AI techniques to medical imaging.
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Figure 1. Overview of ML for breast cancer.

2. Public Breast Cancer Datasets

This section presents some of the most common public datasets in both mammogram
and ultrasound images. Researchers frequently employ machine learning techniques to
analyze and derive insights from these datasets, facilitating advancements in the field of
medical imaging. These datasets collectively contribute to the advancement of machine
learning techniques in mammography, fostering innovation in breast cancer detection
and diagnosis.

2.1. Public Mammography Datasets

In the realm of mammography research, several publicly available datasets serve as
crucial resources for advancing machine learning techniques. These datasets offer annotated
information and diverse images, enabling researchers to develop and evaluate algorithms
effectively. Here, we highlight some of the prominent public mammography datasets:

MIAS (Mammographic Image Analysis Society) [25]: This dataset comprises over
300 screening mammograms annotated with information about background tissue type, ab-
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normalities present in the breast, and their severity. Additionally, lesions in mammograms
are marked with X and Y coordinates, along with labels for various abnormalities.

DDSM (Digital Database of Screening Mammography) [26]: With over 2600 scanned
film mammography studies, the DDSM provides a comprehensive archive. A subset of the
DDSM, known as the CBIS-DDSM, offers well-annotated images with detailed pathological
information such as breast mass type, tumor grade, and stage.

INBreast Database [27]: Despite recent discontinuation of support by the Universidade
do Porto, INBreast remains a valuable resource, with over 410 screening mammographs. It
includes information on abnormality types and mass contour data.

BCDR (Breast Cancer Digital Repository) [28]: This dataset focuses on full-field digital
mammograms (FFDMs) and encourages contributions from researchers [29]. It provides
images in both craniocaudal and medio-oblique views, accessible after registration.

BancoWeb LAPIMO [30]: Comprising over 1400 mammograms, this dataset offers
images in TIFF format collected from 320 subjects. It includes a variety of lesions classified
as benign, malignant, or healthy.

VICTRE Trial dataset [31]: Unlike the others, this dataset is entirely synthetic, simulat-
ing 2986 subjects with representative breast sizes and densities. It uses in-silico versions of
digital breast tomosynthesis (DBT) and provides open-source software tools for analysis
and lesion insertion [32].

OPTIMAM dataset [31]: Available upon request from the University of Surrey, OPTI-
MAM offers relational data storage. It contains annotated 3D DBT imaging and provides
an open-source Python package for easy integration into research systems, facilitating
seamless processing.

2.2. Public Ultrasound Datasets

These datasets stand as pivotal resources frequently utilized by researchers in machine
learning. Each dataset offers a distinct collection of breast ultrasound images, catering to
various research needs.

BUS [33]: Sourced from the UDIAT Diagnostic Centre of the Parc Tauli Corporation in
Sabadell, Spain, BUS comprises 163 breast ultrasound images. Among these, 109 depict
benign conditions, while 54 exhibit malignant characteristics.

BUSI [34]: Gathered from the Baheya Hospital for Early Detection and Treatment of
Women’s Cancer in Cairo, Egypt, BUSI features a more extensive collection. This dataset
encompasses ultrasound images obtained from 600 female patients aged between 25 and
75 years. It comprises 437 benign images, 210 malignant images, and 133 images depicting
normal breast conditions, totaling 730 ultrasound images.

BUSIS [35]: Originating from the Second Affiliated Hospital of Harbin Medical Uni-
versity, the Affiliated Hospital of Qingdao University, and the Second Hospital of Hebei
Medical University, BUSIS consists of 562 images depicting female subjects aged 26 to 78 years.
Notably, these datasets may contain multiple images representing the same patient.

Regarding image labels, both BUS and BUSI provide lesion shape labels along with
classifications distinguishing between benign and malignant conditions. In contrast, BUSIS
solely offers lesion shape labels without further classification details. Figure 2 illustrates
mammogram and ultrasound images from public datasets.
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from the dataset [34].

3. Applying AI to Mammography

Breast cancer screening methods often involve the use of mammography [36]. This
non-invasive screening method is easy to operate and yields high-resolution images with
good repeatability. It is relatively pain-free and does not discriminate by age or body
type. The retained images can also be compared (i.e., before vs. after). Breast masses that
cannot be detected by touch, benign lesions, and malignant breast tumors can be accurately
detected using mammograms. Mammography involves full-field digital mammography
(DM) systems and yields for-processing (raw imaging data) and for-presentation (post-
processed versions of raw data) image formats [37]. The use of AI for detecting, classifying,
and segmenting breast masses, assessing breast cancer risk, and improving image quality
are discussed in the following subsections (see Table 1).

3.1. Detection and Classification of Breast Masses

One of the most common symptoms of breast cancer is the presence of masses. Detect-
ing and diagnosing such abnormalities can be challenging, especially in dense breasts, due
to their different shapes, sizes, and margins. This is why breast mass detection is a pivotal
step in CAD. Several studies have recommended crow search optimization based on an
intuitive fuzzy clustering approach with neighborhood attraction (CrSA-IFCM-NA). Its
effectiveness in separating masses in mammogram images and good outcomes on cluster
validity indices, indicating precise region segmentation, has been proven [38]. Other studies
recommend using a completely integrated CAD system comprising a regional DL approach
(you only look once, YOLO), a new deep network model of a full-resolution convolutional
network (FrCN), and a deep CNN for detection, segmentation, and classification of masses
in mammograms, respectively. Using the INbreast dataset (2022), these studies reported
remarkable detection accuracy of 98.96%, suggesting the potential for this system to assist
radiologists in effectively and accurately diagnosing these masses [39,40].

Ertosun et al. [41] presented a CNN-based visual search approach designed to localize
masses within mammograms. Their model comprises two key sub-modules: an anomaly
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detector followed by a mass localizer. Initially, the anomaly detector discerns whether a
mammogram contains masses, subsequently channeling mass-containing images into the
localizer for precise localization. These modules, leveraging hierarchical CNN layers, un-
dergo training on a dataset exceeding 2500 images sourced from DDSM. Al-Masni et al. [42]
opted for the you only look once (YOLO) deep network introduced by Redmon et al. [43]
for simultaneous mass detection and classification. YOLO employs end-to-end learning,
employing successive convolutional layers to segment the image into sub-regions, followed
by placing bounding boxes around significant objects and assigning class labels. Following
five-fold cross-validation, the authors reported impressive sensitivity (100%) and specificity
(94%) scores on the INBreast dataset.

Table 1. An overview of key AI studies in mammography.

Ref. Method Application Dataset Size Accuracy

[37] DoG and HoG Microcalcification cluster
detection 373 cases -

[41] CNN Classification engine and a
localization engine 2420 cases 85%

[42] YoLo-based Detection 600 cases 99.7%

[44] Fast-RCNN Detection DDSM 2620 cases, SU-D 847 cases,
INbreast 115 cases -

[45] Deep multi-instance
networks Classification 410 cases 90%

[46] CBR Classification 2620 cases 91.34%
[47] CNN Classification INbreast 89 cases, MCA 49 case 90%
[48] CNN features + MSVM Classification 416 cases 90%
[49] Deep fusion learning Classification 208 cases 89.06%
[50] Fuzzy contours Segmentation 57 cases 88.08%
[51] Mesh-free + SVM Segmentation 322 cases 94.77%
[52] Dense U-Net + AGs Segmentation D-A 186 cases, D-B 163 cases 78.38%
[53] Mask-RCNNs + GCNNs Segmentation MIAS 58 cases, DDSM 200 cases 99.01%
[54] CNN Segmentation 885 cases 91%

[55] Densely connected U-Net
with attention gates (AGs) Segmentation 400 cases 78.38%

[56] Mask-RCNN with GCNN Segmentation MIAS 322 cases and INbreast 115 cases 99.1%
[57] CLAHE and CNN Image enhancement DDSM 6000 cases, ZMDS 1739 cases 85.5%
[58] FADHECAL and FCIS Image enhancement DDSM 2620 cases, MIAS 322 cases -
[59] LH and FEF Image enhancement 97 cases -

Ribli et al. [44] deployed a Faster R-CNN approach, achieving a commendable AUC
of 0.95 on the INBreast dataset. Notably, they contribute to reproducibility by open-
sourcing their implementation on GitHub, a rare practice in the field. To enhance model
robustness, the authors train on DDSM data and evaluate on INBreast, demonstrating
domain generalizability. Platania et al. [45] employed pretrained CNN weights to initialize
a binary classifier’s weights in a semi-supervised manner. Their approach involves a
two-module system, where a YOLO-inspired CNN detects regions of interest (ROIs).
Subsequently, the initial detector’s weights are transferred to an FFDM classifier, which
undergoes training on the entire mammogram image. Post-testing on DDSM, the authors
report an AUC score of approximately 92.3% and an accuracy of 93.5%.

In another work [46], the authors proposed a novel framework for detecting breast
cancer in mammogram images. The images are classified in an explainable manner using
the proposed solution. In particular, a classification approach based on case-based reasoning
(CBR) was used. The quality of the extracted features strongly influences the accuracy of
CBR. Therefore, a pipeline was developed to improve the quality of extracted features and
provide a final diagnosis. Mammogram images are segmented using a U-Net architecture,
which is an efficient method for extracting regions of interest (RoIs). A mammogram
segmented with DL provides accurate results, while a mammogram classified with CBR
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provides accurate and explainable results. This approach outperformed some famous ML
and DL methods on the curated breast imaging subset of the digital database for screening
mammography (CBIS-DDSM) (by 86.71% and 91.34%, respectively). A shallow–deep
CNN was proposed by Gao et al. [47] to classify masses as benign or cancerous based on
mammography images. Low-energy images are recombined using shallow CNNs, and
unique features are extracted from these images using deep CNNs. Using their proposed
technique, they achieved an accuracy of 90%.

A hybrid technique for breast cancer diagnosis was proposed and tested in [48]. Three
DL CNN models were applied as feature extractors in this study: Inception-V3, ResNet50,
and AlexNet. The term variance (TV) feature selection algorithm was used in this method
in order to extract useful features from the CNN models. TV in statistics is a measure of
the spread or dispersion of a set of values. It quantifies how far each data point in the
set is from the mean (average) and provides insight into the variability or volatility of the
data. After the TV-selected CNN features are combined, further selection is performed to
determine which features are most useful, and those features are then passed to a multi-
class support vector machine (MSVM). The Mammographic Image Analysis Society (MIAS)
image database, specifically the mini-Mammographic Image Analysis Society (mini-MIAS)
dataset, was used to test the effectiveness of the suggested method. Patches were assigned
to the RoIs of the mammograms. After testing various TV feature subsets, the 600-feature
subset with the best classification performance was identified. Compared with previous
studies, this work achieved a higher classification accuracy (CA). Typical CA was 97.81%
for 70% of data for training, 98% for 80% of data for training, and 99% for 90% of data for
training. As a final step, ablation analysis was performed to emphasize the key parameters
of the proposed network.

Yu, X et al. [49] investigated the discriminative patterns between normal and tumor
categories based on deep fusion learning. The framework for mammographic image
classification using deep fusion learning includes two steps. The proposed deep fusion
models are first trained on RoI patches randomly chosen from all RoIs in the original dataset
once they have been obtained. The authors developed a deep fusion model (Model 1) to
classify the RoI patches in normal and tumor tissues. Another model (Model 2) integrates
cross-channel deep features using one-to-one convolution to explore associations between
channels of the same block. Patches that predict a majority vote make up one RoI and the
final prediction. Model 1 achieved a recall rate of 0.913, a precision rate of 0.8077, and an
overall accuracy rate of 0.8906, while Model 2 achieved an overall accuracy of 0.875, a recall
rate of 0.9565, and a precision rate of 0.7586 for the tumor class data.

3.2. Segmentation of Breast Masses

The effectiveness of treatment directly depends on the correctness of the segmentation
of masses. The use of fuzzy contours has been recommended for automatic segmentation
of breast masses. One study recorded high average true positive (91.12%) and accuracy
(88.08%) rates for RoIs extracted from the mini-MIAS dataset [50]. The low contrast of
mammogram images, irregular shapes of masses, spiculated margins, and varying pixel
intensities contribute to the complexity of global segmentation of masses in mammograms.
In another study, the evolved level set function for segmentation of the breast and suspicious
mass regions was explored using a mesh-free radial basis function collocation approach, and
suspicious mass regions were classified into abnormal and normal using an SVM classifier,
achieving high sensitivity (97.12%) and specificity (92.43%) on the DDSM [51]. Accurate
segmentation of breast lesions ensures accurate disease classification and diagnosis [52].
Such automatic image segmentation algorithms demonstrate the promising potential for
DL in precision medical systems.

A new segmentation method for tumor mammograms is presented in [53], which
extracts both the spiculated regions and the mass core. There is a general linear pattern
in the arrangement of pixels in spiculated regions, which is mirrored in mass core regions
where the pixels are also linear. The proposed method extracts these regions based on the
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differences between adjacent pixels. In the mass core and spiculated regions, redundant
pixels can be deleted using three thresholds; segmented tumors are then formed by merging
these regions. This method presented a mean Dice coefficient of 0.9309 on the mini-MIAS
dataset, and mean Jaccard coefficients of 0.9557 and 0.9132 on the DDSM. According to the
results, when compared with other techniques, the proposed segmentation technique can
accurately extract tumor segments.

Salama and Aly [54] collected images from the DDSM, the mini-MIAS dataset, and the
CBIS-DDSM. They used a variety of models to segment and classify the images as benign
or malignant, including DenseNet121, InceptionV3, VGG16, ResNet50, and MobileNetV2.
When using InceptionV3 with data augmentation, the best accuracy was 88.87%.

Li et al. [55] proposed a fully automatic method combining densely connected U-
Nets with attention gates (AGs) for breast mass segmentation on mammogram images.
It consists of an encoder and a decoder: Convolutional networks encode information,
and U-Nets integrated with AGs decode it. The DDSM, an authorized public screening
database, was used to test the proposed method. The F1-score, meaning the intersection of
union, sensitivity, specificity, and overall accuracy, was used to evaluate the effectiveness
of the method. Compared with U-Net, attention U-Net, DenseNet, and state-of-the-art seg-
mentation techniques, dense U-Net integrated with AGs outperformed the other methods
and achieved better segmentation results, with an accuracy of 78.38% and an F1-score of
78.24%. Additionally, the network has a lower standard deviation, suggesting that it is
more capable of generalization.

The results of the study reported in [56] demonstrated highly accurate breast cancer
segmentation by combining mask regional CNNs (mask R-CNNs) with group CNNs (G-
CNNs). These approaches maximize the share of weights and the expressive capacity of the
model while maintaining rotational invariance. The INbreast and mini-MIAS datasets were
used to test the model. Comparing the results with those of conventional architectures, the
model achieved a 99.01% accuracy, a Dice coefficient of 86.63%, a Jaccard index of 87.76%,
99.24% sensitivity, and 98.55% specificity.

3.3. Image Quality Improvement

The accuracy of a diagnosis largely depends on the image quality. Good image quality
means clear images, which significantly improve the diagnosis and accuracy rates of AI
models when detecting and diagnosing microscopic lesions in mammograms. Various
computer algorithms have been developed to enhance image quality. Higher image quality
offers more information on the phase, directionality, and shift invariance of the data. In
this regard, multi-scale shearlet transforms can produce multi-resolution results for the
detection of cancer cells, particularly those with smaller contours. Shenbagavalli et al.
reported that benign and malignant cases in the DDSM were classified with an accuracy
of up to 93.45% using the shearlet transform image enhancement method, suggesting its
effectiveness in enhancing mammogram image quality [15]. Teare et al. used a novel form of
a false-color enhancement method to optimize the characteristics of mammograms through
contrast-limited adaptive histogram equalization (CLAHE), and they utilized dual deep
CNNs at different scales to classify the images and derivative patches, along with a random
forest gating network. In this way, they achieved a sensitivity of 0.91 and a specificity of
0.80 [57]. Given the significance of image quality for accurate diagnosis, rigorous image
quality evaluation and improvement are essential for subsequent analysis and diagnosis by
ANN systems and radiologists.

To reduce the noise of mammogram images while preserving contrast and brightness,
Suradi et al. [58] developed the fuzzy anisotropic diffusion histogram equalization contrast
adaptive limited (FADHECAL) technique. In addition to the FADHECAL technique, a
fuzzy clipped inference system (FCIS) is applied during the enhancement process, auto-
matically selecting the clip limit from the available options. The DDSM and mini-MIAS
dataset were used to access the mammogram images. The outcomes show that the FAD-
HECAL technique had better results than the other selected enhancement methods, with
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AMBE = 6.502 ± 1.855, SSIM = 0.934 ± 0.034, MAE = 15.742 ± 1.217, PSNR = 26.843 ± 2.541,
UIQI = 0.969 ± 0.021, and RMSE = 1.151 ± 0.147. The FADHECAL technique can be used
to enhance mammogram images to detect breast cancer lesions more accurately with a
reduced level of noise while preserving image detail.

Several approaches are presented in [59] to enhance mammographic contrast, includ-
ing classical methods (linguistic hedges and fuzzy enhancement functions), advanced fuzzy
sets (intuitive, Pythagorean, and Fermatean fuzzy sets), and genetic algorithm optimiza-
tion. An advanced fuzzy set provides a more accurate assessment of the uncertainty of
the membership function. For this reason, the intuitive method is the most efficient, but
most of the other techniques are also effective, depending on the problem. Compared
with conventional methods, linguistic methods can provide a more manageable way to
spread the histogram, revealing more extreme values. It is possible to obtain a high-quality
final image using ordered weighted averaging (OWA) operators combined with enhanced
mammography images.

3.4. Assessing Breast Cancer Risk

Due to the high incidence and mortality rates of breast cancer, the physical and mental
health of breast cancer patients are adversely affected. There are numerous risk factors,
such as age, family history, reproductive factors (e.g., early menarche, late menopause, first
pregnancy at a late age, low parity), estrogen (e.g., endogenous or exogenous estrogen),
and lifestyle (e.g., smoking, excessive alcohol consumption, dietary fat intake) [60]. Ac-
knowledging and gaining a better understanding of breast cancer risks can promote early
detection and prevention.

Numerous studies have extensively explored the use of AI in breast cancer risk predic-
tion. For instance, in a systematic review of ML algorithms for breast cancer risk prediction
reported from January 2000 to May 2018, Nindrea et al. found that the SVM algorithm
had the highest accuracy compared to ANNs, decision trees, k-nearest neighbor, and naive
Bayes algorithms [61]. Several other studies demonstrated that the combination of ANN
and cytopathological diagnosis could be used to evaluate breast cancer risk by analyzing
and learning mammography results, risk factors, and clinical findings, which can help doc-
tors to make informed estimations of malignancy risk and improve the positive predictive
value (PPV) of the decision to perform biopsy [62].

A number of studies [63–67] have employed large cross-sectional screening cohorts
representing the general screening population to train DL models. These studies utilized
normal mammographic images acquired at least one year before a breast cancer diagnosis
or a negative follow-up (i.e., BIRADS 1 and 2). The design of these studies more closely
reflects the task of assessing breast cancer risk, as they were aimed at identifying women at
high risk before they develop cancer. It is important to use cases and controls of the same
age in such a study and to report evaluation measures that are age-adjusted. Otherwise, risk
prediction performance estimates can be inflated. The areas under the receiver operating
characteristic curves (AUCs) for the models were in the range of 0.60 to 0.84, and they
often outperformed state-of-the-art breast cancer risk models [59,60,63,65]. Ha et al. [67]
showed that a full-field digital mammography (FFDM)-driven DL risk score was more
predictive than the breast imaging and reporting data system (BI-RADS) breast density
(odds ratios 4.4 vs. 1.7). FFDM-based DL risk scores outperformed automated breast density
measurements according to Dembrower et al. [63]. Finally, Yala et al. found that a hybrid DL
model involving both full-field mammograms and traditional risk factors recorded higher
accuracy than the Tyrer–Cusick model, which represents the current clinical standard (AUC
of 0.68 versus 0.62, respectively) [65]. These studies provide preliminary evidence that
FFDM-based DL models offer promise for more accurate prediction of breast cancer risk
than density-based models and existing epidemiology-based models. Given the above,
the accuracy of AI techniques in the prediction of breast cancer risk is evident, which can
undoubtedly help practitioners provide appropriate interventions to minimize the risk of
breast cancer. Table 1 presents an overview of key AI papers in mammography.
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4. Applications of AI in Ultrasound

Ultrasound is a diagnostic method with a high usage rate; this is due to its strengths
of being free from radiation and easy to operate in addition to providing instantaneous
results upon operation. Therefore, using ultrasound imaging to detect and diagnose
breast cancer has become increasingly common. To address the need for quantification
and standardization of ultrasound in order to avoid misdiagnoses (e.g., due to a lack
of experience or subjective influence), the development of an AI system to detect and
diagnose breast lesions in ultrasound images is proposed in [68]. Other studies [24,69,70]
have demonstrated the use of AI systems to identify and segment RoIs, extract related
features, and classify benign and malignant lesions in breast ultrasound images. Figure 2
shows ultrasound images of breast.

4.1. Identification and Segmentation of RoIs

Lesions must be identified and segmented from the background to determine an
accurate representation for the diagnosis of breast lesions. At present, sonographers are
responsible for manually segmenting breast ultrasound images. In addition to an experi-
enced sonographer, this clinical process requires time and effort, and these images have
poor contrast, unclear boundaries, and excessive shadowing. Therefore, an automatic
segmentation method for breast ultrasound images is recommended. The segmentation
process primarily involves detecting RoIs containing lesions and delineating the contours
of the lesions. Hu et al. trained a combination of a phase-based active contour (PBAC)
model and a dilated fully convolutional network (DFCN) and successfully achieved a
high mean dynamic susceptibility contrast (DSC) of 88.97% in identifying and segmenting
170 breast ultrasound images, suggesting its effectiveness in guiding manual segmentation
in medical analysis [71]. Kumar et al. demonstrated the performance of a multi-U-Net
algorithm for segmenting masses in breast ultrasound images from 258 women, which
surpassed the performance of the original U-Net algorithm, with a mean Dice coefficient
of 0.82, a true positive value of 0.84, and a false positive value of 0.01 [72]. Feng et al.
demonstrated that the performance of a Hausdorff-based fuzzy c-means (FCM) algorithm
combined with an adaptive region selection scheme (involving the adaptive selection of the
area around each pixel based on the mutual information between regions) for segmenting
breast tumors in ultrasound images surpassed that of the Hausdorff-based and traditional
FCM algorithms [73]. Using AI to automatically identify and segment breast lesions in
ultrasound images can assist sonographers in accurately and efficiently detecting and
diagnosing breast cancer.

Numerous researchers have delved into ultrasound-based breast cancer diagnosis,
employing a range of methodologies. Early studies predominantly utilized traditional
digital image processing techniques and machine learning approaches for detection. For
instance, Drucker et al. [74] pioneered the use of radial gradient index filtering to iden-
tify initial points within regions, subsequently scrutinizing candidate areas against the
background through the optimization of regional average radial gradient indices. Lesions
were classified using Bayesian neural networks, yielding a sensitivity of 87%, with a false
positive detection rate of 0.76.

Deep learning (DL), emerging as a prominent method in computer vision and pattern
recognition, has garnered significant attention in medical research, including breast cancer
detection [75]. Cao et al. [76] conducted a comprehensive comparison of five deep learning-
based object detection networks, highlighting SSD’s superior performance in terms of
precision and recall. In a study focusing on breast lesion detection, Yap et al. [77] employed
Faster R-CNN as their deep learning network. To mitigate the impact of small sample
datasets, they utilized transfer learning. Additionally, they introduced a three-channel
fusion technique, merging original, sharpened, and contrast-enhanced images into a new
three-channel image, enhancing detection accuracy.

Li Y et al. [78] developed BUSnet, a DL model, to analyze ultrasound images for the
detection of breast tumors. First, a two-stage method was developed, which included
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a region proposal algorithm for unsupervised regions and a bounding box regression
algorithm for supervised regions. A post-processing method was then proposed to further
improve the detection accuracy. Using the proposed method, 487 benign samples and
210 malignant samples in a benchmark dataset were analyzed. The results showed that the
proposed method proved to be effective and accurate.

A computerized analysis of breast ultrasound images for automatic breast tumor
detection, classification, and volume estimation was developed in [79]. The Radiology
Department at Thammasat University and the Queen Sirikit Center of Breast Cancer in
Thailand provided breast ultrasound images. Among the 655 images, 445 were benign and
210 were malignant. The training and testing datasets were augmented through blur, flip
vertical, flip horizontal, and noise transformations. The YOLO7 architecture, based on DL
techniques, was then used for tumor detection, localization, and classification. A simple
pixel-per-metric technique was used to estimate tumor volume. With a confidence score of
0.95, the model demonstrated excellent tumor detection performance, achieving 95.07%
lesion classification accuracy, 94.97% sensitivity, 95.24% specificity, 97.42% PPV, and 90.91%
NPV on the test sets.

Chorianopoulos et al. [80] applied three CNN models—MobileNet, VGG16, and
AlexNet—to two datasets, one containing ultrasound images and the other containing
histopathology images. On the ultrasound dataset, VGG16 achieved the highest accuracy
of 96.82%. On the invasive ductal carcinoma dataset, MobileNet achieved the highest
accuracy of 91.04%.

Byra et al. [81] proposed a deep-learning method for segmenting breast masses using
ultrasound data. CNNs with selective kernels (SKs) were developed. The SKs adjusted
the network’s receptive fields by combining dilated and conventional convolutions. Ul-
trasound images of 882 breast masses were used to create and evaluate the proposed
method. Additionally, 893 ultrasound images obtained from three medical centers were
tested. The SK-U-Net algorithm achieved a Dice score of 0.826 on 150 ultrasound images,
outperforming the regular U-Net algorithm, which scored 0.778. A Dice score of 0.646 to
0.780 was achieved using the proposed method across three datasets.

An ultrasound image segmentation technique based on feature separation and com-
plementation is presented in [82]. Top-to-bottom (T2B) and bottom-to-top (B2T) streams
were used for feature separation, and each branch was much more effective at extracting
the required feature information. Feature complementation was achieved by combining
global semantic information with local detailed information at each stage. The result was
a complementary boundary feature in the T2B stream, along with suppressed noise in
the B2T stream. We evaluated these techniques using UDIAT, BUSIS, and LUSI, three
publicly available datasets. Compared with other current methods for ultrasound image
segmentation, the performance of our FSC-Net was at least 1.59%, 0.96%, and 3.74% better
than other state-of-the-art methods.

4.2. Feature Extraction

Suspicious masses are typically identified and segmented according to the morpholog-
ical and textural features in breast images, such as edge, echo type, hardness, orientation,
rear features, shape, and location of calcification. Classification of suspicious masses accord-
ing to the BI-RADS scale can quantify the degree to which cancer is suspected. Accurate
identification of morphological features by sonographers is crucial for distinguishing be-
tween benign and malignant masses. Using AI systems for feature extraction from breast
ultrasound images can assist in the diagnosis process, reducing the substantial demand on
sonographers to deliver accurate diagnoses. Using FCM clustering, Hsu et al. found that
combining morphological parameters (e.g., the standard deviation of the shortest distance),
textural features (e.g., variance), and the Nakagami parameter allowed for high accuracy
(89.4%), specificity (86.3%), and sensitivity (92.5%) when extracting physical features of
breast ultrasound images. Conversely to using logistic regression and SVM classifiers, the
maximum discrimination performance of the optimal feature collection did not depend on
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the classifier type, suggesting that the functional complementarity of combining different
feature parameters can enhance the performance of breast cancer classification [83].

Zhang et al. combined feature learning and feature selection to form a two-layer DL
architecture, which recorded an area under the receiver operating characteristic curve of
0.947 and had higher accuracy (93.4%), sensitivity (88.6%), and specificity (97.1%) when
extracting and classifying shear wave elastography (SWE) features compared with the
statistical features of quantified image intensity and texture [84]. The use of a CAD system
(e.g., the Samsung RS80A S-Detect ultrasound system) has been reported to significantly
improve the diagnostic performance of radiologists, regardless of their experience in
analyzing the ultrasound features of breast masses. Using a CAD system can help to refine
the description of breast lesions and enhance consistency among observers regarding the
characteristics of breast masses, ultimately resulting in better decision-making [85].

Jabeen et al. [86] proposed a new framework for the classification of breast cancer
based on ultrasound images by combining DL and best-selected features. The proposed
framework includes five major steps: (1) data augmentation to enhance the size of the
original dataset for learning CNNs; (2) modification of the output layer of the pre-trained
DarkNet-53 model based on the augmented dataset classes; (3) training of the modified
model by transfer learning and use of the global average pooling layer to extract features;
(4) use of reformed differential evaluation, reformed grey wolf (RGW), and improved
optimization algorithms to select the best features; and (5) use of a new probability-based
serial approach and ML algorithms to fuse together and classify the best-selected features.
In the experiment, the best accuracy was 99.1% based on augmented breast ultrasound
images (BUSIs). The proposed framework performed better than other recent techniques.

Breast cancer data were successfully analyzed in [87] using LeNet, a classic CNN
architecture. The system demonstrated high accuracy in early detection and diagnosis
of breast cancer by extracting discriminative features and classifying malignant and be-
nign tumors. As a result of addressing the “dying ReLU” problem and improving the
discriminative power of the extracted features, LeNet with a corrected rectified linear unit
(ReLU) demonstrated enhanced performance in breast cancer data analysis tasks, making
breast cancer detection and diagnosis more accurate and reliable. LeNet’s training stability
and performance can be improved through batch normalization. This method is useful in
mitigating the effects of internal covariate shifts, which refers to changes in the distribution
of network activation due to training. There will be reductions in the over-fitting problem
and the running time with the use of this classifier. A comparison of the designed classifier
to benchmark DL models showed that it had a higher recognition rate, with 89.91% of
breast images recognized accurately.

4.3. Applications of AI in Thermography Images

DL has emerged as a powerful tool in the field of medical image analysis, including
breast cancer classification from thermography images. Thermography, which captures
the heat patterns emitted by the body, offers a non-invasive and radiation-free alternative
to traditional imaging modalities. DL algorithms, such as CNNs, have demonstrated
remarkable capability in extracting intricate patterns and features from thermal images. By
training the model on diverse datasets, it learns to discern subtle temperature variations
associated with malignant and benign breast tissue. The utilization of DL in thermography-
based breast cancer classification holds promise for improving diagnostic accuracy and early
detection, potentially enhancing the effectiveness of screening programs and contributing
to more personalized and timely patient care [88].

Thermal images from the Database for Mastology Research with Infrared Images
(DMR-IR) were employed in [89] to explore the effectiveness of VGG16, a pre-trained CNN
architecture, in combination with attention mechanisms (AMs) for diagnosing breast cancer.
The investigation focused on three variants of the model, each incorporating a distinct type
of AM. The methodology revealed consistency in the performance of these models across
all stages of the study. Notably, the test accuracy of the VGG16 model coupled with AMs on
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the breast thermal dataset demonstrated promising results, reaching 99.80%, 99.49%, and
99.32%. Compared to VGG16 without AMs, the test accuracy of VGG16 with AMs exhibited
notable improvement of 0.62%, underlining the potential of using attention mechanisms to
enhance diagnostic performance for classifying breast cancer in thermal images.

A two-stage model for breast cancer detection utilizing thermographic images is intro-
duced in [90]. The first stage involves feature extraction from images using the VGG16 DL
model. In the second stage, the dragonfly algorithm (DA), a metaheuristic algorithm, is used
to select the optimal subset of features. To enhance the performance of the DA, a memory-
based version incorporating the Grunwald–Letnikov (GL) method is proposed. The efficacy
of the two-stage framework was assessed using the DMR-IR standard dataset. Impressively,
the proposed model demonstrated the ability to efficiently filter out non-essential features,
achieving a diagnostic accuracy of 100% on the standard dataset. Furthermore, it achieved
this accuracy with 82% fewer features compared to the VGG16 model, highlighting the
potential of the approach for improving both efficiency and accuracy in detecting breast
cancer in thermographic images. Tello-Mijares et al. [88] focused on a segmentation method
that combines the curvature function, k, and the gradient vector flow, while for classifi-
cation they proposed a CNN using the segmented breast. The primary objective of the
study was to compare the results of the CNN with other classification techniques. Each
breast was characterized by its distinct shape, color, and texture and whether it was the
left or right breast. These features were utilized to both train the models and evaluate
the performance of the CNN against three other classification techniques: a tree random
forest (TRF), a multilayer perceptron (MLP), and the Bayes network (BN). The findings
revealed that CNN outperformed the TRF, MLP, and BN, demonstrating its superiority
in breast characterization and classification based on shape, color, and texture features.
Figure 3 shows the main stages of the proposed method for breast cancer segmentation
from thermography images.
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4.4. Benign and Malignant Classifications

Due to the high incidence and mortality of breast cancer among women globally,
various measures have been developed to promote breast cancer screening for women of
appropriate ages. The most significant aspect of breast cancer screening is detecting benign
cases and malignant cases. Classification of breast lesions in ultrasound images is primarily
based on the BI-RADS. In order to ensure consistency of the interpretations made by doctors
with different experience levels, there have been growing efforts to develop AI systems
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for benign and malignant classification. Cirtisis et al. demonstrated that the use of a deep
convolution neural network (dCNN) yielded comparable accuracy (93.1%; external: 95.3%)
when classifying breast ultrasound images into a BI-RADS score of 2–3 and a BI-RADS
score of 4–5 compared to the classification accuracy of radiologists (91.6 ± 5.4%; external:
94.1 ± 1.2%) [91]. Meanwhile, Becker et al. reported that a DL model trained on 445 cases
had comparable accuracy when analyzing 637 breast ultrasound images (84 malignant
lesions and 553 benign lesions) to that of a radiologist and better accuracy than that of a
medical student (similarly trained with 445 cases) [92]. Recently, researchers started using
automatic search methods to design CNN architectures from scratch for medical imaging,
including breast cancer imaging. Ahmed et al. [93] used the efficient neural architecture
search (ENAS) method to generate a model, which achieved 89.3% overall accuracy, outper-
forming other manually designed alternatives. Additionally, the ENAS-generated model
had simplified complexity and greater efficiency. To investigate the generalization of the
ENAS-based model [94], they evaluated the model on an external dataset. To address
the challenge of generalization error, they investigated various techniques, such as reduc-
ing model complexity, employing data augmentation, and utilizing unbalanced training
sets. The experimental findings indicate that the ENAS model trained on an unbalanced
dataset with more benign images generalized well on the external dataset and two external
datasets. Alzhoubi et al. [95] used a Bayesian optimizer as a search strategy to automatically
search for CNN architecture for breast cancer classification. The result showed that the
automatically generated CNN outperformed transfer learning CNN models on internal
and external test sets. Ahmed et al. [96] proposed an automatic search environment for
designing a CNN model for breast cancer classification from ultrasound images by com-
bining the ENAS method with the Bayesian optimizer. Their method consists of two main
steps: First, they used ENAS to generate optimal cells (normal and reduction), and second,
they used Bayesian optimization to search for the number of cells per CNN architecture
and trainable hyperparameters. The generated ENAS-B model outperformed the original
ENAS and transfer-learning models in breast cancer classification. Figure 4 presents the
proposed approach for automatically searching for CNN for breast cancer classification
from ultrasound images.
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Figure 4. ENAS-B framework proposed in [96] for automatically designing a CNN model for breast
cancer classification from ultrasound images.

The use of AI can significantly assist physicians in classifying and diagnosing benign
and malignant cases in breast ultrasound images, particularly with regard to improving
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the diagnostic accuracy of inexperienced doctors. Table 2 presents key AI papers used
ultrasound images for breast cancer.

Table 2. Overview of key AI studies using ultrasound.

Ref. Method Application Dataset Size Accuracy

[71] PBAC + DFCN Segmentation D1 570 cases,
D2 128 cases 88.97%

[72] Multi U-Net Segmentation 433 cases 82%
[74] RGI Detection 757 cases -
[75] YoLov3 Detection 340 cases 76%
[76] R-CNN, FastR-CNN, YoLov3, SSD Detection 1043 cases 87.5%

[77] Faster-RCNN with Inception-ResNet-v2 Detection D-A 306 cases,
D-B 163 cases -

[78] Region proposal algorithm and
bounding box regression Detection 697 cases -

[79] Yolo v7 Detection 655 cases 95%
[80] CNN transfer learning Classification 250 cases 96.82%
[81] U-Net + SK Segmentation 893 cases 82.6%

[82] T2B and B2T Segmentation UDIAT 163 cases,
BUSIS 184 cases 96%

[83] Handcrafted ML Classification 160 cases 89.4%
[84] CNN Classification 227 cases 93.4%
[85] CNN transfer learning + (RGW) Classification 200 cases 99.1%
[86] CNN Classification 343 cases 89.91%
[87] dCNN Classification 780 cases 93.1%
[93] ENAS based CNN Classification 524 cases 89.3%
[94] Auto-Search CNN Classification 2167 cases 85.8%
[95] Auto-Search CNN and TL Classification 3034 cases 83.33%
[76] ENAS-Bayesian-CNN search Classification 2624 cases 79.4%

5. Applications of AI in MRI Images

Magnetic resonance imaging (MRI) stands as a pivotal imaging modality in the com-
prehensive arsenal deployed for diagnosing breast cancer. With its ability to provide
detailed anatomical images and delineate soft tissue structures with high precision, MRI
plays a crucial role in detecting and characterizing breast lesions.

Slimani [97] introduced a groundbreaking method known as the 3D automatic level
propagation approach (3D ALPA), a sophisticated technique devised to enhance the accu-
racy and efficiency of tumor volume reconstruction in breast MRI data. This innovative
approach comprises two meticulously crafted steps. Firstly, the entire volume slated for
processing undergoes segmentation, meticulously dissected slice by slice through a combi-
nation of global thresholding operations and morphological closure techniques. This step
ensures the precise isolation of relevant structures within the volumetric data. Subsequently,
in the second step, the segmented results from each slice are ingeniously fused together
to meticulously reconstruct the original 3D volume housing the tumor, thus providing
clinicians with a comprehensive representation for diagnosis and treatment planning. In
a similar vein, Pandey et al. [98] pioneered a fully automatic and unsupervised approach
by integrating the continuous max flow (CMF) method with sophisticated noise reduction
algorithms and morphological operations. Their methodological innovation represents a sig-
nificant stride towards automating the process of lesion detection and segmentation in breast
MRI, streamlining clinical workflows and reducing dependency on manual intervention.

Furthermore, recent advancements in deep learning methodologies have catalyzed a
paradigm shift in breast tumor targeting. The UNet architecture, a deep learning framework
renowned for its efficacy in semantic segmentation tasks, has emerged as a frontrunner
in automated breast lesion segmentation. Chen et al. [99] further pushed the boundaries
by proposing an end-to-end network that harnesses both spatial and temporal resources,
culminating in a fully automated approach to breast lesion segmentation. Their novel
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adaptation of the UNet architecture, coupled with the integration of ConvLSTM structures,
demonstrates the potential for leveraging temporal information to enhance segmentation
accuracy and robustness.

Moreover, Benjelloun et al. [100] and El Adoui et al. [101] pioneered innovative method-
ologies based on the UNet framework, tailoring their approaches to address the intricacies
of segmentation within individual image slices. Their contributions not only underscore the
versatility of deep learning frameworks but also highlight the nuanced challenges inherent
in breast lesion segmentation tasks. In parallel, Lu et al. [102] and Santucci et al. [103]
embraced the power of convolutional neural networks (CNNs), leveraging their inherent
capability to learn complex patterns and extract meaningful features directly from input
data. The utilization of CNNs, augmented with a softmax function in its outputs, enables
seamless mapping of input images to final labels, obviating the need for laborious feature
extraction steps. Additionally, their utilization of proprietary databases underscores the
critical role of data accessibility and quality in training robust deep learning models for
clinical applications.

6. Discussion

Despite tremendous advancements in the medical field over the past decade with
the introduction of AI techniques, the integration and large-scale application of these
techniques are still in the initial stages. CAD systems have several limitations regarding
breast cancer screening, such as the existence of few large-scale public datasets, reliance
on RoI annotation, high image-quality requirements, regional differences, and over-fitting
and binary classification issues. Furthermore, AI techniques cannot handle multiple tasks
concurrently, which can be challenging for the development of DL models for breast
imaging. These issues are driving the development of breast imaging diagnostic discipline
and reflect the broad prospects of intelligent medical imaging.

Apart from using AI techniques in conventional imaging methods, DL-based CAD
systems have been under rapid development for digital breast tomosynthesis [104–116],
ultrasound [107,108], and contrast-enhanced mammography. AI in breast imaging can be
used to detect, classify, and predict breast diseases; classify specific breast diseases (e.g.,
fibroplasia); and even predict lymph node metastasis [109] and disease recurrence [110].
With technological advancements in the field of AI, the classification and diagnosis of
breast diseases and the establishment of adjuvant treatment are expected to become more
efficient and accurate, allowing for more effective early detection, diagnosis, and treatment
for patients.

AI techniques, especially DL, have been increasingly used in medical imaging due
to their promising potential and outstanding performance in analyzing medical images.
AI techniques can deliver fast computing speeds with good repeatability and no fatigue,
ensuring that doctors obtain highly accurate and objective information, thus helping to
minimize their workload as well as misdiagnoses or missed diagnoses [111]. The use of
CAD systems for breast cancer screening has been explored in numerous studies. These
systems can reliably identify and segment breast lesions, extract and classify features,
estimate breast disease and breast cancer risk, and evaluate treatment effects and prognoses
regardless of the medical imaging method used (e.g., mammography, ultrasound, MRI, or
other types of imaging) [112–116]. These CAD systems are highly promising and provide
various advantages in terms of assisting doctors, optimizing resource allocation, and
improving accuracy.

7. Conclusions

This paper has undertaken a comprehensive review of recent advancements in ma-
chine learning and deep learning techniques for the detection and classification of breast
cancer. By exploring various methodologies employed across diverse medical image types,
the study aimed to provide a thorough understanding of current approaches in breast
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cancer identification. Special emphasis was placed on traditional machine learning and
deep learning methods, highlighting their significance in this domain.

Therefore, developing AI for breast cancer recognition faces numerous challenges,
including limited and imbalanced datasets, the need for interpretable AI in medical decision-
making, privacy concerns surrounding sensitive medical data, ethical considerations related
to biases in data, the resource-intensive manual annotation of datasets, the constant evolu-
tion of technology requiring ongoing updates, and the necessity for regulatory compliance
before deployment in clinical settings. Moreover, overcoming these challenges necessitates
collaboration among researchers, healthcare professionals, regulators, and technology de-
velopers to create ethically sound and effective AI solutions for breast cancer detection
and diagnosis.
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