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Abstract: With the ever-increasing number of well-aged bridges carrying traffic loads beyond their
intended design capacity, there is an urgency to find reliable and efficient means of monitoring struc-
tural safety and integrity. Among different attempts, vibration-based indirect damage identification
systems have shown great promise in providing real-time information on the state of bridge damage.
The fundamental principle in an indirect vibration-based damage identification system is to extract
bridge damage signatures from on-board measurements, which also embody vibration signatures
from the vehicle and road/rail profile and can be contaminated due to varying environmental and
operational conditions. This study presents a numerical feasibility study of a novel data-driven
damage detection system using train-borne signals while passing over a bridge with the speed of
traffic. For this purpose, a deep Convolutional Neural Network is optimised, trained and tested to
detect damage using a simulated acceleration response on a nominal RC4 power car passing over
a 15 m simply supported reinforced concrete railway bridge. A 2D train–track interaction model
is used to simulate train-borne acceleration signals. Bayesian Optimisation is used to optimise the
architecture of the deep learning algorithm. The damage detection algorithm was tested on 18
damage scenarios (different severity levels and locations) and has shown great accuracy in detecting
damage under varying speeds, rail irregularities and noise, hence provides promise in transforming
the future of railway bridge damage identification systems.

Keywords: SHM; indirect monitoring; damage detection; railway bridge; data-driven

1. Introduction

The traditional bridge damage detection approach consists of routine annual visual
inspections and more intrusive examinations at six to twelve-year intervals. These inspec-
tions are often labour intensive and subjective, as they depend on inspectors’ competencies
and experience. This approach also results in the degradation of raw data, as there rarely
exists a consistent and systematic data collection system. With the growing number of
well-aged bridges exceeding their life expectancy and carrying loads beyond their original
intended design capacity, bridge owners and operators spend millions of pounds on visual
structural health monitoring (SHM) worldwide. To this end, recent years have seen a
significant increase in the number of efforts in developing smart SHM systems by directly
instrumenting bridges and assessing the structure’s condition using direct measurements,
such as studies conducted by [1–3].

While these direct SHM systems address some of the shortcomings of visual assess-
ment, their main disadvantages are reliance on prior knowledge of approximate damage
location, accessibility for instrumentation and the associated cost of instrumentation and
maintenance of the data acquisition system during the monitoring period. These challenges
collectively make the application of these systems, for the entire network, logistically dif-
ficult and expensive. The direct SHM systems also often require an accurate numerical
model of the real structure, which, given the complexity of aged structural behaviour, is a
time-consuming process to perfect. Given these limitations, the direct instrumentations are
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often bespoke systems, limiting the application of these systems to a specific bridge, which
explains the relatively small number of instrumented bridges worldwide.

Collectively, the challenges with visual inspections and direct instrumentations have
led to a new set of damage identification techniques entitled ‘drive-by’ or ‘indirect’ damage
identification systems. The drive-by concept refers to monitoring bridges using measure-
ments from an instrumented vehicle (drive-by vehicle) while passing over the bridge. In
other words, the drive-by vehicle acts as an actuator as well as a receiver. The fundamental
principle in this approach is that damage-induced physical changes in a structure can
manifest in vibration signals measured on a drive-by vehicle. These changes need to be
extracted using different signal processing methods and/or vehicle–bridge interaction
models to relate the data from the vehicle to the condition of the bridge.

The application of the drive-by concept in bridge damage detection is first introduced
by Yang et al. [4], extracting bridge frequencies using acceleration signals measured on
a passing vehicle at a speed of 15 kph. The study was then extended to an experimental
validation investigation using a one-axle cart, assessing the performance of the drive-
by concept as a function of vehicle speed [5]. Later, Yang and Chang [6] used empirical
mode decomposition to extract higher frequencies in addition to the fundamental frequency.
Oshima et al. [7] expanded this work to investigate the impact of vehicle weight in extracting
bridge frequencies.

Yang and Yang [8] and Malekjafarian et al. [9] presented a comprehensive review
of damage detection using measurements on a passing vehicle. The study conducted by
Malekjafarian et al. [9] notes that the optimal condition for extracting bridge frequencies
are low vehicle speed (less than 40 kph), multiple crossing and use of heavy vehicles as
actuators. Furthermore, irregularities in road and rail profiles can mask bridge frequencies,
as they can excite the vehicle to higher frequencies of the bridge. To remove the blurring
effect of the road profile, Yang et al. [10] proposed to use the response from two identical
connected vehicles.

As the bridge frequency is a sensitive parameter to operational conditions (varying
temperature and vehicle mass), there have been several attempts at utilising other modal
parameters for damage detection. For example, McGetrick et al. [11] developed a drive-by
damage detection system in which a change of 1% in damping is detectable in acceleration
measurement. Yang et al. [12] used Wavelet Transform and Hilbert transform to extract
characteristic damage features in the mode shapes. Wavelet Transform approaches have
proven to be quite useful in damage indicators. A study conducted by McGetrick and
Kim [13] used Continuous Wavelet Transform with Morlet Wavelet to derive a damage
indicator. In a similar attempt, Hester and González [14] used Mexican Hat Wavelet to
produce a damage detection threshold. In another study, Fitzgerald et al. [15] used Complex
Morlet Wavelet for a scour detection indicator by averaging wavelet coefficients between
healthy and damaged scenarios.

The majority of the research attempts in drive-by methods have been concentrated on
theoretical and experimental model-based damage detection systems under low operational
speed (less than 50 kph). The speed of the vehicle is a key parameter in model-based
investigations, as speed defines the length of the signal and hence the amount of information
stored in the signal. While model-based drive-by approaches have received considerable
attention, the application of model-free/data-driven methods has been quite limited. One of
the very few data-driven drive-by investigations is the study conducted by Locke et al. [16]
building and training a one-dimensional (1D) deep-learning algorithm to develop a damage
detection system using the frequency spectrum of simulated acceleration signals on a single-
axle quarter-vehicle model, with a maximum vehicle speed of 90 km/h.

Recent years have seen considerable attention towards data-driven damage identifica-
tion systems using powerful machine learning algorithms. Farrar and Worden et al. have
extensively demonstrated the application of data-driven approaches in building damage
detection systems for different structures and infrastructures [17–20]. Among different
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machine learning algorithms, deep learning approaches have attracted particular interest
given their high efficiency and accuracy in object detection and classification.

In general, a typical deep learning algorithm consists of two main components of
feature extraction and classification. In feature extraction, a range of signal processing tools
is used to extract damage signatures from raw signals. These features are most sensitive to
damage state (i.e., detection and classification into severity and location classes). Among
different signal processing techniques, Continuous and Discreet Wavelet Transform [21],
empirical mode decomposition [22–24], power spectrum and frequency spectrum [16,25]
have been widely used as damage-sensitive features. Furthermore, statistical analysis
and principal component analysis are often employed in order to reduce and optimise the
dimension of the extracted features [26,27].

The second component of a deep learning algorithm involves building and training
a classifier algorithm to map selected extracted damage-sensitive features against corre-
sponding damage classes. This task is conducted using a variety of methods, such as
multi-perceptron neural networks (MLP) [28–30] and fuzzy inference systems [31]. Since
the performance of the algorithm is defined by the efficiency of both these components,
it can be deduced that integrating these components in a unit learning body can improve
the efficiency of the learning algorithm. This notion has led to a powerful class of deep
learning algorithms entitled Convolutional Neural Networks (CNN).

CNN algorithms imitate the functionality of the visual cortex of the brain process
in object detection [32]. In this class of deep-learning algorithms, the learning is based
on gathering information from neighbouring inputs to form sub-features in the filters as
opposed to reshaping multidimensional image data into a 1D feature vector in traditional
shallow neural networks [33].

In CNN algorithms, both feature extraction and classification components are built
into the architecture of the learning algorithm, reducing the computational efforts in
communication between the feature extraction and classification components. In the
learning body of a CNN algorithm, the feature extraction component consists of several
layers of convolutional and pooling layer pairs. The convolutional layers convert input
data, often an image, using filters. In the pooling layers, the in-plane size of feature
maps is reduced by down-sampling pixels using a certain strategy to produce deeper
representations in successive layers and prevent overfitting [33].

Despite the power of the CNN algorithms, their application in structural damage de-
tection, in particular, in vibration-based approaches, has not been widely reported. For ex-
ample, the studies conducted by Cha et al. [34], Mohtasham Khani et al. [35], Tong et al. [36]
and Kim and Cho [37] used a vision-based technique for crack detection purposes, and
Nex et al. [38] reported on the application of vision-based CNN algorithms using remote
sensing images. The research studies on vibration-based algorithms have been predomi-
nantly focused on 1D CNN algorithms. For example, Sony et al. [39] developed a 1D CNN
for a damage localisation system using acceleration signals of the Z24 bridge. Among 2D
CNN damage identification systems studies, the 1D time-series responses have either been
transformed into two-dimensional (2D) images by resizing the raw data [40] or have used
data from multi-sensors to build 2D images [41].

In this study, a 2D deep CNN algorithm is built, trained and tested to detect damage
using simulated train-borne signals. A numerical train–track–bridge (TTB) interaction
model with an advanced half-car model is built to simulate train-borne accelerations for a
range of healthy and damaged scenarios. The simulated accelerations on the front train
bogies are then used as initial raw data. The TTB model in this study is used to simulate
acceleration time histories only, which can ideally be measured on an instrumented train in
practice. It is noteworthy that the TTB model provides no other input to the CNN algorithm.

In summary, the novelty of this study lies in three folds: 1. building a drive-by damage
detection system using a 2D CNN algorithm, 2. application of network-in-network CNN
architecture for damage detection purposes and 3. using raw real-valued continuous
wavelet coefficients as input for a damage detection system. The following sections first
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provide an overview of the numerical model used to simulate the train accelerations and
the architecture of the CNN algorithm. Then, a brief overview of the Bayesian Optimisation
process that was utilised to optimise the architecture of the algorithm is presented. Section 3
presents the application of the approach to several damage scenarios under varying vehicle
speeds and discusses the performance of the proposed system, followed by Section 4 with
the conclusions drawn.

2. Description of the Damage Detection System
2.1. TTB Numerical Model

A TTB interaction model couples the dynamic behaviour of three subsystems of train,
track and bridge. The number of parameters used in building a TTB model depends on the
complexity of the model. In this study, a 2D TTB model, which has been widely used in the
literature [4,15,42,43], is used to demonstrate the feasibility of the proposed methodology. A
summary of the model and corresponding parameters is presented here. Cantero et al. [44]
conducted a comprehensive review of the parameter of this model for all three subsystems.

Figure 1 shows a schematic demonstration of the TTB model and Table 1 summarises
the parameters used in this study. As can be seen from Figure 1, the train is represented by
half a train carriage (two bogies and a half-car body) simplified by a 10 degrees-of-freedom
(10-DOF) system with a combination of lumped masses, rigid bars, springs and dashpots.
For the purpose of this study, the parameters for the train model represent a typical RC4
power car.
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Figure 1. Schematic demonstration of the TTB model.

Figure 1 also shows the track and bridge interaction system in which a ballasted
railway track is represented by a system of rails, pads, sleepers, ballast and sub-ballast.
Similar to the bridge itself, the rail is modelled as discretised Euler–Bernoulli beams
resting on a continuously spaced-sprung mass system and the ballast and sleepers are
simplified as mass sitting on a system of spring and damping dashpot. In this study, a
15 m simply supported reinforced concrete railway bridge with a density per unit length of
15,000 kg/m3/m and a second moment of area of 0.99 m4 is used to represent the bridge.



Infrastructures 2022, 7, 84 5 of 18

To simulate the irregularities of the rail profile, random irregularities are generated
using the Federal Railroad Administration (FRA) Power Spectral Density (PSD) function,
expressed as Equation (1) [45,46]:

S(ω) =
Avω2

2
(
ω2 + ω2

1
)

ω4
(
ω2 + ω2

2
) (1)

where Av represents the scale factor for the track class. In this study, FRA’s class of 4 with
Av of 2.75× 10−8 m2/m−1 is used for the irregularities. As for the ω1 and ω2 constants,
values of 23.294× 10−3 m−1 and 13.123× 10−2 m−1 are used, respectively, which represent
wavelengths in the range of 1.5–305 m.

Table 1. Vehicle and track properties.

Vehicle Properties [47] Track Properties [48]

Parameter Symbol Value Parameter Symbol Value

Carriage body
mass (kg) mc 61,560

Rail Young’s
modulus
(N/m2)

Er 206 × 109

Carriage body
moment of
inertia (kg·m2)

Jc 9.11 × 106
Rail
cross-sectional
area (m2)

Ar 15.38

Bogie mass
(kg) mbr , mb f 5200

Rail second
moment of
area (m4)

Ir 6.43 × 10−5

Bogie moment
of inertia
(kg·m2)

Jbr , Jb f 5900
Rail mass per
unit length
(kg/m)

ρr 120

Wheelset mass
(kg) mwr , mw f 1510 Rail pad

stiffness (N/m) krp 80 × 106

Primary
suspension
stiffness (N/m)

kv
1r , kv

1 f 4.96 × 106
Rail pad
damping
(N.s/m)

crp 60 × 103

Secondary
suspension
stiffness (N/m)

kv
2r , kv

2 f 1.9 × 106 Mass of sleeper
(kg) ms 340

Primary
suspension
damping
(kN·s/m)

cv
1r , cv

1 f 108 Sleeper
spacing (m) Ls 0.57

Secondary
suspension
damping
(kN·s/m)

cv
2r , cv

2 f 152 Ballast stiffness
(N/m) kba 120 × 106

Distance
between axles
(m)

Lar , La f 2.7
Ballast
damping
(N·s/m)

cba 60 × 103

Horizontal
distance
between centre
of mass of
main body and
bogie (m)

Lcr , Lc f 3.81 Ballast mass mba 2718

Sub-ballast
stiffness (N/m) ksb 60 × 106

Sub-ballast
damping
(N/m)

csb 90 × 103

Assuming that the subscripts v, r and b represent the vehicle, rail and bridge, respec-
tively, and mass, damping and stiffness matrices for each system are denoted by M, C
and K, respectively, the coupled system response can be expressed using Equation (2).
In this equation, F is the external force vector that represents the contribution of gravity
and excitation induced by the rail irregularities. The details of deriving the mathematical
equations of the coupled system can be found elsewhere [49].
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Mvv 0 0
0 Mrr 0
0 0 Mbb




..
Yv..
Yr..
Yb

+

Cvv Cvr 0
Crv Crr Crb
0 Cbr Cbb




.
Yv.
Yr.
Yb

+

Kvv Kvr 0
Krv Krr Krb
0 Kbr Kbb


Yv
Yr
Yb

 =


Fv
Fr
Fb

 (2)

In this equation, while the bridge–track coupling terms are constant, the vehicle–track
system is time-dependent as it varies with train car position. In the latter system, the
DOFs of wheels are merged with the vertical DOFs of the rail; hence, the mass matrix of
the track needs to be updated to account for wheel mass at each time step. To solve the
coupled equation system, the Newmark-β method can be used, as it is shown to be an
unconditionally stable numerical approach [4,50]. By solving the coupled system, train-
borne acceleration time histories are generated. For this study, accelerations measured at
the front bogie are used as raw initial input values. The results are repeatable for the rear
bogie accelerations.

To simulate train-borne accelerations for a damaged condition as well as a healthy state,
train accelerations are simulated for a range of damage scenarios. In this study, a damage
is modelled as a reduction in flexural stiffness of the beam elements with the damage
intensity ranging from 5% to 55% at three different locations of quarter-span, mid-span and
three-quarter-span. The damage intensity represents the reduction in flexural stiffness of
beam elements with an assumed effective damage length of 0.55 m. To demonstrate the
intensity of the damage levels on modal properties of the selected beam, the change in the
fundamental natural frequency of the bridge is presented in Figure 2. As can be expected,
damage at mid-span with a similar level of intensity to the other two locations can result in
a much greater change in fundamental natural frequency.

Infrastructures 2022, 7, x FOR PEER REVIEW 7 of 19 
 

 

Figure 2. Change in fundamental frequency given different damage levels. 

To account for speed variability in practice, acceleration time histories were simu-

lated for 100 randomly generated speeds with a mean of 100 kph and covariance of 10%. 

This resulted in a total number of 21,000 simulated acceleration signals. Figure 3 shows a 

sample of simulated signals for both bogies under healthy state and different damage sce-

narios and the vehicle speed of 105 kph. The difference between healthy and damaged 

signals in the front bogie is 0.06 m/s2 at the maximum damage level of 55% and is 0.0097 

m/s2 at 5% damage. 

 

Figure 3. A sample of acceleration signals for front (1st) and rear (2nd) bogies for different damage 

levels at mid-span at the speed of 105 kph. 

To provide a stronger damage-sensitive feature with more discriminating power, 

Continuous Wavelet Transform (CWT) with Morse Wavelet was used. The Fourier trans-

form of the generalised Morse Wavelet can be represented by Equation (3) [51]: 

Ψ𝑃,𝛾(𝜔) = 𝑈(𝜔)𝑎𝑃,𝛾𝜔
𝑃2

𝛾 𝑒−𝜔𝛾 (3) 

8.30

8.40

8.50

8.60

8.70

8.80

8.90

9.00

0 10 20 30 40 50 60

Fu
n

d
am

en
ta

l F
re

q
u

en
cy

 (
H

z)

Reduction in Flexural Stiffness (%)

L/4

L/2

3L/4

Figure 2. Change in fundamental frequency given different damage levels.

To account for speed variability in practice, acceleration time histories were simulated
for 100 randomly generated speeds with a mean of 100 kph and covariance of 10%. This
resulted in a total number of 21,000 simulated acceleration signals. Figure 3 shows a sample
of simulated signals for both bogies under healthy state and different damage scenarios
and the vehicle speed of 105 kph. The difference between healthy and damaged signals in
the front bogie is 0.06 m/s2 at the maximum damage level of 55% and is 0.0097 m/s2 at
5% damage.
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Figure 3. A sample of acceleration signals for front (1st) and rear (2nd) bogies for different damage
levels at mid-span at the speed of 105 kph.

To provide a stronger damage-sensitive feature with more discriminating power, Con-
tinuous Wavelet Transform (CWT) with Morse Wavelet was used. The Fourier transform of
the generalised Morse Wavelet can be represented by Equation (3) [51]:

ΨP,γ(ω) = U(ω)aP,γω
P2
γ e−ωγ (3)

where U(ω) is the unit step, aP,γ is normalising constant, P2 is the time-bandwidth product
and γ is the symmetry of the Morse Wavelet. For this study, Morse Wavelet with symmetry
parameter of 3 and time-bandwidth product of 60 were used. The real-valued Morse
Wavelet (real part of the Complex Morse Wavelet) was then used as an input to the CNN
algorithm. Real wavelet coefficients are often used for SHM purposes [15,52]. Figure 4
demonstrates an example of real-valued CWT coefficients for a speed of 105 kph for
different levels of damage at mid-span and sampling frequency of 400. As can be seen from
Figure 4, the difference between healthy and damage state is not visually noticeable. To
better highlight the difference, Figure 5 shows the relative difference between real-valued
CWT coefficients of healthy and damage scenarios under the same speed for different
damage intensities. As can be seen from this figure, the difference between healthy and
damage scenarios are more pronounced in a frequency range of 5–10 Hz and more distinct
in damage levels of 35–55%. Although Figure 5 can represent a much stronger damage-
sensitive input, in practice the relative difference under the same operational condition (e.g.,
same speed) rarely exists; hence, for training the algorithm, the actual real-valued CWT
coefficients are used as input images (examples provided in Figure 4), which showcases the
power of the proposed algorithm in accentuating damage-sensitive features that are not
visually discernible.
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2.2. Deep Leaning Architecture

As mentioned in Section 1, a typical CNN architecture consists of layers of convolution,
pooling and activation filters followed by fully connected classification layers. Figure 6
shows a schematic demonstration of a typical CNN architecture with dropout layers. The
combination of the convolutional and pooling layer pairs forms the feature extraction
element of the network. The function of the convolution layer is similar to digital filters
by converting an image to a new image which is often referred to as feature maps. These
maps aim to accentuate the unique features of the input image. The convolution filters are
determined through the training process of the algorithm. On the other hand, the pooling
layer combines neighbouring pixels into a single pixel to reduce the dimension of the input
image and hence reduce the computational costs. The feature maps are then processed
through activation layers which are identical to that of an ordinary multi-perceptron
neural network.
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The classification component of CNN architecture is similar to the architecture of a typ-
ical multi-class classification neural network with hidden connected layers, activation layers
and often dropout layers. The latter prevents overfitting by randomly zeroing activations
or deactivating the nodes and weights during the forward pass in the training process.

In CNN networks, the depth of the structure often defines the performance of the
algorithm. Deeper architecture comes with a significant increase in computational costs,
which has led to numerous attempts to find a more balanced trade-off between accuracy and
computational costs. One of such attempts has led to the development of the GoogLeNet
model [53], the winner of the ImageNet Large-Scale Visual Recognition Challenge in 2014.
GoogLeNet is a 22-layer deep CNN that consists of 60 convolution layers. The predominant
feature of GoogLeNet architecture is its use of the network-in-network approach first
proposed by Lin et al. (2013). In this approach, additional 1 × 1 convolutional layers
are added to the network to increase the depth and the width of the network without a
significant drop in performance. In the network architecture of GoogLeNet, the convolution
layers are used as dimension reduction modules which aim to remove computational
bottlenecks [54]. This has been performed using the introduction of inception modules
in the architecture, which contains different sizes of convolutions and pooling filters that
provide means of extracting more information into a smaller layer by widening the layer
of the neuron network. The structure of an example of an inception module is shown in
Figure 7.



Infrastructures 2022, 7, 84 10 of 18

Infrastructures 2022, 7, x FOR PEER REVIEW 10 of 19 
 

The classification component of CNN architecture is similar to the architecture of a 

typical multi-class classification neural network with hidden connected layers, activation 

layers and often dropout layers. The latter prevents overfitting by randomly zeroing acti-

vations or deactivating the nodes and weights during the forward pass in the training 

process. 

In CNN networks, the depth of the structure often defines the performance of the 

algorithm. Deeper architecture comes with a significant increase in computational costs, 

which has led to numerous attempts to find a more balanced trade-off between accuracy 

and computational costs. One of such attempts has led to the development of the Goog-

LeNet model [53], the winner of the ImageNet Large-Scale Visual Recognition Challenge 

in 2014. GoogLeNet is a 22-layer deep CNN that consists of 60 convolution layers. The 

predominant feature of GoogLeNet architecture is its use of the network-in-network ap-

proach first proposed by Lin et al. (2013). In this approach, additional 1 × 1 convolutional 

layers are added to the network to increase the depth and the width of the network with-

out a significant drop in performance. In the network architecture of GoogLeNet, the con-

volution layers are used as dimension reduction modules which aim to remove computa-

tional bottlenecks [54]. This has been performed using the introduction of inception mod-

ules in the architecture, which contains different sizes of convolutions and pooling filters 

that provide means of extracting more information into a smaller layer by widening the 

layer of the neuron network. The structure of an example of an inception module is shown 

in Figure 7. 

 

Figure 7. Inception layer with dimensionality reduction (adapted from [54]). 

Another fundamental difference in GoogLeNet compared to other CNN architec-

tures is its use of sparsity as opposed to fully connected layers. This is based on the foun-

dation introduced by Arora et al. [55] that, “if the probability distribution of the dataset is 

representable by a large, very sparse deep neural network, then the optimal network to-

pology can be constructed layer after layer by analysing the correlations statistics of the 

predicting layer activation and clustering neurons with highly correlated outputs” [53]. 

In GoogLeNet architecture, sparsity is introduced to address the challenges with the com-

putational costs and overfitting associated with fully connected layers. 

In this study, GoogLeNet architecture is used as a basis of the 2D CNN algorithm 

used for the proposed damage detection system. For the purpose of this work, the main 

hyperparameters of the network are optimised using Bayesian Optimisation to adopt this 

network for drive-by damage detection purposes. Hyperparameters refer to parameters 

of the network that are not trainable and are set prior to the training process. 

  

Figure 7. Inception layer with dimensionality reduction (adapted from [54]).

Another fundamental difference in GoogLeNet compared to other CNN architectures
is its use of sparsity as opposed to fully connected layers. This is based on the foundation
introduced by Arora et al. [55] that, “if the probability distribution of the dataset is repre-
sentable by a large, very sparse deep neural network, then the optimal network topology
can be constructed layer after layer by analysing the correlations statistics of the predicting
layer activation and clustering neurons with highly correlated outputs” [53]. In GoogLeNet
architecture, sparsity is introduced to address the challenges with the computational costs
and overfitting associated with fully connected layers.

In this study, GoogLeNet architecture is used as a basis of the 2D CNN algorithm
used for the proposed damage detection system. For the purpose of this work, the main
hyperparameters of the network are optimised using Bayesian Optimisation to adopt this
network for drive-by damage detection purposes. Hyperparameters refer to parameters of
the network that are not trainable and are set prior to the training process.

2.3. Bayesian Optimisation

The aim of optimising the hyperparameters of the CNN algorithm is to fine-tune the
parameters that can return the best performance measured by testing the dataset. The
main challenge with hyperparameter optimisation is the high computational cost of the
objective function. In each interaction of the hyperparameter search, the CNN needs to be
trained and tested. For this type of highly nonlinear problem, a typical grid search and
random search can be inefficient and computationally expensive. An efficient alternative to
these search methods is the Bayesian approach, which learns from past evaluation results
and builds a probabilistic model for the objective function. This approach is able to find
global extrema with a considerably small number of objective functions. Given its high
performance in addressing optimisation of highly nonlinear nonconvex problems, the
method is used in this study to optimise hyperparameters of the model. The alternatives to
Bayesian Optimisation are considered to be genetic algorithms and simulated annealing,
which are predominantly designed for objectives that are relatively inexpensive to compute.

The Bayesian Optimisation postulates a GP prior, f (θ) over a latent function, using
the mean of zero and a (covariance) kernel matrix expressed as Equation (4):

C =

c(θ1, θ1) · · · c(θ1, θi)
...

. . .
...

c(θn, θ1) · · · c(θn, θn)

+ σ2
noiseI (4)

where c
(
θk, θj

)
represents the covariance function and σ2

noise standard deviation of Gaussian
noise. Assuming n observations of Dn = {(θi, yi)}n

i=1, where θi ∈ ϑ, yi = f (θi) + εi,
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Y = {yi}n
i=1, Θ = {θi}n

i=1, θ = {θ1, . . . , θd}, d is dimension of the hyperparameter vector
and εi ∼ N

(
0, σ2

noise
)
, the posterior process of f (θn+1)|Dn is a Gaussian Process with a

mean expressed as Equation (5):

ŷ(θn+1) = C̃C−1Y (5)

and covariance of s2(x), expressed as:

s2(θn+1) = c(θn+1, θn+1)− C̃
T

C−1C̃ (6)

where C̃ = C(θn+1, Θ). This implies that the predictive posterior distribution depends
heavily on the covariance function c

(
θk, θj

)
. For the purpose of this study, the automatic

relevance determination Matérn 5/2 kernel as defined by Snoeket al. [56] is used.
The key in Bayesian Optimisation is the acquisition function, which determines the

trade-off between exploration (high-uncertainty regions) and exploitation (low-value re-
gions) to define the next point of evaluation [57]. A common acquisition function is known
as expected improvement (EI), which can be expressed as Equation (7):

EI(θ) = E[I(θ)] = E[max( fmin − f (θ), 0)
∣∣{(θi, yi)}n

i=1] (7)

where fmin represents current optimal function value and I(θ) improvement at θ. In
Bayesian Optimisation, the optimal point is defined at EI maximum, hence:

θ̂ = argmax
θ∈ϑ

EI(θ) (8)

Further details on Gaussian Optimisation can be found elsewhere [58].
Since the basis of the CNN algorithm used in this study is inherited from the pre-

trained GoogLeNet network, the number of hyperparameters is considerably less than
a network built anew. In this study, the hyperparameters considered include dropout
probability, initial learning rate and the maximum number of epochs. Dropout probability
represents the probability of dropping out nodes and corresponding weights in the classifi-
cation layers. Learning rate determines the change in weight per time, and the maximum
number of epochs defines the number of training cycles for each training dataset. For each
hyperparameter, a search range is defined to describe the Bayesian Optimisation search
domain. In this study, the dropout probability search boundaries are 50–95%, the initial
learning rate boundaries are defined from 1 × 10−4 to 1 and the epochs can vary from 30
to 80.

Figure 8 shows the optimisation search within the defined domain for all three consid-
ered hyperparameters and defined damage scenarios. Each point in this figure represents
one search and the intensity of colour for each point shows the value of the objective func-
tion, varying from black for zero (0% error in prediction) to white for 1, representing 100%
error in prediction. As can be seen from this figure, the combination of an initial learning
rate of 5 × 10−4, epochs of 31 and dropout probability of 55% result in the maximum
number of the optimum objective function values.

Using optimised hyperparameter values, the network was trained and tested. Table 2
summarises the structure of the CNN structure used in this study.

In this study, the mini-batch method is used for training purposes which is, in essence,
a combination of stochastic Gradient Descent (updating and adjusting weights immediately
after each training round) and batch method (updating weights once the error is calculated
for the entire training data). Training time for the selected optimal architecture on a
machine with an i9-7940x processor, CPU @3.10 GHz and memory of 32 GB is 24–30 min
per 100 scenarios. The following section presents the result of the training process and
predictions using the testing dataset.
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Table 2. Adapted GoogLeNet architecture.

Type

convolution layer 7 × 7 and stride [2,2]

max pool layer 3 × 3 and stride [2,2]

convolution layer 3 × 3 and stride [1,1]

max pool layer 3 × 3 and stride [2,2]

inception (3a)

inception (2b)

max pool layer 3 × 3 and stride [2,2]

inception (4a)

inception (4b)

inception (4c)

inception (4d)

inception (4e)

max pool layer 3 × 3 and stride [2,2]

inception (5a)

inception (5b)

average pool layer 7 × 7 and stride [1,1]

dropout layer with probability of 55%

fully connected layer

softmax

3. Results

The simulated acceleration and corresponding CWT real-valued coefficients were
divided into two sets of training and testing datasets. For this study, 70% of the simulated
database is used for training purposes and 30% is held out for testing. Once the algorithm
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is trained, the performance of the algorithm is tested using the set of data that has not been
seen by the algorithm during the training process. The output of the algorithm is presented
in binary classes of healthy and damaged states and the performance is measured based on
the accuracy of the predicted state of the bridge.

To better understand how the network decides on bridge healthy state, the gradient-
weighted class activation mapping technique (also referred as Grad-CAM localisation
mapping) introduced by Selvaraju et al. [59] is used here. In this method, the gradient of
classification score with respect to the convolutional features determined by the network is
used to highlight the most discriminating parts of input data for classification. The grad-
CAM localisation map, Lc

Grad−CAM, for any class of c can be expressed as Equation (9) [59]:

Lc
Grad−CAM = f

(
∑
k

αc
k Ak

)
(9)

where αc
k captures the importance of feature map k for a target class of c and is expressed as

Equation (10):

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(10)

in which ∂yc

∂Ak
ij

represents gradients of the score for class c, yc, with respect to feature maps

of a convolutional layer, Ak
ij. Further details of the approach are provided elsewhere [59].

Figure 9 shows an example of the application of this method to one of the input CWT
images for a speed of 105 kph. As shown in Figure 5, the most discriminative part of the
image is focused in the region of 5–10 Hz. Figure 9 confirms that the network is correctly
focusing on this region as highlighted.
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Figure 9. An example of discriminating cues from CWT images: (a) original image; (b) highlighted
sensitive features.

In a similar attempt to investigate the features that have been most useful in the
learning process, Figure 10b,c demonstrate normalised and scaled activation images cor-
responding to the maximum activating channel for the first pooling layer (i.e., max pool
layer 3 × 3) and last inception layer (i.e., inception (5b)), respectively. In Figure 10b,c, each
white pixel represents strong positive activation while each black pixel shows negative
activation. The first pooling layer is one of the early layers that focuses on low-level features
(e.g., edges and colours), while the deeper layers, such as the inception (5a), operate on
high-level features such as the difference between the damaged and healthy image.
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Figure 10. An example of discriminating cues from CWT images: (a) original image; (b) activating
features in max pool layer 3 × 3; (c) activating features in inception (5b).

To further demonstrate the power of activations in the trained CNN, the t-distributed
stochastic neighbour embedding method (t-SNE) [60] is used. This method is often em-
ployed to present high-dimensional data in a 2D/3D representation. In simple steps, the
t-SNE function generally calculates pairwise distances between high-dimensional points,
creates a standard deviation for each point, calculates a similarity matrix with the corre-
sponding joint probability distribution and then creates an initial set of low-dimensional
points. This process is iteratively repeated to update the low-dimensional points with the
objective of minimizing the Kullback–Leibler divergence between a Gaussian distribution
in high-dimensional space and a t-distribution in the low-dimensional space [60].

Figure 11 demonstrates the change in clustering power of the algorithm from the
first pooling layer to the final convolution layer and softmax layer using the t-SNE in 2D
space. In this representation, the nearby points in 2D space correspond to nearby points
in high-dimensional space. Figure 11 shows that while the early layers focus on shallow
features, deeper layers detect more complex features by combining features from earlier
layers, hence are stronger classifiers. As shown in Figure 4, low-level features in input data
do not have the power of clustering (i.e., healthy and damaged images are very similar),
which explains the poor performance of early layers.
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Figure 11. An example of network behaviour from first pooling activation layer to final softmax
activations.
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Figure 12 demonstrates the accuracy of the trained algorithm using the training dataset
for all six levels of damage and three damage locations. As it is expected, the accuracy of
the algorithm is a function of the severity of the damage (reduction in flexural stiffness), as
is shown by the overlaid change in fundamental frequencies for each case. It can be seen
that in comparison to damage in quarter-of-span and three-quarter-of-span, damage at mid-
span results in a greater change in frequency, which also explains the better performance in
the damage detection algorithm for damage scenarios at mid-span. The figure also shows
that the algorithm can successfully detect any damage scenario with an impact of more
than 2% in natural frequency using train-borne axle acceleration signals while travelling
with an average speed of 100 kph.
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Figure 12. Prediction accuracy of damage detection algorithm for different levels of damage and
different locations.

To demonstrate the impact of vehicle velocity on the performance of the trained
algorithm in detecting damage for simulated scenarios, Figure 13 shows correct (true-
positive and true-negative) and incorrect (false-positive and false-negative) predictions as
a function of speed. As can be expected, the number of incorrect predictions decreases
with the intensity of the damage. It can be seen that the performance of the algorithm is
more a function of the number of samples within a certain speed range rather than the
speed value. It can be seen that the majority of correct predictions are focused in a speed
range of 90–110, which contains 70% of training data, while speeds in the tail range show
more frequency of incorrect scenarios. This figure highlights the power of the algorithm
even under operational traffic speed, demonstrating the feasibility of the application of the
methodology under operational conditions.

Recommendations for Future Work

The success of the proposed approach in this study has been investigated under a
certain level of variability in operational speed, measurement noise and rail irregular-
ities. However, a detailed examination of the impact of the environmental conditions,
such as temperature and humidity, which can contaminate signals and mask the damage-
induced signature in the signals, is beyond the scope of this study. Therefore, the impact of
varying environmental conditions on the performance of the algorithm requires further
investigation.

The current structure of the input data uses raw real-valued CWT coefficients of the
first bogie with the assumption that additional supporting information such as vehicle
speed and rail irregularities does not exist, to demonstrate the feasibility of the approach
in the absence of such information. However, incorporating such information in the
architecture of the input structure may improve the accuracy of the algorithm.

The proposed approach demonstrates the feasibility of the algorithm in detecting
damage (first level of damage identification). The next step will be to expand the application
to higher levels of damage identification, i.e., severity and localisation.
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4. Conclusions

This study presents the application of a 2D CNN structure for drive-by/indirect dam-
age detection. CNN algorithms are well-known for their application in image/object recog-
nition purposes, and in recent years, their application has been extended to vision-based
structural health monitoring. This paper presents the first attempt at employing 2D CNN
algorithms for vibration-based damage detection using train-borne acceleration signals.

A numerical train–track–bridge interaction model was built and utilised to simulate
train accelerations for a range of damage/healthy scenarios under different train speeds
and track irregularities. The labelled simulated acceleration signals were then used as
raw input. In this study, the well-known pre-trained GoogLeNet architecture was utilised
as the basis of the CNN algorithm. The hyperparameters of the algorithm were then
fine-tuned for drive-by damage detection purposes using Bayesian Optimisation to ensure
model robustness. The performance of the trained algorithm was tested on six different
damage intensities at three different locations. The results of the study show that the
trained algorithm can successfully predict damage with the impact of more than 2% change
in the fundamental natural frequency for all three considered locations.

The power of the proposed approach is in its capacity to detect damage using train-
borne signals without the need for direct measurements from the bridge and/or bridge-
specific information. Furthermore, the study demonstrates the feasibility of drive-by
damage detection under operational speed, utilising shorter bursts of data.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data, models or code that support the findings of this study
are available from the corresponding author upon reasonable request.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hajializadeh, D.; OBrien, E.J.; O’Connor, A.J. Virtual Structural Health Monitoring and Remaining Life Prediction of Steel Bridges.

Can. J. Civ. Eng. 2017, 44, 264–273. [CrossRef]
2. HekmatiAthar, S.; Taheri, M.; Secrist, J.; Taheri, H. Neural Network for Structural Health Monitoring with Combined Direct and

Indirect Methods. J. Appl. Remote Sens. 2020, 14, 014511. [CrossRef]

http://doi.org/10.1139/cjce-2016-0286
http://doi.org/10.1117/1.JRS.14.014511


Infrastructures 2022, 7, 84 17 of 18

3. Ni, Y.Q.; Ye, X.W.; Ko, J.M. Monitoring-Based Fatigue Reliability Assessment of Steel Bridges: Analytical Model and Application.
J. Struct. Eng. 2010, 136, 1563–1573. [CrossRef]

4. Yang, Y.B.; Yau, J.D.; Yao, Z.; Wu, Y.S. Vehicle-Bridge Interaction Dynamics: With Applications to High-Speed Railways; World Scientific:
Singapore, 2004.

5. Lin, C.W.; Yang, Y.B. Use of a Passing Vehicle to Scan the Fundamental Bridge Frequencies: An Experimental Verification. Eng.
Struct. 2005, 27, 1865–1878. [CrossRef]

6. Yang, Y.B.; Chang, K.C. Extraction of Bridge Frequencies from the Dynamic Response of a Passing Vehicle Enhanced by the EMD
Technique. J. Sound Vib. 2009, 322, 718–739. [CrossRef]

7. Oshima, Y.; Yamaguchi, T.; Kobayashi, Y.; Sugiura, K. Eigenfrequency Estimation for Bridges Using the Response of a Passing
Vehicle with Excitation System. In Proceedings of the Fourth International Conference on Bridge Maintenance, Safety and
Management, Seoul, Korea, 13–17 July 2008; pp. 3030–3037.

8. Yang, Y.B.; Yang, J.P. State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles.
Int. J. Struct. Stab. Dyn. 2018, 18, 1850025. [CrossRef]

9. Malekjafarian, A.; McGetrick, P.J.; OBrien, E.J. A Review of Indirect Bridge Monitoring Using Passing Vehicles. Shock Vib. 2015,
2015, 286139. [CrossRef]

10. Yang, Y.B.; Li, Y.C.; Chang, K.C. Using Two Connected Vehicles to Measure the Frequencies of Bridges with Rough Surface: A
Theoretical Study. Acta Mech. 2012, 223, 1851–1861. [CrossRef]

11. McGetrick, P.J.; Gonzlez, A.; OBrien, E.J. Theoretical Investigation of the Use of a Moving Vehicle to Identify Bridge Dynamic
Parameters. Insight-Non-Destr. Test. Cond. Monit. 2009, 51, 433–438. [CrossRef]

12. Yang, J.; Lam, H.F.; Hu, J. Ambient Vibration Test, Modal Identification and Structural Model Updating Following Bayesian
Framework. Int. J. Struct. Stab. Dyn. 2015, 15, 1540024. [CrossRef]

13. McGetrick, P.J.; Kim, C.W. An Indirect Bridge Inspection Method Incorporating a Wavelet-Based Damage Indicator and Pat-
tern Recognition. In Proceedings of the International Conference on Structural Dynamics EURODYN 2014, Porto, Portugal,
30 June 2014.

14. Hester, D.; González, A. A Bridge-Monitoring Tool Based on Bridge and Vehicle Accelerations. Struct. Infrastruct. Eng. 2015,
11, 619–637. [CrossRef]

15. Fitzgerald, P.C.; Malekjafarian, A.; Cantero, D.; OBrien, E.J.; Prendergast, L.J. Drive-by Scour Monitoring of Railway Bridges
Using a Wavelet-Based Approach. Eng. Struct. 2019, 191, 1–11. [CrossRef]

16. Locke, W.; Sybrandt, J.; Redmond, L.; Safro, I.; Atamturktur, S. Using Drive-by Health Monitoring to Detect Bridge Damage
Considering Environmental and Operational Effects. J. Sound Vib. 2020, 468, 115088. [CrossRef]

17. Worden, K.; Manson, G.; Allman, D. Experimental Validation of a Structural Health Monitoring Methodology: Part I. Novelty
Detection on a Laboratory Structure. J. Sound Vib. 2003, 259, 323–343. [CrossRef]

18. Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective, 1st ed.; John Wiley & Sons: Chichester, UK,
2013; ISBN 9781119994336.

19. Bull, L.; Worden, K.; Manson, G.; Dervilis, N. Active Learning for Semi-Supervised Structural Health Monitoring. J. Sound Vib.
2018, 437, 373–388. [CrossRef]

20. Deraemaeker, A.; Worden, K. A Comparison of Linear Approaches to Filter out Environmental Effects in Structural Health
Monitoring. Mech. Syst. Signal Process. 2018, 105, 1–15. [CrossRef]

21. Liu, Y.Y.; Ju, Y.F.; Duan, C.D.; Zhao, X.F. Structure Damage Diagnosis Using Neural Network and Feature Fusion. Eng. Appl. Artif.
Intell. 2011, 24, 87–92. [CrossRef]

22. Zhu, L.; Malekjafarian, A. On the Use of Ensemble Empirical Mode Decomposition for the Identification of Bridge Frequency
from the Responses Measured in a Passing Vehicle. Infrastructures 2019, 4, 32. [CrossRef]

23. Antoniadou, I.; Cross, E.J.; Worden, K. Cointegration and the Empirical Mode Decomposition for the Analysis of Diagnostic Data.
Key Eng. Mater. 2013, 569–570, 884–891. [CrossRef]

24. OBrien, E.J.; Malekjafarian, A.; González, A. Application of Empirical Mode Decomposition to Drive-by Bridge Damage Detection.
Eur. J. Mech. A/Solids 2017, 61, 151–163. [CrossRef]

25. Zhang, T.; Biswal, S.; Wang, Y. SHMnet: Condition Assessment of Bolted Connection with beyond Human-Level Performance.
Struct. Health Monit. 2019, 19, 1188–1201. [CrossRef]

26. Chun, P.J.; Yamashita, H.; Furukawa, S. Bridge Damage Severity Quantification Using Multipoint Acceleration Measurement and
Artificial Neural Networks. Shock Vib. 2015, 789384. [CrossRef]

27. Dackermann, U.; Li, J.; Samali, B. Dynamic-Based Damage Identification Using Neural Network Ensembles and Damage Index
Method. Adv. Struct. Eng. 2010, 13, 1001–1016. [CrossRef]

28. Neves, A.C.; González, I.; Leander, J.; Karoumi, R. Structural Health Monitoring of Bridges: A Model-Free ANN-Based Approach
to Damage Detection. J. Civ. Struct. Health Monit. 2017, 7, 689–702. [CrossRef]

29. Hakim, S.J.S.; Abdul Razak, H. Modal Parameters Based Structural Damage Detection Using Artificial Neural Networks—A
Review. Smart Struct. Syst. 2014, 14, 159–189. [CrossRef]

30. Mrugalska, B. Towards Enhanced Performance of Neural-Network-Based Fault Detection Using an Sequential D-Optimum
Experimental Design. Appl. Sci. 2018, 8, 1290. [CrossRef]

http://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
http://doi.org/10.1016/j.engstruct.2005.06.016
http://doi.org/10.1016/j.jsv.2008.11.028
http://doi.org/10.1142/S0219455418500256
http://doi.org/10.1155/2015/286139
http://doi.org/10.1007/s00707-012-0671-7
http://doi.org/10.1784/insi.2009.51.8.433
http://doi.org/10.1142/S0219455415400246
http://doi.org/10.1080/15732479.2014.890631
http://doi.org/10.1016/j.engstruct.2019.04.046
http://doi.org/10.1016/j.jsv.2019.115088
http://doi.org/10.1006/jsvi.2002.5168
http://doi.org/10.1016/j.jsv.2018.08.040
http://doi.org/10.1016/j.ymssp.2017.11.045
http://doi.org/10.1016/j.engappai.2010.08.011
http://doi.org/10.3390/infrastructures4020032
http://doi.org/10.4028/www.scientific.net/KEM.569-570.884
http://doi.org/10.1016/j.euromechsol.2016.09.009
http://doi.org/10.1177/1475921719881237
http://doi.org/10.1155/2015/789384
http://doi.org/10.1260/1369-4332.13.6.1001
http://doi.org/10.1007/s13349-017-0252-5
http://doi.org/10.12989/sss.2014.14.2.159
http://doi.org/10.3390/app8081290


Infrastructures 2022, 7, 84 18 of 18

31. Hakim, S.J.S.; Abdul Razak, H. Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for
Structural Damage Identification. Struct. Eng. Mech. 2013, 45, 779–802. [CrossRef]

32. Kim, P. MATLAB Deep Learning; Apress: Seoul, Korea, 2017; ISBN 9781484228449.
33. Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional Neural Network-Based Data Anomaly Detection Method Using Multiple

Information for Structural Health Monitoring. Struct. Control Health Monit. 2019, 26, 1–22. [CrossRef]
34. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
35. Mohtasham Khani, M.; Vahidnia, S.; Ghasemzadeh, L.; Ozturk, Y.E.; Yuvalaklioglu, M.; Akin, S.; Ure, N.K. Deep-Learning-Based

Crack Detection with Applications for the Structural Health Monitoring of Gas Turbines. Struct. Health Monit. 2020, 19, 1440–1452.
[CrossRef]

36. Tong, Z.; Gao, J.; Zhang, H. Recognition, Location, Measurement, and 3D Reconstruction of Concealed Cracks Using Convolutional
Neural Networks. Constr. Build. Mater. 2017, 146, 775–787. [CrossRef]

37. Kim, B.; Cho, S. Image-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural Network. Struct.
Control Health Monit. 2019, 26, e2381. [CrossRef]

38. Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural Building Damage Detection with Deep Learning: Assessment of a
State-of-the-Art CNN in Operational Conditions. Remote Sens. 2019, 11, 2765. [CrossRef]

39. Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Multiclass Damage Identification in a Full-Scale Bridge Using Optimally Tuned
One-Dimensional Convolutional Neural Network. J. Comput. Civ. Eng. 2022, 36, 4021035. [CrossRef]

40. Khodabandehlou, H.; Pekcan, G.; Fadali, M.S. Vibration-Based Structural Condition Assessment Using Convolution Neural
Networks. Struct. Control Health Monit. 2019, 26, e2308. [CrossRef]

41. Yu, Y.; Wang, C.; Gu, X.; Li, J. A Novel Deep Learning-Based Method for Damage Identification of Smart Building Structures.
Struct. Health Monit. 2019, 18, 143–163. [CrossRef]

42. Ferrara, R. A Numerical Model to Predict Train Induced Vibrations and Dynamic Overloads. Ph.D. Thesis, University of Reggio
Calabria, Reggio Calabria, Italy, University Montpellier 2, Montpellier, France, 2014.

43. Zhang, B.; Qian, Y.; Wu, Y.; Yang, Y.B. An Effective Means for Damage Detection of Bridges Using the Contact-Point Response of
a Moving Test Vehicle. J. Sound Vib. 2018, 419, 158–172. [CrossRef]

44. Cantero, D.; Arvidsson, T.; OBrien, E.; Karoumi, R. Train–Track–Bridge Modelling and Review of Parameters. Struct. Infrastruct.
Eng. 2016, 12, 1051–1064. [CrossRef]

45. Fryba, L. Dynamics of Railway Bridges; Thomas Telford: London, UK, 1996.
46. Hamid, A.; Rasmussen, K.; Baluja, M.; Yang, T.L. Analytical Descriptions of Track Geometry Variations; Federal Railroad Adminitra-

tion: Washington, DC, USA, 1983.
47. Martino, D. Train-Bridge Interaction on Freight Railway Lines. MSc Thesis; KTH Royal Institute of Technology: Stockholm,

Sweden, 2011.
48. Lei, X.; Zhang, B. Influence of Track Stiffness Distribution on Vehicle and Track Interactions in Track Transition. Proc. Inst. Mech.

Eng. 2010, 224, 592–604. [CrossRef]
49. Lou, P. Finite Element Analysis for Train-Track-Bridge Interaction System. Arch. Appl. Mech. 2007, 77, 707–728. [CrossRef]
50. Dinh, V.N.; Du Kim, K.; Warnitchai, P. Dynamic Analysis of Three-Dimensional Bridge-High-Speed Train Interactions Using a

Wheel-Rail Contact Model. Eng. Struct. 2009, 31, 3090–3106. [CrossRef]
51. Lilly, J.M.; Olhede, S.C. Higher-Order Properties of Analytic Wavelets. IEEE Trans. Signal Process. 2009, 57, 146–160. [CrossRef]
52. Medhi, M.; Dandautiya, A.; Raheja, J.L. Real-Time Video Surveillance Based Structural Health Monitoring of Civil Structures

Using Artificial Neural Network. J. Nondestruct. Eval. 2019, 38, 1–16. [CrossRef]
53. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA, USA, 7 June 2015; pp. 1–9.
54. Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400.
55. Arora, S.; Bhaskara, A.; Ge, R.; Ma, T. Provable Bounds for Learning Some Deep Representations. In Proceedings of the 31st

International Conference on Machine Learning (ICML 2014), Beijing, China, 21 June 2014; Volume 1, pp. 883–891.
56. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process.

Syst. 2012, 25, 2951–2959. [CrossRef]
57. Wan, H.-P.; Ni, Y.-Q. A New Approach for Interval Dynamic Analysis of Train-Bridge System Based on Bayesian Optimization. J.

Eng. Mech. 2020, 146, 04020029. [CrossRef]
58. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
59. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks

via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy,
22–29 October 2017; Volume 17, pp. 618–626.

60. Maaten, L.V.D.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [CrossRef]

http://doi.org/10.12989/sem.2013.45.6.779
http://doi.org/10.1002/stc.2296
http://doi.org/10.1111/mice.12263
http://doi.org/10.1177/1475921719883202
http://doi.org/10.1016/j.conbuildmat.2017.04.097
http://doi.org/10.1002/stc.2381
http://doi.org/10.3390/rs11232765
http://doi.org/10.1061/(ASCE)CP.1943-5487.0001003
http://doi.org/10.1002/stc.2308
http://doi.org/10.1177/1475921718804132
http://doi.org/10.1016/j.jsv.2018.01.015
http://doi.org/10.1080/15732479.2015.1076854
http://doi.org/10.1243/09544097JRRT318
http://doi.org/10.1007/s00419-007-0122-4
http://doi.org/10.1016/j.engstruct.2009.08.015
http://doi.org/10.1109/TSP.2008.2007607
http://doi.org/10.1007/s10921-019-0601-x
http://doi.org/10.1163/15685292-12341254
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001735
http://doi.org/10.1007/s10479-011-0841-3

	Introduction 
	Description of the Damage Detection System 
	TTB Numerical Model 
	Deep Leaning Architecture 
	Bayesian Optimisation 

	Results 
	Conclusions 
	References

