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Abstract: This work introduces an algorithm designed to solve the Bogoliubov–de Gennes equations
of superconductivity theory. What sets this algorithm apart is its remarkable ability to precisely and
consistently consider the impact of an external magnetic field, all within the microscopic approach.
The computation scheme’s convergence is guaranteed by addressing the Biot–Savart equation for
the field where the vector potential appears on both of its sides. To showcase the capabilities of this
approach, we provide several key examples: the Abrikosov lattice, vortex core states, and the vortex
structure in the intermediate mixed state of a superconductor. This method promises to offer valuable
insights into the microscopic physics of intertype superconductivity.
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1. Introduction

In the realm of superconductivity, the presence of a magnetic field is known to exert
adverse effects on the superconducting state. Two distinct factors contribute to this phe-
nomenon. Firstly, the Zeeman term, arising from the intrinsic spin degrees of freedom of
electrons, induces a tendency for the alignment of the spins of paired electrons forming a
Cooper pair. Secondly, the Lorentz force, originating from the orbital degrees of freedom
of electrons, exerts a force that endeavors to separate the two electrons within the pair.
Consequently, in general, the magnetic field disrupts these electron pairs. The mechanism
responsible for shielding the external magnetic field involves the generation of surface
currents, which precisely counteract the external field beyond a certain depth known as the
penetration depth denoted as λ. Another crucial length scale to consider is the coherence
length, represented as ξ, which quantifies the extent to which the superconducting order
parameter is established within the superconducting region. The ratio of these two lengths,
denoted as κ = λ/ξ, plays a pivotal role in defining distinct regimes of superconducting
materials [1].

When κ is small (κ < 1/
√

2), characteristic of type-I superconductors, the magnetic
field is completely expelled from the interior of the superconductor, resulting in perfect
diamagnetism. For large κ values (κ > 1/

√
2), characteristic of type-II superconductors,

the magnetic field penetrates the superconducting region in the form of flux tubes enclosed
by superconducting regions, creating a mixed phase. These flux lines exhibit quantization
in units of the flux quantum Φ0 = hc/2e. At low magnetic fields, the superconducting
material efficiently expels the magnetic field, and the system resides in the Meissner phase.
As the magnetic field strength increases, the system permits the penetration of flux tubes,
commencing at a critical field strength denoted as Hc1, marking the transition into the
mixed phase.
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The investigation of a single vortex line within an s-wave superconductor in this
regime was initiated through seminal work by Caroli, de Gennes, and Matricon [2], fol-
lowed by Bardeen et al. [3], employing various approximations of the Bogoliubov–de
Gennes (BdG) formalism. Subsequently, Shore et al. [4] and Gygi and Schlueter [5] obtained
numerical solutions for quasiparticle amplitudes within a vortex core, employing approx-
imate forms for the pair potential. Notably, these early numerical calculations utilized a
pair potential derived from experimentally inferred coherence lengths, while neglecting
the spatial variation of the magnetic field, an assumption justified for large κ values. More
rigorous solutions to the BdG equations are attainable solely through numerical meth-
ods, allowing for the self-consistent determination of the pair potential. Gygi et al. [6,7]
demonstrated within this BdG formalism that, as the temperature decreases, the vortex
core size diminishes, aligning with predictions originally posited by Kramer and Pesch [8].
Furthermore, at very low temperatures, the pair potential exhibits Friedel-like oscillations,
primarily arising from the vortex core states [7,9]. It is worth noting that, in these analyses,
the spatial dependence of the magnetic field was omitted, a valid simplification for systems
with κ ≫ 1. Similar outcomes have been observed in nanostructures, such as nanowires
aligned with a magnetic field [10], etc.

In the low field limit, the quasiparticle states within a superconductor can be ade-
quately described by considering a single isolated vortex. Conversely, in the high field limit,
where still H < Hc2, a lattice of vortices forms, known as an Abrikosov lattice, with closely
packed vortices [11]. In this regime, the description of a single isolated vortex becomes
inadequate. The quasiparticle spectrum in this scenario is influenced by the combined
effects of bound states within the vortex cores and states in the continuum, arising from
propagation within the superconducting region between the vortex cores. In contrast to the
single isolated vortex case, the vector potential must be explicitly accounted for in the BdG
equations. In most calculations, it is assumed that extreme type-II superconductors (κ ≫ 1)
apply, where the vector potential is primarily determined by the external magnetic field.
In such cases, the critical field Hc2, marking the transition to the normal phase, greatly
exceeds the lower critical field Hc1.

Nevertheless, there exists a category of superconducting materials characterized by
κ ≈ 1 values (low-kappa materials), which do not conform neatly to the conventions of
type-I or type-II superconductors. Experimental evidence has unveiled the existence of an
intermediate mixed state (IMS) within these crossover or intertype (IT) materials. In this
unique state, the magnetic field infiltrates the superconductor while giving rise to diverse
spatial configurations, including Meissner domains coexisting with vortex lattice islands,
vortex clusters, and chains, among others [12].

When modeling the magnetic response of such superconductors, κ ≈ 1, it is imperative
to no longer disregard the spatial dependence of the magnetic field. Under these circum-
stances, the shielding of the external magnetic field becomes a critical factor for accurately
describing and comprehending the phenomena occurring in these superconductors.

The primary objective of this work is to present a fast and tractable method for cal-
culating the Bogoliubov–de Gennes equations alongside the Ampère–Maxwell equation
for the magnetic field that can be used to investigate strongly inhomogeneous supercon-
ducting states in any material, including those with κ ≈ 1. The task requires developing a
numerical algorithm that is self-consistent over the magnetic field as well as over the gap
function. A fully self-consistent method would offer a significant edge over earlier calcu-
lations where the magnetic field was obtained in the first iteration of the self-consistency
procedure [13] which is not adequate for the low-kappa superconductors. The proposed
approach offers a decisive improvement also of the Ginzburg–Landau (GL) theory, which
is commonly employed to investigate the magnetic properties of superconductors [14] but
can describe neither a fine structure of the vortex core nor the mixed state in the low-kappa
materials correctly.

In this work, we introduce a scheme of double self-consistency and conduct initial
self-consistent calculations on typical inhomogeneous superconducting systems featuring
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κ values near 1, with a specific focus on s-wave superconductivity to illustrate the method’s
efficiency. It is worth noting that our approach holds promise for addressing more gen-
eral scenarios, including d-wave superconductivity in magnetic fields and multi-orbital
superconductivity with spin–orbit coupling, as well as those with disorder [15,16].

2. Method
2.1. Formalism

In this work, we present a numerical procedure for solving the Bogoliubov–de Gennes
equations for the highly inhomogeneous mixed state of a superconductor without any
particular symmetry. The equations are solved self-consistently with the conditions for
the superconducting gap function, as well as with the Ampère–Maxwell equation for the
magnetic field. We consider an effectively 2D problem, so that the quantities of interest do
not depend on one of the coordinates (z), and the magnetic field is directed along the z axis
B = (0, 0, B).

In the 2D plane, x–y, the equations are formulated on a discrete N × N lattice and are
solved using the free boundary conditions. For simplicity, we assume a zero temperature
and also that the lattice is placed in an external perpendicular magnetic field H = {0, 0, H}.
This field is described by the vector potential, A, attributed to each of the discrete lattice
sites. For simplicity, the external field is taken to be uniform, with the corresponding vector
potential being A0 = {−yH, 0, 0}.

The discretized BCS model is defined by the tight-binding Hamiltonian with the
s-wave pairing symmetry that reads as

Ĥ = ∑
ijσ

tij ĉ†
iσ ĉjσ − g ∑

i,σ
n̂i↑n̂i↓, (1)

where ĉi is the electron operator at site i of the lattice, σ is the electron spin, tij is the hopping
amplitude between sites i and j, which is non-zero tij = −t only for the nearest neighbors,
and g > 0 is the on-site BCS coupling constant. The magnetic field is taken into account via
the Peierl’s phase factor for the hopping matrix elements,

tij =⇒ tije
−i e

h̄c
∫ rj

ri A(r)dr, (2)

where A(r) is the vector potential of the total magnetic field B at a point r.
Within the BdG approach, one has to solve the eigenvalue problem of the

mean-field Hamiltonian

Ĥ = ∑
ijσ

(
Hij − µδij

)
ĉ†

iσ ĉjσ + ∑
i

(
∆i ĉ†

i↑ ĉ†
i↓ + c.c.

)
, (3)

where the single-particle Hamiltonian is

Hij = tij + Uiδij, (4)

µ is the chemical potential, ∆i is the gap function, and Ui is the Hartree potential. This
mean field model is solved together with the self-consistency conditions for the gap and
the Hartree potential

∆i = g
〈
ĉi↓ ĉi↑

〉
, Ui = − g

2 ∑
σ

〈
ĉ†

iσ ĉiσ
〉
. (5)

The eigenvalue problem of the mean-field Hamiltonian is reduced to solving the BdG
matrix equation (

Ĥ − µ ∆̂
∆̂† −Ĥ† + µ

)(
u
v

)
= E

(
u
v

)
, (6)

where ∆ij = ∆iδij. Using solutions u and v to the BdG equations, one finds both normal
and anomalous averages in Equation (5), so that Equations (5) and (6) can be solved
self-consistently [17].
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The self-consistency cycle, involving the order parameter and Hartree potential, is a
standard well-established procedure. Its description can be found in numerous works (see,
e.g., [18]). In this work, we use the same procedure, which yields a converging solution for
the problem.

However, the presence of the magnetic field brings additional complexity to the
problem. Equations (5) and (6) are to be amended by the Ampère–Maxwell equation

rot B =
4π

c
j. (7)

An applied external magnetic field generates supercurrents which, in turn, create an additional
magnetic field. Clearly, this screening Meissner “self-action” must also be taken into account
when solving the BdG equations. Therefore, the solution requires two self-consistency cycles:
one for the order parameter, hereafter referred to as the inner convergence cycle (ICC), and
another for the magnetic field, referred to as the outer convergence cycle (OCC).

A complete scheme for solving the BdG equations in the presence of a magnetic field
is illustrated in Figure 1. A detailed description is given in the following sections.

Figure 1. A scheme for the self-consistent solution of BdG equations in the presence of the magnetic
field. ICC (blue frames) solves the system of a BdG Equation (6) with the fixed external field. The
solution is then fed as an input of OCC (red frames). The outer cycle calculates the total field in the
superconductor, which is the sum of the external and current generated fields. The cycles repeat
sequentially until the convergence is reached in both the field and gap function.

2.2. Inner Convergence Cycle—ICC

The ICC is the calculation scheme that finds the solution of the BdG equation with the
gap function and the Hartree potential self-consistently. The magnetic field is fixed (taken
from the previous step). The ICC follows a standard procedure where one first solves the
BdG Equation (6) for the gap function ∆old

i . The solution gives a set of 2N eigenfunctions
(u(m), v(m)) and eigenvalues Em. Due to the symmetry of the problem, only half of the
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eigenfunctions from this set, with positive eigenvalues Em > 0, are needed to compute the
next iteration for the order parameter and Hartree potential as

∆new
i = g ∑

m,Em>0
u(m)

i v∗(m)
i ; (8)

Unew
i = −g ∑

m,Em>0
|v(m)

i |2. (9)

The obtained quantities are then used to solve the BdG Equation (6). The cycle repeats itself
until the convergence criterium is reached. It is important that this procedure converges
without employing special convergence enhancement methods.

The ICC can be easily generalized to the case of disordered superconductors [18–20].
In a recent work [21], it was used to study the influence of correlations in the impurity
potential on the superconducting characteristics of materials.

2.3. Outer Convergence Cycle—OCC

The OCC is needed to find the solution of the BdG equations together with the Ampère–
Maxwell equation for the field. As with the ICC, the equations are solved sequentially.

As a first step, one solves the BdG, the gap, and the Hartree equations self-consistently
using the ICC, as discussed in the previous subsection. The magnetic field that enters the
BdG equations via the Peierl’s factor in Equation (2) is taken from the previous step and is
assumed to be fixed throughout the ICC procedure.

Once the convergence in the ICC is achieved, one takes eigenfunctions of the BdG
equations to find the superconducting current. In the discrete tight-binding model, the
current along the link i–j is found using the expression

jij = − e
ih̄ ∑

mσ

[
tije

−i e
h̄c

∫ rj
ri A(r)drv(m)

iσ v∗(m)
jσ − c.c.

]
. (10)

The vector potential is discretized on the lattice sites as well. Using this descretization
scheme, we approximate ∫ rj

ri

A(r)dr ≈ a
2
(

Ai + Aj
)
= aAij, (11)

where a is the lattice constant, and Ai and Aj are obtained as the projection of the vector
potential onto the vector r connecting the lattice sites i and j, so that Aij is the projection of
the averaged vector potential which is assigned to the link i–j between these lattice points
(see Figure 2). The discretization scheme is consistent with the gauge invariance of the
vector potential.

Figure 2. Two grids used in the algorithm. Black circles are the sites of the square lattice, and red
circles form the grid of links.

We now need to find the magnetic field for the next step of the OCC. The field is
related to the supercurrent via the Ampère–Maxwell Equation (10). Formally, one can write
the solution for the field in the form of the Biot–Savart law,
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Aind =
∫

V

j(r′)dV′

|r − r′| , (12)

so that the total field is a sum of the applied and induced fields

A = A0 + Aind, (13)

where one notes that rot B0 = 0.
It is tempting to regard the left-hand side of Equation (12) as the field for the next step

in the OCC. However, when one takes this result for the next step, the OCC algorithm would
not converge. The reason is that the current in Equation (10) depends on the field explicitly
via the Peierl’s factor entering tij in Equation (2). It is responsible for the diamagnetism of
the superconducting state.

To circumvent this problem, one needs to regard Equation (12) as an equation where the
current j is an explicit function of A. The vector potential A for the next step of the OCC will
be obtained by regarding Equation (12) as an equation, where A enters both the right-hand
side and left-hand side. Note that we take v(m)

iσ and u(m)
iσ , needed to calculate the current in

Equation (10) and obtained by solving the BdG equation, as fixed inputs, calculated using
the field in the previous step of the OCC. Equation (12) is solved using the method proposed
by Krylov, which is generalized to solve non-linear equations as well [22].

The solution Anew
ind of Equation (12) summed with the external A0 gives the field in the

next iteration of the OCC. It is then used to solve the BdG equations consistently in the
ICC. The combination of the ICC and OCC, as described above, ensures the convergence of
the entire procedure of solving the microscopic mean field BCS equations self-consistently
with the equations for the superconductive gap, Hartree potential, and the magnetic field.
We note that one can also include the self-consistency for the number of electrons. The
corresponding equation is added to the ICC, where the procedure also involves changes in
the value of the chemical potential.

3. Illustrative Examples

In this section, we discuss the results of the microscopic solution of the problem
with three illustrative examples of the interaction between the superconductivity and
magnetic field. These examples are the Abrikosov vortex lattice in type II superconductors, a
detailed structure of a single vortex, and multiple vortices in inter-type (IT) superconductors.
The last two examples are most interesting as they demonstrate the regime where the
proposed method is indispensable in describing the profile of the magnetic flux penetrating
a superconducting state.

The calculations are performed on a lattice with 41 × 41 sites assuming free boundary
conditions. The hopping constant t = 1 is regarded as the energy scale of the model.

3.1. Abrikosov Lattice

In the deep type-II regime, the ratio of the magnetic penetration length λ to the
coherence length ξ is significantly larger than one, κ = λ/ξ ≫ 1. It is then expected that
the magnetic field penetrates a superconductor in the form of Abrikosov vortices arranged
in a triangular lattice.

The results of our calculations for the spatial profile of the magnetic field and the order
parameter are shown in Figure 3a,b, respectively. The parameters of the model g = 3 t and
µ = 1.8 t are chosen such that the system is in the Type-II regime, so that the GL parameter
satisfies κ = λ/ξ > 1. This can be seen easily by comparing the characteristic lengths of a
vortex for the condensate (Figure 3a) and for the magnetic field (Figure 3b).

Figure 3c plots the distribution of the superconducting currents. The normal regions
in the vortex cores are surrounded by currents. The Meissner currents flowing along the
border screen the superconducting field, preventing it from entering the sample. Figure 3d
shows the phase of the order parameter. It changes by 2π around each of the vortex cores.



Condens. Matter 2024, 9, 8 7 of 11

Figure 3 demonstrates three vortices forming a triangle. This is expected for a Type-II
superconductor, when vortrices are repulsive. Furthermore, the Bio–Savart Equation (12)
already gives a correct result for the field Aind after the first iteration of the OCC.

Figure 3. A triangle of Abrikosov vortices in a Type-II superconductor. (a) The absolute value of
the order parameter (blue is normal state, red is superconducting state). (b) The distribution of the
magnetic field (blue is B0). (c) The distribution of superconducting currents. Arrows point in the
direction of the current. Arrow thickness is proportional to the current value. (d) Phase of the order
parameter, changing in the interval [0, 2π].

The accuracy of the solutions, obtained after the first iteration and after the full OCC
procedure with many cycles (defined by the convergence criterium), is demonstrated in
Figure 4, which plots the radial cross-section of the absolute value of the gap function.
Red dots demonstrate the result calculated for the full OCC, while blue dots are the
result obtained after the first step. One can see that the difference between the results is
only marginal. This demonstrates that, in the limit of Type II superconductors, a single
OCC iteration is sufficient to obtain both the condensate and field profiles with a very
good accuracy. The first iteration reproduces even the fine structures in the Friedel-like
oscillations in the vicinity of the vortex core, which is clearly visible in Figure 4. These
were first noted in numerical solutions of the Eilenberger equations [8], and later obtained
analytically for a single vortex solution of the BdG equations [9]. We note, in passing, that
their origin lies in the oscillating contributions with the period of 1/kF in both components
u and v of the eigenfunction of the BdG Hamiltonian.

Figure 4. Radial profile of the vortex order parameter extracted from Figure 3a. Red dots are the
results after the first iteration of the OCC; blue dots are obtained after the OCC is converged. The
difference between the first and last iterations is shown in green and magnified by a factor of 10.
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3.2. Vortex Core States

We now consider single-electron states inside of the vortex core obtained from the full
solution of the BdG equations. These Andreev states are bound to the core and exhibit a
quantization of the energy levels.

Figure 5 gives the spectrum and the spatial distribution of the vortex core states
for a system with the same model parameters as taken above to calculate results in
Figures 3 and 4; however, this is assuming the value of the external field, which allows
only one flux quantum to penetrate the sample.

Figure 5. Single particle states in the vortex core. (a–d) Spatial profile of the absolute value of the
bound core states corresponding to the four lowest energy levels. The intensity of the red color is
proportional to the amplitude of the wave function. The energy spectrum lies in the interval ε ∈ [0, ∆]
with ∆ ≈ 0.22. (e) The colour density plot showing the local density of states (LDOS) near the vortex
as a function of the distance from the vortex core and of the energy. (f) 3D sketch of the localization
of the eigenfunctions in the Energy–X–Y 3D space.

The first four bound states are shown in Figure 5a–d. The absolute values form
concentric circles around the vortex core, meaning the states are localized at a specific
distance from the vortex centre, which grows with the energy ε of the state. Figure 5e
shows the map of the local density of electronic states depending on the distance from the
center. Separate energy levels are clearly visible. At low energy levels, the LDOS increases
towards the vortex center. At ε > ∆ ≈ 0.22, the spectrum is continuous. A 3D sketch of the
level structure in the ε − X − Y space is shown in Figure 5f. The spatial profile of the LDOS
can be experimentally observed using the scanning tunneling microscopy technique (see,
e.g., [23], the pioneering work in this area).

3.3. Intermediate Mixed State

When the coherence length and penetration depth are comparable and κ ∼ 1, a mate-
rial becomes an inter-type (IT) superconductor demonstrating the intermediate mixed state
(IMS). It is defined by a special type of vortex–vortex interaction which is non-monotonic,
and also has a significant multi-vortex component. The IMS vortex matter is characterized
by clustering and vortex liquid, which gives rise to complex vortex patterns [24,25].

In the regime of IT superconductivity with the IMS, the first cycle of the OCC gives
totally inadequate results for both the condensate and the field profiles. This is illustrated
in Figure 6, which shows the results obtained for model parameter g = 2.3 t and µ = 1.8 t
that correspond to the IT superconductivity regime.
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Figure 6. Evolution of the solution with the number of OCC cycles, for (a) order parameter and
(b) magnetic field profiles. The model parameters g = 2.3 t and µ = 1.8 correspond to the regime of
IT superconductivity. From the left to the right, the panels correspond to N = 1, 5, 9, 40 OCC cycles.
N = 40 is sufficient to reach convergence.

In the IT regime, the material still admits the mixed state with vortices. This is
illustrated in the rightmost panels in Figure 6, panel (a) for the order parameter and (b)
for the field. The vortices, however, form a cluster with a distance corresponding to a
minimum intervortex interaction energy. This result is achieved after 40 steps of the OCC,
which are required to reach the convergence. The other panels, on the left, show the results
for a fewer number of steps. The leftmost panels show the result after the first step, the
second panels are obtained after the fifth step, and the third panels are the results after the
ninth step.

The panel sequence from left to right demonstrates that a system undergoes a very
deep transformation with the number of OCC steps. It proves the importance of the back
action of the field on the profile of the order parameter. After the first OCC step, one obtains
a single large area of suppressed superconductivity (giant vortex), whereas, after 40 OCC
steps, the calculation converges to a state with a cluster of three separate vortices.

4. Discussion

This work presents an efficient method to solve Bogoliubov–de Gennes equations
self-consistently with the equations for the gap and the magnetic field as well. The method
runs two consecutive consistency cycles: an inner cycle over the gap, assuming the field
does not change, and an outer one over the field. An important ingredient of the approach is
the solution of the Bio–Savart equation for the field, in which the explicit field dependence
of the current is taken into account to find the solution.

The proposed method offers reasonably fast convergence and accurate results. It over-
comes the limitations of the frequently used approximation where the field was obtained
using the first iteration of the outer consistency cycle. In this approximation, the induced
field is calculated using the solution of the BdG equation with the uniform external field
as an input [13]. It has been demonstrated above that the first iteration gives reasonably
accurate results for superconductors in the deep Type-II regime with the large GL parameter
κ ≫ 1. However, the first iteration approximation becomes inaccurate when departing
from the deep Type-II regime, and it is totally inadequate for low-kappa materials with
κ ∼ 1. In this regime, the back action of the field onto the condensate is very significant
and cannot be neglected. It leads to the considerable rearrangement of both the condensate
and the field profiles.

The proposed method yields results that cannot be obtained employing the popular
Ginzburg–Landau theory [14]. In particular, the latter cannot adequately describe the
inner fine structure of a vortex and cannot be used to study the magnetic properties of the
low-kappa materials and the phenomen of inter-type superconductivity [12]. In contrast,
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the approach discussed in this work can take all these effects into account, thereby offering
a considerable advantage over the other methods.

With minimal alternations, the approach can also be used to investigate various more
general situations, including a non-uniform applied magnetic field, d-wave superconduc-
tivity in magnetic fields, multi-orbital superconductivity with spin-orbit coupling, and
systems with disordered arbitrary strength. The versatility of our method allows for its
application to a wide range of inhomogeneous superconducting systems, including films
and wires, facilitating further investigations into their unique properties. Finally, we note
that it is also feasible to construct the extension of this method into the time domain for
use in investigating dynamic effects [26,27] in intertype superconductors. This extension
will allow us to study the coherent quantum evolution of the system, in contrast to the
approach based on the time-dependent Ginzburg–Landau equations where dynamical
quantum coherent effects are neglected [28].
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