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Abstract: The blending of biodiesel with petroleum diesel attracts much attention due to its high
potential in reducing emissions. In this work, waste sunflower oil was converted to biodiesel by the
trans-esterification method, and it was blended with petroleum diesel in three ratios (10, 30, and 50%).
The impact of using these blended fuels in a four-stroke engine on engine performance and exhaust
emissions at three engine loads (2, 4, and 6 N.m) was investigated and compared with the use of
petroleum diesel and biodiesel. The engine performance was evaluated by determining the brake-
specific fuel consumption (BSFC), engine effective power (Ne), brake-specific energy consumption
(BSEC), brake thermal efficiency (BTE), and noise intensity. The evaluation of emissions from the
engine exhaust was carried out by measuring the levels of carbon oxides (CO and CO2), hydrocarbons
(HC), nitrogen oxides (NO and NO2), and particulate matter (PM). The results show that blending
diesel with up to 30% biodiesel can reduce CO, HC, and PM emissions by 29.6 ± 1%, 26.0 ± 4%, and
31.0 ± 3%, respectively. However, this decrease is associated with increasing CO2 and NOx emissions
by 18.5 ± 2.5% and 29.0 ± 6%, respectively. In addition, the engine showed acceptable performance
when using up to 30% biodiesel, where the increase in fuel consumption was limited to 5.8 ± 0.3%.
In addition, the engine’s effective power increased with the blending ratio of 10% by 2.0 ± 0.6%,
but then decreased with the blending ratio of 30% by only 2.0 ± 0.6%. The noise intensity was also
decreased by 2.4%, while BSEC and BTE were reduced by only 2.9 ± 0.9% and 3.5 ± 1%, respectively.
The results of this work provide deep insights regarding the utilization of waste sunflower oil as
biodiesel to be blended with petroleum diesel, which is a considerable novel approach in the energy
and environmental sectors.

Keywords: brake-specific fuel consumption; engine effective power; brake thermal efficiency; noise;
brake-specific energy consumption

1. Introduction

To meet different human needs, energy demand has increased, and thus, the demand
for diesel fuel as a source of energy production has increased. The probability of fossil fuel
depletion and increasing prices and emissions motivate manufacturers, governments, and
researchers to find alternatives [1]. Thus, bio-diesel attracts much attention due to its high
potential [2] and its attractive qualities in terms of high cetane number and oxygen content,
which help to reduce engine knock and emissions, respectively [3]. However, the use of
pure biodiesel is associated with some issues, such as increasing the deposit of carbon in
the injector tip, increasing the amount of accumulation in the engine, and increasing the
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wear in the cylinder liner [4]. Therefore, mixing biodiesel with ordinary fossil diesel has
been suggested to minimize these negative effects.

In this research, the focus was on biodiesel production as a source of energy, as
it is considered an alternative, renewable, and environmentally friendly fuel due to its
lower generation rate of pollutants compared with petroleum diesel fuel [5]. Based on the
literature, the heating value of biodiesel is about 11–15% lower than that of diesel [6,7].
In addition, the kinematic viscosity of biodiesel is within the acceptable range (1.9 to
6.0 mm2/s), and the flash point of all biodiesels is more than 150 ◦C [8,9], which makes
it safer than petroleum-based diesel. Furthermore, it was found that mixing different
percentages of bio-fuel with ordinary diesel fuel reduces exhaust gases such as carbon
monoxide (CO) and particulate manners (PM) [10,11]. However, there is still uncertainty
about the ability to reduce the emissions of carbon dioxide (CO2) and nitrogen oxides (NO
and NO2) [4,12].

Pure biodiesel is referred to as B100, while its mixing by volume with petroleum diesel
is referred to as B, and is represented by a biodiesel concentration ratio. Researchers found
that the consumption of fuel increases by around 14% with the use of biodiesel [13], while
the use of B30 obtained from waste vegetable oils in a single cylinder with a direct-injection
diesel engine resulted in the lowering of thermal efficiency by 1–5% [14]. Rahman et al.
reported that using B30 biodiesel has almost no significant impact on engine performance
and emissions, but sacrificing a small amount of fuel can achieve slightly higher efficiency,
a shorter ignition delay, and a lower rate of heat release [15]. The literature also showed
great variation in carbon emissions based on the raw materials of biodiesel. For example,
biodiesel generated from soy, corn, tallow, canola, and soybeans showed the highest carbon
emissions, while waste cooking oil produced the lowest [16].

Biodiesel production can be carried out by different methods such as micro-emulsion,
dilution (thinning), pyrolysis, and trans-esterification, and the latter is the most widely
used [17]. In the trans-esterification method, biodiesel is formed through the reaction of
an alcohol such as ethanol or methanol with oil (from vegetable or animal). The trans-
esterification method has several advantages over other methods, such as low cost, high
renewability, lower emissions, ease of production at an industrial scale, the high cetane
number of the product, lighter reaction conditions, and characteristics close to those of
standard diesel fuel. However, it has some disadvantages, such as the need for frequent
and deep cleaning processes, unwanted side reactions, extensive separation, and large
amounts of waste water [18,19].

This work aims to find an alternative fuel by utilizing waste sunflower oil to produce
biodiesel fuel and mixing it with different percentages of ordinary diesel fuel and inves-
tigating the blended fuels’ impacts on the performance of a four-stroke single-cylinder
diesel engine and its emissions. We utilize waste sunflower oil is due to its availability
in large amounts and the need to recycle it sustainably. The results of this work provide
deep insights regarding the application of utilizing waste sunflower oil as biodiesel to be
blended with petroleum diesel. Several advantages can be achieved by using this method,
such as reducing the emission of pollutants from fuel combustion, avoiding the discharge
of waste oil to the environment, producing biodiesel renewably, and reducing the noise
level of diesel engines. Providing deep insights to achieve these targets is of considerable
value in the energy and environmental sectors.

2. Research Materials and Methods
2.1. Biodiesel Production

Biodiesel was prepared from waste sunflower oil collected from restaurants and food
factories in Baghdad city (Iraq) after a filtration step. A titration step was performed to
identify the amount of catalyst required to neutralize the fatty acids in the waste sunflower
oil. The titration was performed by dissolving one gram of potassium hydroxide (KOH,
AUS CHEM SOURCE, 90%) in one liter of deionized water. Then, one milliliter of waste
sunflower oil was dissolved into ten milliliters of isopropyl alcohol (CORECHEM 99.0%).
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The pH was set to 8.5 ± 0.5 by adding sodium hydroxide (NaOH, 0.1 N) using an eyedrop-
per with phenolphthalein as an indicator. The quantity of KOH that was added until the
color of the oil changed to pink was recorded.

The waste sunflower oil was placed in a mixer basin and methanol (ACS grade > 99.8%)
was added to it, while KOH was added as a catalyst with the help of magnetic stirring
operating at a speed of 550 rpm to ensure a homogeneous reaction. The mixer was operated
for five hours at 60 ◦C, which is below the boiling temperature of alcohol. Then, the
materials were transferred to another closed basin and left for (24) h to precipitate the
glycerin at the bottom of the basin. After the esterification process, the water was removed
and the materials were heated to 60 ◦C. When the biodiesel was ready for use, it was mixed
in the desired ratio with petroleum diesel fuel, which was obtained from the Al-Dorra
refinery station (Baghdad, Iraq). The experimental procedure included using five fuel types,
including non-blending diesel (D), B10, B30, B50, and B100. The properties of both the
petroleum and biofuels are listed in Table 1, with the measurements taken at the Al-Dorra
refinery laboratory.

Table 1. Characterization of all used fuel.

Type of Fuel Fuel’s Density
(kg/m3)

Fuel’s Kinematic
Viscosity (cSt) at 40

Calorific Value
(CV) (KJ/Kg)

Cetane
Number LHV (MJ/kg)

Latent Heat of
Vaporization
(kJ/kg)

Diesel 839.00 ± 1.00 2.449 43,464.71 55.95 42.5 249.1 ± 1.00

B10 840.44 ± 1.00 2.70 43,034.21 56.35 42.0 250.5 ± 1.00

B30 851.61 ± 1.00 3.11 42,173.45 57.20 41.0 251.5 ± 1.00

B50 862.5 ± 1.00 3.51 41,312.60 58.05 40.5 252.5 ± 1.00

B100 884.00 ± 1.00 4.490 39,160.50 60.10 37.5 254.0 ± 1.00

2.2. Engine Tests

The aim of the second stage of this research was to conduct tests to evaluate the
engine’s performance and determine the proportion of emissions of burning gases. These
tests were carried out in an internal combustion laboratory (TD 212, manufactured by AVL
in Graz, Austria) in the Department of Power/Automotive Mechanics at Kut Technical
Institute using a four-stroke single-cylinder diesel tester (Figure 1a) with pneumatic cooling.
Its maximum power and torque are 3.5 Kw and 16 at 3600 rpm, respectively. The diameter
of the engine cylinder is 69 mm, with a connected rod length of 104 mm and an engine
capacity of 232 cm3. To evaluate the engine’s efficiency, the engine was connected to a
hydraulic dynamometer to set the required load on the engine. Furthermore, the engine
was linked to the unit of measurement, where all test measurements from the engine were
recorded (Figure 1b).

The work procedure and engine specifications are presented in detail in previous
works [20]. Briefly, the procedure started with evacuating and refilling the engine fuel
tank based on the required fuel type. A torque value of 2, 4, or 6 N.m was applied to the
engine, keeping the engine speed constant at 2000 rpm for all tests. A warm-up period of
15 min was applied before loading the desired torque with a dynamometer control. Each
experiment was triplicated, and the average values are presented in this work with their
standard deviation.
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Figure 1. (a) Diesel engine, (b) measurement unit, and (c) emission analyzer.

2.3. Tested Parameters

The evaluation of performance was carried out by identifying several parameters, includ-
ing BSFC (kg/kW.h), Ne (kW), BSEC (MJ/kW.h), BTE, and noise intensity. Equations (1)–(5),
respectively, were used to calculate these parameters [21–24]:

BSFC = mºf /B.P (1)

Ne = MF/BSFC (2)

BSEC = BSFC × LHV (3)

B.P = 2 × πNT/60,000 (4)

ηbth = B.P × 3600/mºf × CV (5)

where mºf, B.P, MF, LHV, T, N, and CV are the fuel consumption rate (g/s), power produced
(W), fuel mass flow rate, lower heating value (MJ/kg), engine brake load (N.m), speed
(rpm), and heat value of the fuel kJ/kg.

2.4. Emission and Noise Tests

An emission test was conducted to calculate the gaseous percentages and PM emitted
from the engine exhaust using an AIRREX HG-540 (AiRREX Co., Ltd., Seoul, Republic
of Korea) gas analyzer (Figure 1c), which measures CO, CO2, HC, and NOX gases with
accuracy and repeatability better than 0.10 m+. To measure the volume of the emission,
the analyzer was connected to the testing engine exhaust by a line with a gas meter. To
capture PM, a fiberglass filter (Grade 934-AH, Whatman, Maidstone, UK) was used, and
the PM weight was measured by calculating the increase in the filter weight after each
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experiment. The testing experiment was duplicated, and the average value is considered
here. An Onossokki LA-7700 (Vantaa, Finland) sound pressure level meter (measurement
frequency range: 10 Hz to 20 kHz and measurement level range: 20 to 128 dB) was used to
measure the engine noise in decibels (dB). The noise level was measured for the five fuel
types at the three load values at a constant speed. The measurement was conducted by
setting up a microphone 1 m away from the four directions of the engine (front, left, right,
and back).

3. Results and Discussion
3.1. Engine Performance

In this work, the method of blending diesel with bio-diesel manufactured from waste
oil was used in different mixing ratios (10, 30, and 50%) in a four-stroke engine to compare
their impacts on engine performance and emissions with those of petroleum diesel and
pure biodiesel. Figure 2a shows the impact of blending petroleum diesel with the prepared
biodiesel on the BSFC value, and indexes fuel efficiency by presenting the fuel-consumption
rate per produced power. These experiments show that the BSFC values of B10 at various
torque values are adjacent to that of petroleum diesel, while raising the mixing ratio resulted
in higher BSFC values, which means a reduction in the overall engine efficiency with an
increasing blending ratio.
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Specifically, load values of 2.0 N.m, D, B10, B30, B50, and B100 result in BSFC values of
0.52, 0.53, 0.55, 0.57, and 0.62 (kg/kW.hr), respectively. Biodiesel has a lower heating value
than petroleum diesel, and thus, blending fuel has a lower heating value than petroleum
diesel, which causes higher fuel consumption to achieve the same engine power [4]. As
shown in Figure 2b, the rises in the BSFC values with increasing biodiesel percentage
are 1.9%, 5.8%, 9.6%, and 19.2%, respectively. This means that using B10 and B30 results
in increasing fuel consumption by only 1.9% and 5.8%, respectively, while using B100
increases BSFC by 19.2% at the lowest load value (2.0 N.m).

At the highest torque value (6.0 N.m), there is a notable reduction in the BSFC values
of all types of fuels compared to that at 2 N.m. Specifically, the BSFC values of D, B10,
B30, B50, and B100 are 0.258, 0.263, 0.274, 0.284, and 0.310 (kg/kW.hr), respectively. This
reduction in BSFC values is attributed to increasing the load value, which results in re-
duced fuel consumption, as indicated by the BSFC values, due to the increased chance
for fuel to complete ignition. The rises in the BSFC values with rising biodiesel percent-
age at the highest torque value (6.0 N.m) are 1.9%, 6.2%, 10.1%, and 20.1%, respectively.
This indicates that the loss in fuel consumption is very close at different load values. To
confirm this conclusion, the BSFC value was also investigated at a torque value equal to
4 N.m. The BSFC values of D, B10, B30, B50 and B100 are 0.305, 0.311, 0.322, 0.333, and
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0.361 (kg/kW.hr), respectively. The increases in the BSFC values are 1.9%, 5.5%, 8.8%, and
18.3%, respectively, which are so close to those of the other torque values.

Figure 3 shows that the effective power (Ne) of B10 is slightly higher than that of
petroleum diesel, but the further increase in the blending ratio decreases the effective power.
Specifically, the effective power values of D, B10, B30, B50, and B100 are 3.85, 3.9, 3.8, 3.7,
and 3.5 (kW) at a torque value of 2 N.m. A similar trend is observed with higher torque
values. Specifically, the effective power values of D, B10, B30, B50, and B100 at a torque
value of 4 N.m are 6.55, 6.65, 6.50, 6.40, and 6.05 (kW), while the values are 7.75, 7.95, 7.55,
7.40, and 7.05 (kW), respectively, at a torque value of 6 N.m.
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different torques on engine effective power (Ne) and (b) the change %.

To make the results more understandable, Figure 3b shows the change percentage in
the Ne values at different torque values for the blended fuel relative to diesel fuel. The
engine’s effective power increases when using B10 by 2.0 ± 0.6%, but then decreases with
B30 by the same percentage. The higher effective power of B10 is probably due to the higher
oxygen content of the biodiesel, which improves combustion. The further increase in the
biodiesel ratio results in a reduction in the effective power due to the lower calorific value
and higher viscosity of biodiesel compared with that of petroleum diesel fuel. Increasing
the fuel viscosity lowers the fuel flow rate and combustion efficiency, which results in
power loss due to poorer fuel flow rate (MF in Equation (2)) and fuel atomization [25].
More in-depth, biodiesel has a higher boiling point, density, surface tension, viscosity, and
latent heat of vaporization but lower vapor pressure compared with petroleum diesel.
This resulted in higher spray penetration length and, thus, poorer atomization, and this
is the reason for the lower Ne values at the higher torque values [26]. For this reason, an
increase in the effective power is observed only in B10, and this increase is attributed to
the impact of increasing the oxygen content, which has more influence than the viscosity
impact. However, the further increase in the biodiesel ratio (B30, B50, and B100) leads
to a decrease in the effective power due to the greater influence of viscosity compared to
oxygen content.

Figure 4a shows the impact of blending biodiesel with diesel on the BSEC values.
There is a notable decrease in BSEC values with rising torque values for all fuel types, while
a slight increase can be observed upon raising the blending percentage. This behavior is
somewhat expected due to the close connection between BSEC and BSFC values, where
Equation (3) is used to determine the BSEC values based on the BSFC and LHV values.
The LHV values of diesel and blended fuel are close; thus, the BSEC values are controlled
considerably by the BSFC values. Biodiesel has a lower heating value than petroleum diesel,
and this necessitates increasing fuel consumption to achieve the same engine efficiency [27].
As shown in Figure 4b, the loss of BSEC for blending fuel at different loads is in the range
of 0.4% to 6.1%. These results indicate that the reduced percentage resulting from blending,
especially with a ratio up to 30%, is within the acceptable range considering the advantages
of blending, such as the reduction in the exhaust gases.
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The impact of blending fuel on brake thermal efficiency at various loads is shown in
Figure 5, which shows variations in the BTE values with increasing load and blending ratio.
BTE is a helpful parameter to assess the efficiency of converting the energy in the fuel to
mechanical output. BTE is calculated by dividing the brake power of the engine by the
amount of energy supplied to the engine. The lost energy is evacuated by the engine in
different forms, such as friction losses or heat transfer, through the engine cylinder and
exhaust gases [28].
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Generally, increasing the load increases the efficiency of all fuel types. This is probably
due to decreasing fuel consumption at higher loads. B10 shows a reduction in efficiency
compared with petroleum diesel, especially at high load values. A possible reason is the
impact of lowering the calorific heat of fuel when combined with increased fuel viscosity
as well. B30 shows another slight reduction in efficiency for the lowest load value. On the
other hand, at the other load values, B30 shows better efficiency than B10, and a similar
trend can be observed with B50. The variation in the BTE values indicates that there is
more than one parameter effect on BTE. At lower loads, the impact of increasing the fuel
viscosity would have more influence than the other parameters, resulting in an inferior
combustion process and reduced BTE. On the other hand, blended fuels have lower heating
values compared to petroleum diesel, which lowers the heat transfer losses and enhances
BTE at higher load values [29,30]. B100 shows lower efficiency than diesel except at the
highest load. At the highest torque value, B100 shows slightly higher BTE than diesel. The
increased efficiency observed at higher load values in general, and especially with blended
fuel, is probably due to the higher fuel injection pressure, which minimizes the impact of
increasing viscosity with increasing biodiesel ratio [28]. In addition, higher oxygen content
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of biodiesel fuel results in better combustion, and hence, a higher BTE value is gained.
However, these results indicate that no general relationship can be deduced between BTE
and the blending ratio, and several parameters may impact the correlation. Similar results
that indicate a variation in BTE values with blending ratios and torque values are also
reported in the literature [31].

Figure 6 shows the effect of mixing fuel on the engine noise level and the change
percentage. Generally, raising the torque value increases the noise level, but increasing
the blending ratio slightly decreases the noise level. This reduction in noise intensity is
due to the positive influence of blending on the noise level in the injection pump and
injector. specifically, blending biodiesel with diesel resulted in a cooling impact on the
cylinder charge due to the lower heating value of biodiesel and its higher oxygen content.
This resulted in a reduction in the peak cylinder temperature, and this would reduce the
machine knocking [32,33]. On the other hand, blending fuels show shorter ignition delay
than that of petroleum diesel due to the higher cetane number of biodiesel fuel [4]. Shorter
ignition delays were clearly observed at the higher blending ratio (50%) as well as with B100.
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3.2. Exhaust Gas Emissions

Figure 7 presents the results of the exhaust gases of the five types of fuel. In general,
increasing the engine load resulted in an increase in the emissions for all types of fuel, which
is probably due to several factors. The first of them is decreased combustion time, which
resulted in increased HC and PM emissions. The second reason could be the increase in the
temperature with increasing load, which resulted in a reduction in the partial combustion
of the fuel resulting in CO emission. The third reason could be the increase in complete
combustion, which resulted in increased CO2 as well as NO emissions [33]. Thus, a
reduction in emission upon increasing the applied load is only observed with CO due to
the increasing temperature, which promotes full combustion, resulting in CO2 formation
and limiting the partial combustion that forms CO.

From Figure 7, a remarkable reduction in CO, HC, and PM can be noticed upon
increasing the blending ratio. On the other hand, nitrogen oxide (NO and NO2) and CO2
emissions increase with increasing biodiesel ratio. As shown in Figure 8, the reduction
percentages of CO with B10, B30, B50, and B100 at different torque values are 9.7 ± 1,
29.6 ±1, 49 ± 2, and 90.6 ± 1, respectively. The chemical and physical properties of the fuel
are crucial in CO emission, where the lack of oxygen is the main reason for increasing CO
emission because it leads to partial combustion. Thus, increasing the biodiesel blending
ratio resulted in a reduction in CO emissions due to the high oxygen content of biodiesel [34].
Similarly, the HC reductions that resulted from using B10, B30, B50, and B100 at various
torque values are 10.6 ± 0.6, 26.0 ± 4, 48.0 ± 3, and 88.0 ± 3, respectively.



Designs 2024, 8, 38 9 of 14

Designs 2024, 8, x FOR PEER REVIEW 9 of 14 
 

 

combustion of the fuel resulting in CO emission. The third reason could be the increase in 
complete combustion, which resulted in increased CO2 as well as NO emissions [33]. Thus, 
a reduction in emission upon increasing the applied load is only observed with CO due 
to the increasing temperature, which promotes full combustion, resulting in CO2 for-
mation and limiting the partial combustion that forms CO. 

 
Figure 7. The impact of increasing the biodiesel ratio on the engine exhaust gas at different torque 
values and a constant engine speed (2000 rpm). 

From Figure 7, a remarkable reduction in CO, HC, and PM can be noticed upon in-
creasing the blending ratio. On the other hand, nitrogen oxide (NO and NO2) and CO2 
emissions increase with increasing biodiesel ratio. As shown in Figure 8, the reduction 
percentages of CO with B10, B30, B50, and B100 at different torque values are 9.7 ± 1, 29.6 
±1, 49 ± 2, and 90.6 ± 1, respectively. The chemical and physical properties of the fuel are 
crucial in CO emission, where the lack of oxygen is the main reason for increasing CO 
emission because it leads to partial combustion. Thus, increasing the biodiesel blending 
ratio resulted in a reduction in CO emissions due to the high oxygen content of biodiesel 
[34]. Similarly, the HC reductions that resulted from using B10, B30, B50, and B100 at var-
ious torque values are 10.6 ± 0.6, 26.0 ± 4, 48.0 ± 3, and 88.0 ± 3, respectively. 

The incomplete combustion of fuel results in the emission of CO, which is an inter-
mediate species with a slow rate of oxidation compared to other hydrocarbons [35]. For 
this reason, CO can be formed even with enough oxygen. Hydroxyl (OH) radicals play an 
essential role in the oxidation of CO, which is a highly exothermic reaction [36]. OH radi-
cals are produced from the chain-branching reactions involved in the oxidation reaction. 
CO emission results from either the under-mixing or over-mixing of air with fuel [37]. 
Under-mixing results from a low combustion temperature, which limits the oxidation of 
CO even in the presence of enough oxygen molecules. Over-mixing results from lean com-
bustion associated with the ignition delay period. Using a numerical method, a two-step 
mechanism was suggested for the oxidation of different hydrocarbon fuels. The first step 
shows the oxidation of fuel, which results in the formation of CO (Eq. 6), while the second 
step is CO oxidation (Equation (7)) [38]. 

CnHm + (n/2 + m/4) O2                       nCO +m/2 H2O (6)

Figure 7. The impact of increasing the biodiesel ratio on the engine exhaust gas at different torque
values and a constant engine speed (2000 rpm).

Designs 2024, 8, x FOR PEER REVIEW 10 of 14 
 

 

CO + 1/2 O2                     CO2  (7)

HC emission occurs due to the poor involvement of fuel in combustion and evapora-
tion [39]. Thus, a high reduction in HC emissions occurs due to better combustion of fuel 
resulting from the higher oxygen content of biodiesel [40], which is also the reason behind 
the reduction in PM emissions. In addition, HC consists of unburned fuels, which result 
from insufficient temperature at the cylinder wall. At the wall, the combustion tempera-
ture is notably lower than that at the center of the cylinder. HC results from different spe-
cies, including aromatics, alkenes, and alkanes [41–43]. 

The PM reductions that resulted from using B10, B30, B50, and B100 at various torque 
values are 13.6 ± 3, 31.0 ± 3, 48.0 ± 3, and 90.3 ± 0.3, respectively. Due to the higher availa-
bility of oxygen in biodiesel compared to diesel fuel, the oxygen content of PM resulting 
from biofuel combustion would be higher and it would have a higher oxidation rate [44]. 
The other factor responsible for the higher oxidation state of biodiesel is the higher tem-
perature. A. S. (Ed) Cheng et al. found, from their numerical modeling of oxygenation in 
diesel and biodiesel, some evidence about the importance of the nature of the reaction 
products in PM formation [45]. Specifically, the variation in the pyrolysis of the fuel com-
ponents, such as n-heptane, oxygenated DMM, and ethanol, leads to the next steps, which 
are the formation of an aromatic ring, the growth of PAH, and the inception of PM parti-
cles. The significant impact of providing more oxygen by adding biodiesel increases the 
radical concentrations, such as O, OH, and HCO, which have an important impact on the 
generation of PM. Specifically, increasing the O, HCO, and OH radical concentrations em-
phasizes the oxidation reaction of carbons to CO and CO2 and minimizes the formation of 
PM precursors due to the limitation in the available amount of carbon [45–47]. 

 

Figure 8. The change % of the engine exhaust gases at different torque values and biodiesel ratios 
and a constant engine speed (2000 rpm). 

On the other hand, the reduction in CO, HC, and PM emissions with an increasing 
biodiesel ratio is probably correlated to the obvious rise in CO2 emission. The higher oxy-
gen content of biodiesel helps to enhance the complete combustion of fuel and minimize 
the partial oxidation of fuel, as well as the formation of PM and HC. Increasing CO2 

Figure 8. The change % of the engine exhaust gases at different torque values and biodiesel ratios
and a constant engine speed (2000 rpm).

The incomplete combustion of fuel results in the emission of CO, which is an in-
termediate species with a slow rate of oxidation compared to other hydrocarbons [35].
For this reason, CO can be formed even with enough oxygen. Hydroxyl (OH) radicals
play an essential role in the oxidation of CO, which is a highly exothermic reaction [36].
OH radicals are produced from the chain-branching reactions involved in the oxidation
reaction. CO emission results from either the under-mixing or over-mixing of air with
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fuel [37]. Under-mixing results from a low combustion temperature, which limits the
oxidation of CO even in the presence of enough oxygen molecules. Over-mixing results
from lean combustion associated with the ignition delay period. Using a numerical method,
a two-step mechanism was suggested for the oxidation of different hydrocarbon fuels. The
first step shows the oxidation of fuel, which results in the formation of CO (Equation (6)),
while the second step is CO oxidation (Equation (7)) [38].

CnHm + (n/2 + m/4) O2 → nCO +m/2 H2O (6)

CO + 1/2 O2 → CO2 (7)

HC emission occurs due to the poor involvement of fuel in combustion and evapora-
tion [39]. Thus, a high reduction in HC emissions occurs due to better combustion of fuel
resulting from the higher oxygen content of biodiesel [40], which is also the reason behind
the reduction in PM emissions. In addition, HC consists of unburned fuels, which result
from insufficient temperature at the cylinder wall. At the wall, the combustion temperature
is notably lower than that at the center of the cylinder. HC results from different species,
including aromatics, alkenes, and alkanes [41–43].

The PM reductions that resulted from using B10, B30, B50, and B100 at various torque
values are 13.6 ± 3, 31.0 ± 3, 48.0 ± 3, and 90.3 ± 0.3, respectively. Due to the higher
availability of oxygen in biodiesel compared to diesel fuel, the oxygen content of PM
resulting from biofuel combustion would be higher and it would have a higher oxidation
rate [44]. The other factor responsible for the higher oxidation state of biodiesel is the
higher temperature. A. S. (Ed) Cheng et al. found, from their numerical modeling of
oxygenation in diesel and biodiesel, some evidence about the importance of the nature of
the reaction products in PM formation [45]. Specifically, the variation in the pyrolysis of the
fuel components, such as n-heptane, oxygenated DMM, and ethanol, leads to the next steps,
which are the formation of an aromatic ring, the growth of PAH, and the inception of PM
particles. The significant impact of providing more oxygen by adding biodiesel increases
the radical concentrations, such as O, OH, and HCO, which have an important impact on
the generation of PM. Specifically, increasing the O, HCO, and OH radical concentrations
emphasizes the oxidation reaction of carbons to CO and CO2 and minimizes the formation
of PM precursors due to the limitation in the available amount of carbon [45–47].

On the other hand, the reduction in CO, HC, and PM emissions with an increasing
biodiesel ratio is probably correlated to the obvious rise in CO2 emission. The higher oxygen
content of biodiesel helps to enhance the complete combustion of fuel and minimize the
partial oxidation of fuel, as well as the formation of PM and HC. Increasing CO2 emissions
with the reduction in CO, HC, and PM emissions is evidence of the better and complete
combustion of fuel. However, the higher oxygen content might not be the only reason
for these emission changes. Higher temperatures, especially with high engine loads, can
have a similar impact. There is obvious evidence that increasing combustion temperature
increases NO emission [48], which results from the reaction of fuel oxygen with nitrogen
from the air. This reaction is promoted by increasing both the combustion temperature and
the available oxygen. In addition, the use of biodiesel increases the consumed fuel, which
results in the increased emission of CO2 due to the consumption of more fuel [49]. However,
this increase in the emission rate is limited to CO2 only due to the better combustion quality
achieved by biodiesel. At the lowest load, CO2 increases rapidly with increasing biodiesel
percentage. However, the percentage increase at higher load values is lower, especially
with B50 and B100. This indicates that the available oxygen content in biodiesel up to B50 is
enough to promote full combustion of the fuel, which results in CO2 formation. A similar
trend was observed with NO emission, which indicates that other parameters impact the
generation of the emitted gases, such as the combustion temperature and time. In addition,
the impact of engine design and geometry on the variation in emissions should not be
ignored [50]. In conclusion, this work suggests the utilization of waste sunflower oil as
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biodiesel to be blended with petroleum diesel by up to 30% to reduce the pollutants emitted
from diesel engines.

4. Conclusions

A comprehensive investigation of the effect of blending diesel fuel with biodiesel
manufactured from waste sunflower oil on the engine performance and emissions of a
four-stroke engine was performed under various load values. Based on the experimental
results, it can be concluded that diesel fuel can be blended with up to 30% biodiesel with
acceptable performance and a remarkable reduction in CO, HC, and PM emissions. This
conclusion is based on evaluating BSFC, BSEC, NE, and BTE values, and the other general
points and conclusion are as follows.

• Increasing the blending ratio increases the consumption of fuel and BSEC due to the
lower heating value of biodiesel compared to petroleum diesel.

• B10 shows higher Ne than diesel fuel, which is probably due to the higher oxygen
content of the biodiesel, while B30 shows a small reduction in Ne, due to the lower
calorific value and higher viscosity of biodiesel compared with that of petroleum
diesel fuel, and this lowers the fuel flow rate and combustion efficiency.

• B30 showed an acceptable reduction in BTE for the lowest load value. On the other
hand, using B30 at the other load values (4 and 6 N.m) showed better efficiencies
than that using B10. This variation in the BTE values indicates that there is more
than one parameter effect on break thermal efficiency. At lower loads, the impact of
increasing the fuel viscosity has more influence than other parameters resulting in an
inferior combustion process and reduced BTE. On the other hand, blended fuels have
lower heating values compared to diesel, which reduces the heat transfer losses, and
enhances the thermal efficiency at higher load values.

• Blending biodiesel with diesel resulted in a cooling impact on the cylinder charge due
to the lower heating value of biodiesel and its higher oxygen content. This resulted in
a reduction in the peak cylinder temperature, and this reduced machine knocking and
noising intensity.

• Increasing the biodiesel blending ratio resulted in a reduction in CO emissions due to
the high oxygen content of biodiesel. This high reduction in HC emission was due to
the better combustion of fuel resulting from the higher oxygen content of biodiesel. On
the other hand, the reduction in CO, HC, and PM emissions with increasing biodiesel
ratio was probably correlated with the obvious rise in CO2 emission.

• The increase in CO2 emission with an increasing biodiesel ratio was also due to
increasing fuel consumption.

• The increase in NOx emission with an increasing biodiesel ratio was due to increasing
fuel oxygen content and its reaction with N2 in the air at higher temperatures.
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Nomenclature

List of Abbreviation Symbols Definitions
B100 Pure biodiesel
B10 10% biodiesel and 90% petroleum diesel
BSEC Brake-specific energy consumption
BSFC Brake-specific fuel consumption
BTE Brake thermal efficiency
COx Carbon oxides (CO & CO2)
CV Calorific value
D Non-blending diesel
dB Decibels
FM Fuel mass flow rate
HC Hydrocarbons
LHV Lower heating value (MJ/kg)
mºf Fuel consumption rate (g/s)
N Speed (rpm)
Ne Engine effective power
NOx Nitrogen oxides (NO & NO2)
P.B Power produced (W)
PM Particulate matter
T Engine brake load (N.m)
ηbth Noise intensity

References
1. Shaker, F.N.; Obed, A.A.; Abid, A.J.; Saleh, A.L.; Hassoon, R.J. Energy Management Strategy for PV PSO MPPT/Fuel Cell/Battery

Hybrid System with Hydrogen Production and Storage. J. Tech. 2023, 5, 52–60. [CrossRef]
2. Mohammed, M.M.; Alalwan, H.A.; Alminshid, A.; Hussein, S.A.M.; Mohammed, M.F. Desulfurization of heavy naphtha by

oxidation-adsorption process using iron-promoted activated carbon and Cu+2-promoted zeolite 13X. Catal. Commun. 2022, 169,
106473. [CrossRef]

3. Mohammed, A.S.; Atnaw, S.M.; Ramaya, A.V.; Alemayehu, G. A comprehensive review on the effect of ethers, antioxidants, and
cetane improver additives on biodiesel-diesel blend in CI engine performance and emission characteristics. J. Energy Inst. 2023,
108, 101227. [CrossRef]
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