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Abstract: Railway scene understanding is crucial for various applications, including autonomous
trains, digital twining, and infrastructure change monitoring. However, the development of the latter
is constrained by the lack of annotated datasets and limitations of existing algorithms. To address this
challenge, we present Rail3D, the first comprehensive dataset for semantic segmentation in railway
environments with a comparative analysis. Rail3D encompasses three distinct railway contexts from
Hungary, France, and Belgium, capturing a wide range of railway assets and conditions. With over
288 million annotated points, Rail3D surpasses existing datasets in size and diversity, enabling the
training of generalizable machine learning models. We conducted a generic classification with nine
universal classes (Ground, Vegetation, Rail, Poles, Wires, Signals, Fence, Installation, and Building)
and evaluated the performance of three state-of-the-art models: KPConv (Kernel Point Convolution),
LightGBM, and Random Forest. The best performing model, a fine-tuned KPConv, achieved a mean
Intersection over Union (mIoU) of 86%. While the LightGBM-based method achieved a mIoU of 71%,
outperforming Random Forest. This study will benefit infrastructure experts and railway researchers
by providing a comprehensive dataset and benchmarks for 3D semantic segmentation. The data and
code are publicly available for France and Hungary, with continuous updates based on user feedback.

Keywords: railways; LiDAR; dataset; semantic segmentation; machine learning

1. Introduction

Railway infrastructure plays a pivotal role in modern transportation systems, ne-
cessitating continuous innovation and precise management and maintenance [1]. The
integration of advanced technologies, such as mobile LiDAR (Light Detection and Rang-
ing), into railway applications has introduced transformative capabilities to the industry.
To fully leverage these technologies, data processing methods, like semantic segmentation,
are essential for understanding the complex and dynamic railway environment. Semantic
segmentation, a fundamental component of computer vision, enables the categorization of
each pixel in an image or point in a point cloud into predefined classes, facilitating scene
understanding. In this context, machine learning has emerged as a promising approach.
Deep neural networks, known for their ability to extract intricate patterns and represen-
tations from extensive datasets, offer the potential to automate critical tasks within the
railway domain [2,3].

However, the effective application of machine learning in the railway environment
depends on a crucial factor: the availability of annotated data. Unlike urban contexts, where
several annotated datasets and benchmark are available [4–8], the railway environment
lacks comprehensive benchmarks and annotated datasets tailored specifically to railway
applications. The lack of annotated data presents a significant challenge for machine
learning models development and evaluation. To train and validate semantic segmentation
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models effectively, labelled data, representing the diverse range of objects and structures
found along railway tracks, including tracks, signals, poles, overhead wires, vegetation,
and more, are required [9,10].

Moreover, as railways turn to machine learning (ML), there is a rising need for models
that are accurate and easy to interpret. Using complex models, especially in safety-critical
areas like railways, raises concerns about interpretation. Traditional ML models are vital for
building trust, especially in tasks like semantic segmentation, in the railway environment.
Additionally, the challenge extends beyond data labelling; it also involves the establish-
ment of benchmarks that enable researchers and practitioners to objectively assess model
performance. Benchmarks serve as standardized metrics for the quantitative evaluation
and comparison of novel algorithms. In the absence of a railway-specific benchmark, the
assessment of model performance becomes subjective and ad hoc, hindering progress and
the adoption of machine learning solutions in railway applications.

In response to this challenge, we introduce the Rail3D dataset, which aims to address
the shortage of annotated data specifically tailored to railway applications. Rail3D com-
prises extensive point cloud data collected across diverse railway contexts in Hungary,
France, and Belgium, covering approximately 5.8 km. This dataset not only mitigates
the lack of annotated data but also serves as a foundational benchmark for semantic seg-
mentation. The public availability of Rail3D represents a significant step toward fostering
collaboration and innovation in the railway industry. We invite researchers, practitioners,
and enthusiasts to explore, enhance, and contribute to this dataset, advancing the develop-
ment of deep learning solutions that enhance the safety, efficiency, and sustainability of
railway infrastructure on a global scale.

In the railway sector, where decision-makers might not be machine learning experts,
the clarity and reliability of models are paramount [10]. Benchmarking LightGBM, Ran-
dom Forest, and the deep-learning-based KPConv allows us to assess the effectiveness
of both traditional machine learning and advanced deep learning techniques. This com-
parative analysis is vital for selecting a model that not only delivers high performance
but is also interpretable and aligns with safety-critical standards in railway applications.
Through this benchmarking process, we aim to identify a model that combines accuracy
and efficiency, ensuring it can be effectively used and trusted in the context of railway
infrastructure management.

The main objective of this paper is to develop a large scale and multi-context 3D point
cloud dataset for railway semantic segmentation tasks and assess models’ performance on
it. The contributions of our work are as follows:

• Present a multi-context railway point cloud dataset for semantic segmentation: We
introduce Rail3D, a unique dataset for railway environments. Its special because it
covers a wide range of railway scenes from three countries, helping to fill the gap in
available data for training machine learning models in this field.

• Evaluate three state-of-the-art semantic segmentation models: We compare three state-
of-the-art models for understanding railway scenes: KPConv, LightGBM, and Random
Forest. This helps find the best tool for the task, considering what is most important in
railways: accuracy and safety.

• Assess the generalization capabilities of the best performing model: We check how
well the best model works in different places. This is important to make sure the
model is reliable and can be used in other real-world railway settings.

The rest of the paper is organized as follows: Section 2 presents current semantic seg-
mentation techniques, with a special focus on railway applications and available datasets.
Section 3 outlines the specifics of the subset we curated to develop Rail3D, explains how
we annotated the data, and introduces the three baseline methods selected for our analysis.
Section 4 details the experiments we conducted and their outcomes. Section 5 discusses
what we found and ideas for future research.
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2. Related Works

The availability of datasets for training has so far played a key role in the progress and
comparison of ML models. These allow scene understanding across several tasks, including
classification, semantic/instance/panoptic segmentation, and object detection, etc. In the
following subsections, we summarize the state of the art of semantic segmentation, we
investigate the existing application in railway contexts, and present the available datasets.

2.1. Semantic Segmentation

In the dynamic field of 3D point cloud semantic segmentation, significant advance-
ments have been made through various approaches [11]. Model-driven methods, including
RANSAC [12], Hough Transform, and region growing, continue to provide a solid foun-
dation for segmenting point clouds, offering robustness in fitting geometric shapes and
handling locally homogeneous properties. Meanwhile, knowledge-driven methods [13,14],
incorporating explicit rules and matching strategies, are often used to enhance segmen-
tation results in tandem with other approaches. Rule-based algorithms follow a set of
predefined rules to categorize points, offering simplicity and computational efficiency [15].
Matching-based methods, on the other hand, excel in accuracy and robustness by matching
the point cloud to a database of 3D models. These methods are particularly useful in scenar-
ios where precise object recognition is essential, but they can be computationally intensive
and require extensive model databases. Knowledge-driven methods often complement
data-driven and model-driven approaches by refining segmentation results, ensuring that
the identified objects align with domain-specific knowledge or predefined rules.

Finally, data-driven methods [11] have gained popularity, using machine and deep
learning techniques to extract features and classify points. These data-driven methods
span projection-based strategies, including multi-view [16–21], and spherical image ap-
proaches [22–25], as well as volumetric [26–29] and lattice-based representations [30–32],
with hybrid representations combining their strengths. Point-based methods have made
significant strides, introducing neural network architectures like PointNet and Point-
Net++ [33,34], point convolution networks [35,36], and Graph Neural Networks [37–40] to
capture complex relationships and dependencies within point clouds. Recently, transformer-
based methods [41–44] have emerged as state-of-the-art, using attention mechanisms to
model global dependencies in point clouds. Figure 1 summarize these semantic segmenta-
tion methods.

The most recent advances in 3D semantic segmentation include self-supervised learn-
ing, multi-task learning, transformer networks, foundation models, and 3D-LLMs. Self-
supervised learning methods can train models without the need for labelled data [45]. This
can be helpful for reducing the cost and effort of training 3D semantic segmentation models,
especially for large-scale applications. Multi-task learning methods train models to perform
multiple tasks simultaneously, such as object detection and scene understanding [46]. This
can help 3D semantic segmentation models to learn better representations of the data,
which can lead to improved performance on all the tasks. Transformer networks are a
type of neural network architecture that has been shown to be effective for 3D semantic
segmentation [41]. They can learn long-range dependencies in point clouds, which can be
helpful for better results. Foundation models, such as SAM [47], are Large Visual Models
(LVMs) that have been trained on a massive dataset of images and text. Foundation models
can be used to train 3D semantic segmentation models in a variety of ways, such as by
training a downstream model on top of the foundation model. Finally, the 3D-LLMs [48]
is a new type of large language model that is specifically designed to understand and
reason 3D data. 3D-LLMs can be used to perform a variety of 3D-related tasks, such as 3D
captioning, 3D questions answering, and 3D-assisted dialog.
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Figure 1. Summary of 3D semantic segmentation methods.

2.2. Semantic Segmentation for Railways

Even if semantic segmentation has gained progress, particularly in urban environment,
applications in the railway context remain limited. Arastounia [49] developed an automated
method to recognize key components of railroad infrastructure from 3D LiDAR data. The
used dataset covers a 550 m section of Austrian rural railroad and contains thirty-one
keys element with only XYZ coordinate information. The method segmented rail tracks,
contact cables, catenary cables, return current cables, masts, and cantilevers based on their
physical characteristics and spatial relationships. Recognition involved analyzing local
neighborhoods, objects shape, topological relationships, and employing algorithms like KD
tree’s structure [50] and FLANN’s nearest neighbor search [51] for computational efficiency.
The approach achieved 96.4% accuracy and an average of 97.1% precision at point level.
Despite the high metrics, this methodology cannot be generalized, the parameters need to
be adjusted, and it remains particularly sensitive to occlusion. Additionally, the used data
is not publicly available.

Heuristic methods have a long history, but learning-based approaches are becoming
more prevalent. The latter aim to lessen reliance on parameters and enhance generalization
capabilities. Chen et al. [52] proposed a method for automatically classifying railway
electrification assets using mobile laser scanning data. They used a multi-scale Hierarchical
Conditional Random Field (HiCRF) model to capture spatial relationships, improving
classification accuracy compared to local methods. The model achieved an overall accuracy
of 99.67% for ten objects classes. The authors in [53] proposed a deep learning-based
methodology for the semantic segmentation of railway infrastructure from 3D point clouds.
PointNet++ and KPConv were evaluated in four diverse scenarios, exhibiting a remarkable
ability to adapt to varying data quality and density conditions. Notably, it achieved a mean
accuracy of 90% when assessed on a 90 km long railway dataset used for both training and
testing. They also evaluated the pros and cons of their approach, identifying the impact of
intensity values as input features on segmentation results. Their best-performing tested
architecture achieves a mean Intersection over Union (mIoU) of 74.89%. Furthermore,
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the methodology demonstrated its versatility by maintaining robust performance across
different assets, such as rails, cables, and traffic lights, with an F1-score above 90% in all
cases. Bram et al. [54] used PointNet++, SuperPoint Graph, and Point Transformer as three
main deep learning models to perform semantic segmentation of railways catenary arches.
The models were trained and assessed on the Railways Catenary Arches dataset with
14 labelled classes. PointNet++ achieved the best performance with over 71% in Intersection
over Union (IoU).

The common disadvantage of these studies is that they do not evaluate their methods
on the same dataset, in the same context, or with the same number of classes. This makes it
almost impossible to make a fair comparison between all these studies, which do not, in
general, make their data publicly available.

2.3. Railways Dataset

In the context of railway scene understanding, several image datasets have been
developed. RailSem19 [55] offers 8500 annotated sequences from a train’s perspective,
including crossings and tram scenes. FRSign (French Railway Signaling) [56] contains
over one hundred thousand images annotated over six French railway traffic lights with
acquisition details (time, date, sensors information, and bounding boxes). RAWPED [57,58]
is dedicated to pedestrian detection in railway scenes. GERALD [59] features five thousand
images and annotations for German railway signals. OSDaR23 [60], a multi-sensor dataset,
captures various railway scenes with an array of sensors. These datasets are vital for devel-
oping and testing algorithms for railway scene analysis, promoting safety and automation
in the industry. Compared to image datasets, there is a shortage of open 3D point cloud
datasets. To date, we found the following:

• WHU-Railway3D: Introduced by Wuhan University of Science and Technology in
2023, this is a new railway point cloud dataset. It covers 30 km, contains four billion
points, and is annotated using 11 classes. Its great advantage is that it covers three
different environments, including urban, rural, and plateau. Each environment covers
approximately 10 km: the urban railway dataset spans 10.7 km, captured using
Optech’s Lynx Mobile Mapper System in central China; the rural railway dataset,
covering approximately 10.6 km, was collected through an MLS system with dual
HiScan-Z LiDAR sensors; and, lastly, the plateau railway dataset, spanning around
10.4 km, was obtained using a Rail Mobile Measurement System equipped with a
32-line LiDAR sensor [61].

• Catenary Arch Dataset: Covering an 800 m stretch of railway track near Delft, Nether-
lands, this dataset captures fifteen catenary arches in high detail [62]. The data collection
process involved the use of a Trimble TX8 Terrestrial Laser Scanner (TLS). This dataset
provides the XYZ coordinates of points but does not include color information, intensity,
or normal for the points. It is referenced within the Rijksdriehoeksstelsel coordinate
system using meters as units. The number of points per arch varies from 1.6 million to
11 million, and each point is manually labelled into 14 distinct classes [62].

• OSDaR23: The Open Sensor Data for Rail 2023 dataset offers a comprehensive multi-
sensor perspective of the railway environment, recorded in Hamburg, Germany during
September 2021 [60,63]. It uses a railway vehicle equipped with an array of sensors,
including lidar, high and low resolution RGB cameras, an InfraRed camera, and a
radar. The data were acquired through a Velodyne HDL-64E lidar sensor operating at a
10 Hz frequency. These lidar data are further enriched with annotations of various ob-
ject classes (20), such as trains, rail tracks, catenary poles, signs, vegetation, buildings,
persons, vehicles, etc.

• Others dataset: Several other datasets have been used for railway scene understanding
tasks, but they are not publicly available or irrelevant. They include the Austrian rural
railroad [49], UA_L-DoTT [64], Vigo dataset [2,53], TrainSim [65], INFRABEL-5 [66],
Railway SLAM Dataset [67], MUIF [68] by the Italian Railways Network Enterprise
(RFI), and MOMIT [69].
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Existing 3D point cloud datasets for railway scene understanding are often restricted
in size, variety, and semantic class, limiting their practical applicability. Our Rail3D
dataset addresses these limitations by providing a comprehensive collection of railway
environments from Hungary, France, and Belgium. This multi-context approach includes
diverse railway landscapes, with various railway types, track conditions, and densities.
Table 1 summarizes the datasets and their key specifications.

Table 1. Statistics overview of the existing railways point cloud datasets.

Dataset Year Additional Fields Points/Sequences Classes Country

Catenary Arch 2021 Intensity 55 million 14 Netherlands

WHU-Railway3D 2023 Intensity,
Number Of Returns 4 billion 11 China

OSDaR23 2023 Intensity 45 sequences 20 Germany
Rail3D 2024 RGB, Intensity 288 million 09 France, Hungary, Belgium

3. Materials and Methods

This section details the process of labelling the dataset and the methods of benchmarks.
We begin by describing the data specifications and then the used classes and how the
annotation process was performed. Then, we describe the three methods for semantic
segmentation in railway environments.

3.1. Dataset Specification

The Rail3D dataset is the first multi-context point cloud dataset for railways semantic
understanding. It is composed of three distinct datasets from Hungary, France, and Belgium,
providing a diverse representation of railways. For this, we annotated three datasets named
HMLS, SNCF, and INFRABEL. The firsts two datasets are publicly available, while the
third one was provided by Infrabel, the Belgian railway infrastructure manager, under
a confidentiality agreement. The datasets were acquired using different LiDAR sensors,
ensuring a wide range of point densities and acquisition conditions. This diversity is crucial
for developing robust and generalizable models for railway scene understanding. The
specifications of each dataset are detailed in the subsections below.

3.1.1. Hungarian MLS Point Clouds of Railroad Environment

This LiDAR dataset represents a collection acquired by the Hungarian State Railways
using the mobile mapping system (MMS)—Riegl VMX-450 high-density. These LiDAR
scans were conducted from a railroad vehicle recording data at a rate of 1.1 million points
per second. It exhibited high precision, with an average 3D range accuracy of 3 mm
and a maximum threshold of 7 mm, ensuring high-quality data capture. The positional
accuracy of the acquired point clouds averaged 3 cm, with a maximum threshold of
5 cm. This dataset not only contains georeferenced spatial information in the form of 3D
coordinates but also incorporates intensity and RGB data, enhancing its utility for diverse
applications. The dataset adheres to the Hungarian national spatial reference system,
designated as EPSG:23700. Originally, three distinct datasets were thoughtfully selected,
each representing different topographical regions within Hungary. The original data can be
found in [70].

3.1.2. French MLS Point Clouds of Railroad Environment

The SNCF LiDAR dataset is a valuable resource provided by SNCF Reseau, the
French state-owned railway company. This dataset comprises approximately 2 km of
rail-borne LiDAR data, representing a non-annotated subset of a more extensive collection.
The geospatial reference system employed for this dataset is RGF93-CC44/NGF-IGN69,
ensuring its alignment with regional mapping standards and geographic referencing. The



Infrastructures 2024, 9, 71 7 of 30

dataset is primarily presented in compressed LAZ format with a total of 16 tiles publicly
available under the Open Database License (ODbL).

3.1.3. Belgian MLS Point Clouds of Railroad Environment

For several years, Infrabel, the Belgian railway infrastructure manager, was using Li-
DAR technology to acquire data over the country’s railways network. The lidar acquisition
process involves mounting a Z + F 9012 lidar sensor on the front part of a train (EM202
vehicle) and recording the point cloud data as the train travels along the tracks. The train
collects data for every railway line in Belgium at least twice a year. This is highly relevant
for 3D change detection, which we will be looking at in our next studies. In addition to
LiDAR, four cameras are used to capture the colors, two at the front and two at the back.
However, for this application, we only used the point cloud without intensity and without
colors. The point clouds were encoded in LAS format and the coordinates were in Lambert
Belge 72. We chose three different areas in Belgium: Brussels, mid-way between Brussels
and Ghent, and the south of Ghent. Each of these contexts presented a different challenge,
either in terms of occlusion, complexity, or unbalanced classes.

As a summary, we provide, in Table 2, an overview of the Rail3D datasets, detailing
key metrics such as total points, total length, attributes, and the number of tiles per set (for
train, validation, and test). Overall, for each railway scene, the training data accounted 60%,
the validation data accounted for about 20%, and the test data accounted for about 20%.

Table 2. Description of datasets in numbers of points, length (in meter), attributes, and number of
tiles per set (train, validation, and test).

Dataset Total Points Total Length Attributes Train Validation Test

HMLS 104,958,796 2140 m X, Y, Z, R, G, B, Intensity 17 6 6
SNCF 143,313,588 1600 m X, Y, Z, R, G, B, Intensity 10 3 3

INFRABEL 39,648,006 2087 m X, Y, Z, Intensity 12 4 5

3.2. Classes Typology

To choose class labels, we combined literature reviews [2,53] with insights from railway
industry experts from Infrabel. This approach helped us to identify classes critical for
railway infrastructure applications, ensuring our labels reflect both academic and practical
considerations. This resulted in the following list of classes and their corresponding objects
as illustrated in Figure 2:

• Ground (label 1): represents various ground surfaces, including rough ground, cement,
and asphalt.

• Vegetation (label 2): covers all types of vegetation present in the railway environment,
such as trees and median vegetation.

• Rail (label 3): refers to the physical track structure.
• Poles (label 4): includes all types of poles found along the railway, such as catenary

poles and utility poles.
• Wires (label 5): covers various overhead wires, including catenary wires, power lines,

and communication cables.
• Signaling (label 6): represents all types of railways signaling equipment, such as traffic

lights and traffic signs.
• Fence (label 7): includes several types of fences and barriers used along the railways,

such as security fences, noise insulation panels, and guardrails.
• Installation (label 8): refers to larger structures that are part of the railway infrastruc-

ture, such as boxes and passenger cabins.
• Building (label 9): covers all types of buildings located within the railway corridor,

such as houses, warehouses, and stations.
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Figure 2. Illustration of each object class from the three datasets.

3.3. Data Annotation

The quality of the annotation is a determining factor for a good dataset, as well as for all
the successive tasks. As shown by Silvia et al. (2023)’s results in [71], the annotation differs
from one person to another, even for the same scene and with the same class definition.
This has a significant impact on the results of deep learning semantic segmentation models,
with a relationship of R2 = 0.765 between the points labelled in concordance and the
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F1-score. Even if the discordances do not exceed 1% in general, we tried to perform an
entirely manual annotation, without using any automatic algorithms. The annotation was
performed on CloudCompare [72] (version 2.13.0) using the QCloudLayers tool and was
controlled by a second and a third annotator. They were given guidelines to help them
with the annotation process, but it was up to them to make the final decision on the class
label for each point. Table 3 details points per class, revealing dominant vegetation and
ground classes. The minority classes, like signals and buildings, may pose challenges for
the semantic segmentation models.

Table 3. The classes repartition of each subset.

Dataset Ground Vegetation Rail Poles Wires Signaling Fences Installation Building

HMLS 69,712,961 32,208,451 1,157,524 667,108 430,949 74,687 359,907 74,272 272,937
SNCF 51,214,064 85,506,927 2,592,131 1,390,768 2,187,299 110,467 224,576 87,356 0

INFRABEL 33,698,796 1,381,599 2,041,258 654,757 1,735,242 24,926 51,100 60,328 0

In Figures 3–5, we show samples of our annotation. Each color code represents a class,
as indicated in the legend.

Figure 3. Examples of our annotation of the Hungarian MLS dataset, displayed in colors (left) and
corresponding classes (right). The legend is valid for the rest of the Figures 4 and 5.
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Figure 4. Examples of our annotation of the SNCF dataset, displayed in colors (left) and correspond-
ing classes (right).

Figure 5. Point cloud from the INFRABEL dataset, displayed in intensity (left) and corresponding
labels (right).

3.4. Baseline Methods

In this subsection, we explore three baseline models for semantic segmentation of
our Rail3D dataset: KPConv, LightGBM, and 3DMASC. KPConv, known for its novel
convolution operation tailored for point clouds, stands out for its efficiency in semantic
segmentation tasks and it shows high performance over several datasets [6,8,73]. LightGBM,
a gradient-boosting framework, is chosen for its accuracy and high efficiency, particularly
when dealing with handcrafted features from point clouds [74]. 3DMASC, the most recent
one, offers an accessible and explainable approach for point cloud classification, managing
diverse datasets effectively [75]. While KPConv has shown exceptional performance in
various benchmarks, LightGBM and 3DMASC are well-established in the literature, offering
robust solutions for point cloud classification. Our choice of these models is based on their
proven capabilities and the recent advancements they represent in the field.

3.4.1. Deep Learning Baseline

To evaluate semantic segmentation models using our datasets, we investigated the
Kernel Point Convolution (KPConv) [36]. KPConv offers a novel convolution operation
specifically designed for point clouds. It departs from traditional grid-based convolutions
by utilizing kernel points to define local support regions. These kernel points possess
learnable weights and capture the spatial relationships between points within their area of
influence. Deformable KPConv further enhances this capability by adapting the location of
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kernel points according to the point cloud’s geometry (Figure 6). We opted for KPConv due
to its ability to efficiently handle point cloud data and its demonstrated success in semantic
segmentation tasks [7].

Figure 6. KPConv defines a set of kernel points to aggregate local features and performs convolution
on supporting points, which are selected from a range search around the query point. (Illustration
adapted from [76]).

The KP-FCNN model is built as a fully convolutional network designed for point
cloud semantic segmentation. Its encoder has five layers; each layer has two convolutional
blocks. The first block in each layer reduces the size of the input, except for the very first
layer. These blocks are like ResNet blocks but use KPConv for the convolution process,
along with batch normalization and leaky ReLU activation. After the encoding process,
global average pooling collects the features, which are then passed through fully connected
and SoftMax layers, like how traditional image CNNs work. The decoder part of the model
uses nearest neighbor upsampling to improve the detail of point-wise features, using skip
connections to combine features from both the encoder and decoder at different points. The
KP-FCNN architecture is detailed in the bellow illustration in Figure 7.

Figure 7. Illustration of the Kernel Point Convolution network architecture [77] used as a baseline
method in our study. The top illustration is for semantic segmentation; the bottom one is for the
classification task.

To handle the large size of point clouds, the model works with smaller portions of the
point cloud, shaped into spheres with a set radius. This method helps manage the large
amount of data effectively. Our use of the model follows the original training guidelines,
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including how big the input spheres are and how the kernel points are arranged. However,
we simplified the input features to just a constant value (equal to 1) that represents the
shape of the data points. This simplification, along with using a sphere-based method for
testing and a voting system to decide the final segmentation, helps keep the segmentation
accurate even with the large size and complexity of railway point clouds.

3.4.2. Machine Learning Baseline

The extraction of meaningful information from raw 3D point cloud data is crucial
for the effective application of machine learning algorithms in classification tasks. We
opted into the use of handcrafted features, which are carefully selected descriptors that
encapsulate the geometric, spectral, and local dimensional characteristics of the point cloud.
The process of feature selection and extraction is important for enhancing the capability
of machine learning models to conduct accurate classifications. By selecting the right
handcrafted features, the classification algorithms (Random Forest and LightGBM) can
achieve a more robust understanding and interpretation of the complex railway assets. We
followed the general steps:

• Feature identification: this selection process aims to identify a set of informative at-
tributes that effectively capture the characteristics of the points and their surrounding
context. These attributes can be derived from various sources including the point
cloud’s geometry, spectral information, and local dimensionality. Common geometri-
cal features include eigenvalues of the neighborhood covariance matrix which help
identify local shapes like lines, planes, contours, edge, and volume. Additionally,
point density and verticality estimations can be informative for classification. In the
case of lidar data, features based on multiple returns, such as the number of returns
or return ratio, are valuable for distinguishing ground, buildings, and vegetation.
Height variations (e.g., Z range) and radiometric information like backscattered in-
tensity further enhance classification, especially when dealing with objects that share
similar geometries.

• Feature extraction: it involves analyzing a point’s local neighborhood to capture its
geometric properties. The choice of neighborhood type, whether spherical, cylindrical,
or cubic, along with the decision to compute descriptive features at single or mul-
tiple scales significantly influences the classification outcome. Multi-scale analysis
has shown greater descriptive power, capturing scene elements of varying sizes and
the geometric variations of objects more effectively. While optimal parameterization,
including neighborhood type, number of scales, and scale radius, is crucial, auto-
matic scale selection based on minimizing redundancy and maximizing classification
accuracy is an active area of research.

• Feature selection: high-dimensional data can harbor irrelevant or redundant features
that inflate model complexity and hinder learning. Selection methods aim for an
optimal feature subset, maximizing informativeness while minimizing redundancy.
Filter-based methods rank features using relevance scores (e.g., Fisher’s index or
information gain index) but may miss feature synergies. Wrapper and embedded
methods integrate the classifier, using accuracy (wrapper) or feature importance
(embedded) for selection [75].

• Classification: this involves assigning labels to individual points within a 3D point
cloud. Common approaches include instance-based methods like k-nearest neigh-
bors (kNN) and Support Vector Machines (SVMs), as well as ensemble methods like
Random Forests (RFs) and gradient-boosting algorithms like LightGBM. RFs remain
popular due to their ease of use, robustness to overfitting, and ability to provide
feature importance metrics. However, these individual point classifiers, including RFs,
struggle to incorporate spatial context beyond what is captured in the feature vector.
Contextual classification methods address this by explicitly modelling relationships
between neighboring points during training. While techniques like Conditional Ran-
dom Fields (CRFs) can achieve higher accuracy by leveraging spatial context, they are
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computationally expensive and may not perfectly capture complex relationships due
to training data limitations. Our tests leverage the strengths of LightGBM, a power-
ful gradient-boosting algorithm, and Random Forest, while indirectly incorporating
contextual knowledge through carefully chosen feature descriptors.

Our first chosen 3D point cloud classification approach relies on handcrafted features
and the LightGBM Classifier, a highly efficient and accurate gradient-boosting framework.
We have carefully outlined a set of steps to improve classification performance (Figure 8).
Given an annotated point clouds set, we extracted features, focusing on attributes like
spatial distribution and local context. We used established features based on eigenvalues, as
summarized in Table 4. To manage the unordered and varying density of 3D point clouds,
we utilize a multi-scale and efficient spherical neighborhood for feature computation. Then,
a concatenation step of features was performed before training the classifier. Based on
the features’ importance results and the performance metrics, we can even use the model
directly or once it has been retrained again with only the most important features.

Figure 8. Multi-scale neighborhood selection, feature extraction, feature concatenation, and classifica-
tion using LightGBM and Random Forest.

Table 4. Used handcrafted features [75], each one calculated at a multi-scale sphere diameter: 0.5 m,
1 m, 1.5 m, and 2 m.

Features Category Acronym Description

Neighborhood features

PCA1 PCA: λ 1/(λ 1 + λ 2 + λ 3)
PCA2 PCA: λ 2/(λ 1 + λ 2 + λ 3)
PCA3 PCA: λ 3/(λ 1 + λ 2 + λ 3)
SPHERICITY (λ 3/λ 1)
LINEARITY (λ 1–λ 2)/λ 1
PLANARITY (λ 2–λ 3)/λ 1
VERTICALITY

∣∣π
2 − angle(ei, ez)

∣∣
iϵ(0,2)

ZRANGE Zmax—Zmin
ZMAX Zmax—z
ZMIN Z—Zmin
ANISOTROPY Anisotropy measure
DIP Computed from PCA
NORMDIP Dip Angle (point cloud must have Normal)
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The eigenvalues λ1 ≥ λ2 ≥ λ3 ∈ R and the corresponding eigenvectors e1, e2, e3 ∈ R3

of the neighborhood covariance matrix, defined by equation bellow. Where p is a given
point and p is the centroid of the neighborhood N (the sphere points) [78]:

Cov (N) =
1
|N|∑p∈N (p − p)(p − p)T .

The DIP feature extracted from principal components analysis (PCA) refers to the
orientation or inclination of the surface at a point in the point cloud, relative to a vertical
reference. Specifically, the DIP measures how much a surface “dips” away from the
horizontal plane. NORMDIP (Normal Dip Angle) refines the concept of DIP by considering
the angle of the surface’s inclination (or dip) relative to the normal (perpendicular) vector of
the point cloud’s surface at that point. This feature requires that the point cloud has Normal
calculated for each point, which represent the perpendicular direction to the surface at
each point.

The use of multi-scales is essential for capturing the variability within railway scene
point clouds. This method, in contrast with single-scale approaches, enhances classifica-
tion performance by adapting to the diverse sizes and shapes present in the data. The
selection of scales was systematically parameterized to account for object diversity and
neighborhood configurations, optimizing feature extraction across different scales. For
feature extraction, we utilized eigenvalues from the neighborhood covariance matrix of
each point to evaluate the point cloud geometry, focusing on attributes such as linearity,
planarity, sphericity, etc. (see Table 4). Feature selection was conducted using embedded
strategies, notably leveraging Random Forest-based metrics to identify the most informa-
tive features (feature importance). The classification phase employed LightGBM, chosen
for its gradient-boosting capabilities and efficiency in processing the selected features. The
parameters for LightGBM were determined through a grid search.

The second model is 3DMASC [75], which represents an accessible and explainable
method for point cloud classification. It manages several attributes, scales, and point clouds,
enabling the processing of diverse point cloud datasets, including those with spectral and
multiple return attributes. The feature extraction process incorporates classical 3D data
multi-scale descriptors, novel spatial variation features, and dual-cloud features, ensuring
a comprehensive capture of both geometrical and spectral information. Subsequent steps
in scale selection and feature fusion contribute to enhanced classification performance. The
method is based on Random Forest as a classification model and CloudCompare for feature
extraction, selection, importance, and classification. These are calculated either based on
a spherical neighborhood or the k-nearest neighbors. Table 4 showed a summary of the
features we used for this test. In Random Forest classification, feature importance is deter-
mined theoretically by evaluating how each feature contributes to reducing uncertainty or
impurity in the model’s predictions across all decision trees within the forest. This process
involves calculating the decrease in impurity, often measured using the Gini impurity or
entropy, attributed to each feature at every split point in each tree. The model aggregates
these decreases across all trees to assign an importance score to each feature. The more a
feature decreases impurity on average across all trees, the more important it is. This method
allows us to identify which features play a crucial role in the model’s decision-making
process, highlighting their relative importance in predicting the target label.

4. Experiments and Results

This section evaluates the three chosen state-of-the-art chosen methods (KPConv,
LightGBM, and 3DMASC). The first subsection describes the implementation of each
method to ensure replicability. The second subsection discusses the metrics used for
evaluation as well as the results of the different tests performed in our study.
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4.1. Implementation

These experiments required the creation of python code and the implementation of
the original experiments. For 3DMASC, from feature extraction to inference, it was per-
formed using the 3DMASC’s CloudCompare Plugin and following the training procedure
in [75]. Whereas, for KPConv, we utilize PyTorch original implementation. For the training
experiment we used the same procedure as in [77]. For LightGBM, we used CloudCompare
Plugin for feature extraction and feature importance. Then, we created Python scripts
using the LightGBM framework (version 4.3.0) for classification. The code is available
at https://github.com/akharroubi/Rail3D, accessed on 14 December 2023. We adopted
the training procedure in [79]. All these codes were accessed on 14 January 2024 and
experiments were conducted on a workstation with a NVIDIA GeForce RTX 3090 graphics
card and an i9-10980XE CPU @ 3.00 GHz with 256 GB RAM.

For the first experiment, we used KPConv without any changes to the network ar-
chitecture [77]; only the hyperparameters were adapted. We used 15 kernel points with
an input sphere radius of 2.5 m and a first subsampling grid size of 0.06 m to capture fine
details. The convolution radius was set to 2.0 m, with a deformable convolution radius
of 4.0 m for flexible feature learning. The kernel point influence was ‘linear’, and the
aggregation mode was ‘sum’. We initialized the feature’s dimension at 128 and employed
batch normalization with a momentum of 0.02. The model was trained for a maximum of
400 epochs, with a learning rate of 1 × 10−2, a batch size of 5, epoch steps of 500, and a
validation size of 50, optimizing for both accuracy and efficiency. In contrast to the original
article, however, we did not add any input features (only X, Y, and Z coordinates), except
for a constant feature equal to one, which encoded the geometry of the input points.

For the LightGBM experiment, we used the original training strategy as in [79]. When
selecting a method for neighborhood extraction from point clouds, we considered cylindri-
cal, nearest neighbor (k-NN), and spherical approaches. We chose the spherical neighbor-
hood method. This decision was informed by research indicating that cylindrical neighbor-
hoods can be more advantageous in extracting useful features from point clouds [78]. The
spherical method was selected for its ability to uniformly capture the local structure around
a point in all directions, providing a more balanced and comprehensive understanding of
the point’s immediate environment. This approach ensures that the features extracted are
representative of the point’s spatial context. For the parameters, we set the boosting_type
to ‘gbdt’ for gradient-boosting decision tree, with num_leaves at 100 and max_depth at 30
to allow for complex model learning. The learning_rate was set to 0.05, with n_estimators
at 100 for the number of boosting rounds. We also configured subsample_for_bin at 200,
subsample at 0.8 for the subsample ratio of the training instance, and min_child_samples
at 20 to ensure sufficient data for each tree. The class_weight was set to “balanced” to ad-
dress class imbalance. We used the dataset split detailed in Table 2 for training, validation,
and testing across all models, ensuring consistency in model evaluation and comparison.

For the 3DMASC experiment, we used the Random Forest method with a spherical
neighborhood for feature extraction and four scales (0.5 m, 1 m, 1.5 m, and 2 m). We set the
max_depth of the trees to 30 and limited the max tree count to 150, allowing the model to
learn detailed features without becoming overly complex. The min sample count was set to
10, ensuring that each leaf had enough samples to make reliable decisions. The 3DMASC
plugin utilizes Random Forests to inherently assign importance scores to each of the
60 features (10 features at 4 scales) employed in the analysis. To enhance the interpretability
of these scores, the plugin addresses redundancy through a two-step selection process. First,
a bivariate pre-selection based on information gain (IG) and Pearson’s correlation removes
highly correlated features, resulting in a set with clearer importance scores. Second, the
plugin implements an embedded backward selection using the RF feature importance.
This process iteratively removes features with the lowest importance while monitoring
the impact on model performance via Out-of-Bag (OOB) scores. The selection stops when
removing a feature significantly decreases the OOB score, identified through a sliding
window approach. This approach within 3DMASC combines filter-based pre-selection

https://github.com/akharroubi/Rail3D
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for interpretability with embedded selection to capture feature interactions within the RF
model [75].

4.2. Evaluation

We performed both qualitative and quantitative evaluations of the semantic segmenta-
tion results. For the class-level evaluation, we used the Intersection over Union (IoU) as
a metric. As a global indicator, we employed the overall accuracy (OA) and mean of the
Intersection over Union (mIoU) [80]. The following equations were used to compute each
of these metrics:

IoU =
TP

TP + FN + FP
(1)

OA =
TP + TN

TP + TN + FP + FN
(2)

meanIoU =
∑ IoUn

N
(3)

where TP, TN, FP, and FN refer to true positives and negatives, false positives, and nega-
tives, respectively. N represents the total number of classes.

According to Table 5, which shows the results on HMLS subset, LightGBM demon-
strates an overall accuracy (OA) of 0.94 positioned between the 3DMASC (RF) and KPConv
approaches, which achieved OAs of 0.93 and 0.97, respectively. LightGBM also achieves
a mean Intersection over Union (mIoU) of 0.60, demonstrating noteworthy proficiency
in precisely delineating diverse semantic classes; it displays competitive efficacy across
various categories, particularly in classes like Vegetation and Wires. However, KPConv
outperforms both RF and LightGBM, particularly in classes like Ground, Rail, and the
minority classes.

Table 5. Quantitative experimental results on the HMLS dataset.

Approach OA mIoU Ground Vegetation Rail Poles Wires Signaling Fences Installation Building

KPConv 0.97 0.86 0.95 0.91 0.94 0.93 0.99 0.96 0.90 0.13 0.99
3DMASC 0.93 0.57 0.82 0.89 0.46 0.72 0.96 0.09 0.33 0.08 0.80
LightGBM 0.94 0.60 0.83 0.91 0.48 0.75 0.97 0.20 0.30 0.15 0.85

The results on SNCF subset show that the LightGBM method demonstrates an overall
accuracy (OA) of 0.93 in the semantic segmentation task, positioned between the Random
Forest (RF) and KPConv approaches, which achieved OAs of 0.91 and 0.97, respectively.
LightGBM also achieves a mean Intersection over Union (mIoU) of 0.67, highlighting
notable performance in accurately segmenting various semantic classes. It exhibits compet-
itive performance across various semantic classes, with notable strengths in classes such
as Rail. However, KPConv outperforms both RF and LightGBM method, particularly in
classes like Ground and Signaling in Table 6.

Table 6. Quantitative experimental results on the SNCF dataset.

Approach OA mIoU Ground Vegetation Rail Poles Wires Signaling Fences Installation

KPConv 0.97 0.81 0.92 0.96 0.79 0.96 0.99 0.67 0.97 0.23
3DMASC 0.91 0.64 0.62 0.90 0.82 0.77 0.89 0.08 0.94 0.08
LightGBM 0.93 0.67 0.68 0.92 0.86 0.78 0.88 0.16 0.85 0.20

On the Infrabel subset, the LightGBM method demonstrates an overall accuracy (OA)
of 0.97, confirming its position between the Random Forest (RF) and KPConv approaches,
which achieved OAs of 0.96 and 0.99, respectively. LightGBM also achieves a mean Intersec-
tion over Union (mIoU) of 0.71, indicating significant performance in accurately segmenting
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various semantic classes. It exhibits competitive performance across a variety of semantic
classes, with notable strengths in classes such as Vegetation and Wires. However, KPConv
outperforms both the RF and LightGBM methods, particularly in classes like Poles and
Installation in Table 7.

Table 7. Quantitative experimental results on the INFRABEL dataset.

Approach OA mIoU Ground Vegetation Rail Poles Wires Signaling Fences Installation

KPConv 0.99 0.84 0.99 0.84 0.95 0.97 0.99 0.40 0.69 0.89
3DMASC 0.96 0.70 0.96 0.84 0.85 0.88 0.99 0.22 0.56 0.28
LightGBM 0.97 0.71 0.97 0.86 0.87 0.89 0.98 0.25 0.63 0.26

Feature importance analysis revealed that the Normal dip (Dip Angle) at scales of
2 m emerged as the one of the most important features, indicating their significant role
in the classification accuracy. Following these, verticality at 2 m scale was also identified
as key contributor to the model’s performance. These findings, visualized in our feature
importance Figure 9, underscore the value of these specific features in enhancing the
semantic segmentation of railway scene point clouds.

Figure 9. Feature importance selected using the LightGBM results on the Infrabel subset.

Since KPConv achieved the best performance results, we evaluated its generalization
over other datasets. We conducted a series of additional experiments; we trained the model
using only HMLS and assessed its performance on SNCF and INFRABEL datasets. Subse-
quently, we trained a larger model (KPConv**) utilizing all three datasets and evaluated
its performance on the test subset. The results demonstrated a significant improvement
in model generalizability when trained on a multi-context dataset. This highlights the
importance of incorporating diverse data from various railway environments to develop
models that can effectively handle real-world scenarios and adapt to different contexts.
The results of these tests are summarized in the table below. The KPConv model trained
only on HMLS gave results of 0.61 in mIoU on SNCF and 0.55 in mIoU on INFRABEL. This
is mainly because the railway contexts, in general, are quite similar. But, the results were
much improved when we used the whole dataset. We reached 0.76 mIoU for SNCF and
0.64 mIoU for INFRABEL. The bad result given by KPConv on the Fences class is due to its
misclassification as a building even though it does not exist in INFRABEL. Also, KPConv**
gave a result of almost 0 IoU in the Signaling class, as this feature was classified into the
Pole class. Table 8 summarize these findings.

KPConv training was monitored by tracking both training loss and accuracy
(Figures 10 and 11). The training loss indicates the model’s ability to learn from the pro-
vided data, decreasing as the model fits the training examples. Conversely, accuracy reflects
the model’s performance in correctly classifying points during training. A continuously



Infrastructures 2024, 9, 71 18 of 30

decreasing loss accompanied by a rising accuracy towards a plateau suggests the model is
effectively learning the semantic relationships within the point cloud data. Meanwhile, the
loss ideally exhibits a continuous decrease as the model learns from the data; occasional
spikes or fluctuations may occur.

Table 8. Quantitative results of KPConv trained on HMLS and tested on SNCF and INFRABEL.
KPConv** was trained on all the dataset and tested on the test subset.

Dataset Model OA mIoU Ground Vegetation Rail Poles Wires Signaling Fences Installation

SNCF
KPConv 0.95 0.61 0.88 0.94 0.61 0.84 0.89 0.26 0.81 0.24

KPConv** 0.97 0.76 0.91 0.96 0.78 0.97 0.99 0.83 0.98 0.47

INFRABEL
KPConv 0.98 0.55 0.98 0.76 0.86 0.75 0.97 0.27 0 0.34

KPConv** 0.99 0.64 0.99 0.82 0.94 0.88 0.99 0 0.68 0.45

Figure 10. KPConv training loss on Rail3D Dataset (model named KPConv**).

Figure 11. KPConv training accuracy on Rail3D dataset (model named KPConv**).

In the following figure we visually show samples of the point cloud, ground truth
inputs, and the results of KPConv, LightGBM, and 3DMASC, successively.

More qualitative results are presented in Appendix A for the HMLS subset, in Ap-
pendix B for the SNCF, and in Appendix C for Infrabel. Each include scenes, with the
ground truth, KPConv predictions, KPConv errors, 3DMASC predictions, and 3DMASC
errors. We have not visually identified any significant differences between 3DMASC and
LightGBM, even though the latter gives better quantitative results. Figure 12 highlights
the problem of the misclassification of a fence next to railway tracks, which was classified
as a building. This problem is due to the imbalance between these two classes, given that
buildings are a minority but also that this type of fence can only be found in the INFRA-
BEL dataset. All three approaches faced the same difficulty, with KPConv being the most
accurate; visually, we cannot see difference between the 3DMASC and LightGBM results.
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Figure 12. Input point cloud, with KPConv, 3DMASC, and LightGBM predictions. Each is associated
with an error relative to the ground truth. The same class colors are used in the previous figures.
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5. Discussion

This work addresses two complementary aspects: firstly, the proposal of three subset
representing different contexts of railway environments and, secondly, the introduction of
three baselines to addressing semantic segmentation challenges. Regarding the proposed
dataset, it presents the first comprehensive dataset for semantic segmentation in railway
environments, covering three distinct railway contexts from Hungary, France, and Belgium.
These datasets provide rich resources for applications in railway environments. With a
significant annotation of over 288 million points, the created datasets stand out in both
size and diversity compared to existing datasets. This extensive volume of annotated
points enhances the dataset’s ability to cover a wide range of situations and variations
within railway environments. Furthermore, the datasets developed across these railway
environments ensure effective learning for machine learning models, confirming their
generalization to different contexts. This was confirmed by the results obtained in Table 8.

The comparison between KPConv-, 3DMASC-, and LightGBM-based results provides
valuable insights about the performance of different classification methods for large-scale
rail borne point cloud data. The results of the comparison indicate that, while KPConv
may excel in capturing intricate local geometric features, LightGBM highlights promising
performance in handling large-scale datasets with its computational efficiency. 3DMASC,
although a reliable method, may exhibit limitations in dealing with the complexity and
unbalanced nature of railways point cloud data. Furthermore, LightGBM offers superior
computational efficiency and faster training times compared to traditional Random Forests.
The performance of different methods was assessed through a combination of qualitative
and quantitative evaluations. Across Tables 5–7, the LightGBM method consistently gave
good performance in semantic segmentation, with overall accuracies (OAs) ranging from
0.93 to 0.97 and mean Intersection over Union (mIoU) values from 0.60 to 0.71. Notably,
the LightGBM approach highlights efficient results within a brief timeframe, 100 time
faster than 3DMASC, emphasizing its practical applicability. This is because LightGBM is
designed to be highly parallelizable while 3DMASC is not. Parallelization allows Light-
GBM to divide the training task into multiple smaller tasks, which can be run on multiple
cores or CPUs simultaneously. While demonstrating competitive accuracy, particularly
excelling in classes like Rail, Vegetation, and Wires, the machine learning method consis-
tently falls slightly behind the performance of KPConv. The latter’s superior accuracy,
especially in specific classes, suggests areas for potential refinement in the handcrafted
feature method, highlighting the ongoing challenge of balancing speed and precision in
semantic segmentation tasks. The qualitative results obtained using various methods have
confirmed the quantitative findings. The traditional ML methods yielded qualitative results
closely aligned with the ground truth across all three subsets. This underscores the good
selection of geometric features, indicating a positive impact on differentiating railway
objects. While color and intensity are often valuable features that can enhance classification
performance, we opted to exclude them from our study for two primary reasons. Firstly,
the color data acquired exhibited inferior quality due to variations in acquisition times and
seasons, leading to heterogeneity between contexts. Secondly, the intensity values lacked
calibration across the three contexts, as different lidar sensors were employed. To validate
our choice of relying exclusively on spatial coordinates (x, y, and z) as input, we conducted
a test using KPConv that verified the adverse effect of color and intensity on classification
accuracy within our specific case study (refer to Figure 13). One solution to correct this
sky-colored points effect would be to perform a pre-processing step, as suggested in [81].

In addition, misclassification occurred where signaling poles were mistakenly cate-
gorized as catenary poles. This is due to the strong resemblance between the two and
the lack of use of intensity or a specific color or geometric shape for these signs. In other
cases, as shown in Figure 12, LightGBM and 3DMASC were unable to extract the Fence
class correctly, given the strong similarity with the Building class. However, KPConv
was able to classify it correctly. This led to a further experiment on KPConv to assess its
generalizability. The use of a multi-context dataset, encompassing railways from three
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different countries, was shown to be crucial for boosting the generalizability of semantic
segmentation models. By training on data from diverse railway environments, the model
develops a more robust representation of railway structures and can better adapt to unseen
contexts. This was demonstrated in our experiments, where the KPConv model trained
on our multi-context dataset achieved significantly higher mIoU scores (0.76 and 0.64) on
the SNCF and INFRABEL datasets compared to the model trained on the HMLS dataset
alone (0.61 and 0.55). This suggests that our dataset can generalize to unseen railway
environments, making it a valuable resource for developing robust semantic segmentation
models for railway applications.

Figure 13. The poor quality of the colors led to poor classification (e.g., in vegetation). (Top): input.
(Middle): predictions with colors. (Bottom): predictions without colors.
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6. Conclusions

In this paper, we proposed the first multi-context point cloud dataset called Rail3D.
This dataset covers three countries—Hungary, France, and Belgium—with a total length
of almost 5.8 km and approximately 288 million points. It covers the nine most relevant
classes for railway applications: Ground, Vegetation, Rail, Poles, Wires, Signaling, Fence,
Installation, and Building. The LightGBM machine learning model for semantic segmenta-
tion demonstrated promising performance on three distinct railway datasets. It achieves
significantly higher mean Intersection over Union (IoU) scores compared to 3DMASC but
still falls behind the KPConv’s performance. The best performing model, a fine-tuned
KPConv, achieved a mean Intersection over Union (mIoU) of 86%. Meanwhile, LightGBM
achieved a mIoU of 71%, outperforming Random Forest with 70%. The Rail3D dataset,
publicly available for France and Hungary at https://github.com/akharroubi/Rail3D,
accessed on 14 December 2023, will overcomes limitations in existing datasets, fostering the
training of more generalizable learning models. We recommend evaluating our developed
dataset using new machine learning methods to assess their performance. Future work
will focus on the correction of sky-colored points and experimentation on the contribution
of this pre-processing step in the railway environment. It also involves the exploration of
the use of semantic information within Rail3D for change detection task.
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Figure A1. Qualitative results on HMLS subset.
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Figure A2. Qualitative results on SNCF subset.
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Appendix C

Figure A3. Cont.



Infrastructures 2024, 9, 71 27 of 30

Figure A3. Qualitative results on INFRABEL subset.
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