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Abstract: This research utilizes the Long-Term Pavement Performance database, focusing on devel-
oping a predictive model for flexible pavement performance in the Southern United States. Analyzing
367 pavement sections, this study investigates crucial factors influencing asphaltic concrete (AC)
pavement deterioration, such as structural and material components, air voids, compaction density,
temperature at laydown, traffic load, precipitation, and freeze–thaw cycles. The objective of this
study is to develop a predictive machine learning model for AC pavement wheel path cracking
(WpCrAr) and the age at which cracking initiates (WpCrAr) as performance indicators. This study
thoroughly investigated three ensemble machine learning models, including random forest, extremely
randomized trees (ETR), and extreme gradient boosting (XGBoost). It was observed that XGBoost,
optimized using Bayesian methods, emerged as the most effective among the evaluated models,
demonstrating good predictive accuracy, with an R2 of 0.79 for WpCrAr and 0.92 for AgeCrack and
mean absolute errors of 1.07 and 0.74, respectively. The most important features influencing crack
initiation and progression were identified, including equivalent single axle load (ESAL), pavement
age, number of layers, precipitation, and freeze–thaw cycles. This paper also showed the impact of
pavement material combinations for base and subgrade layers on the delay of crack initiation.

Keywords: LTPP; asset management; transportation infrastructure; random forest; extra trees;
XGBoost; machine learning

1. Introduction

In an effort to improve the development of pavement performance models, the number
of studies has increased on the application of data-driven approaches, especially, the use
of machine learning techniques [1–3]. These efforts have also been enhanced with the
availability of rich pertinent databases such as the Long-Term Pavement Performance
(LTPP) database, maintained by the Federal Highway Administration in the United States.
The LTPP database contains information regarding construction, structure, traffic, and
performance over time, as well as geological climate data. Studies showed that machine
learning models outperform traditional mathematical models by uncovering and explaining
correlation patterns among various input features in relation to the target variable, thereby
offering greater efficiency, speed, and analytical accuracy [4–9].

Roadway pavements are subject to deterioration due to a variety of factors, such as
environmental disasters, aging, design flaws, etc. Studies demonstrate that pavement deteri-
oration is primarily influenced by structural and traffic-related factors [10–12]. Additionally,
environmental factors intensify several of these deterioration mechanisms, including traf-
fic fatigue and surface temperature stresses, which have an impact on the functionality
and serviceability of highway networks [13]. For instance, precipitation penetration can
significantly impact pavement integrity by dissolving the base material underneath the
asphalt surface, which leads to cracking propagation [14,15]. Specific cases of pavement
failure have been linked to insufficient drainage systems, high traffic volumes, improper
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material gradation, and poor subgrade soil [16]. Furthermore, natural disasters (e.g., hurri-
canes and earthquakes) or human errors (e.g., vehicle collisions) pose additional challenges
to maintaining pavement section integrity. It is imperative to comprehend and address
these factors affecting deterioration to extend the lifespan of pavements and ensure their
performance efficiency.

A geospatial hotspot analysis using decision tree models suggested that fatigue crack-
ing is highly correlated with truck traffic loads [17]. The present research study also
considers the effect of truckloads to find their direct impact on asphalt cracking. By incor-
porating integral channel features and a random forest algorithm, the detection framework
successfully captures the inherent structure of road cracks, which improves the traditional
crack detection approach [18–20]. Another random forest study on the LTPP database
demonstrated that seal coat treatments contribute to the reduction of pavement surface
cracking, with pavement condition and seal coat thickness proving critical for rutting
and International Roughness Index (IRI) performance [21,22]. The significant impact of
mixture gradation and aggregate-specific gravity on alligator cracking in asphaltic concrete
(AC) pavement has been identified using random forest models [23]. Machine learning
algorithms, including extreme gradient boosting (XGBoost) and random forest, have been
applied to correlate surface temperature and AC layer thickness to its modulus [24].

Temperature has a more significant positive correlation influence on the rutting depth
of asphalt pavement than other variables, such as the number of load cycles and mix design
considerations [25]. The results from the boosting machine learning model found that traffic
volume, environmental conditions, and service age substantially influence the performance
of pavement overlays, while both rutting and transverse cracking displayed a heightened
sensitivity to the state of the pavement before the overlay construction [26]. Annual climatic
transitions cause seasonal alterations due to the freeze–thaw cycles of underlying soils. As
the temperature rises, the soil thaws from the surface down, trapping water between the
pavement and the still-frozen soil, leading to a compromised foundation [27]. Considering
the unique material types and needs prevalent in each specific region in the U.S., this
research study narrows its scope focusing on the southern states. Compared to the previous
similar literature, this study incorporates a combination of mechanical factors affecting
pavement cracking, such as density, air voids, and layer properties, etc. One instance that
the current study considers is the significance of maintenance and rehabilitation tasks,
which incorporate information related to various phases in the pavement’s lifecycle. This
information is characterized by unique construction numbers within the LTPP database,
reflecting changes in the number, thickness, and material properties of various layers.

Many of the recently developed models for pavement performance are based on
empirical in-service data [28–32]. Based on the reviews of prior studies as presented above,
it was observed that there is a need to include more pertinent data from the construction
phase of the pavement with the in-service data when modeling the pavement performance.
Transportation agencies store a significant quantity of data throughout various stages in
the life cycle of an asset, from design, surveying, and construction to maintenance and
rehabilitation. As an asset advances through its life cycle, the accumulation of digital
information correspondingly increases. However, the stored information is often subject
to segmentation and may become underutilized or even lost during transitions between
project phases, frequently due to the limitations imposed by traditional workflows [33,34].
Therefore, from the viewpoint of this study, it is critical to integrate all the gathered
information within an asset management model, making it beneficial to all stakeholders
to enhance the performance of the infrastructure system. Crucial information during the
design and construction phases could subsequently be used in maintenance, operation,
and rehabilitation phases. Despite recent advancements, understanding how the quality of
construction or structural changes in maintenance and rehabilitation practices impact the
long-term performance of pavements remains an unexplored area of study.

As shown in Table 1, comparing to prevailing prediction models of pavement deterio-
ration that predominantly employ pavement age as the sole predictor, researchers have
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begun proposing various ML-based deterioration models for pavement based on various
predictors [35–38]. All the listed models incorporate various features, such as traffic load,
climate factors, and structural characteristics, offering important insights into pavement
behavior. While traditional analytical and empirical pavement performance models have
provided valuable information, especially concerning fatigue cracking, they often fail to
accurately capture the complex and dynamic connections that define pavement cracking
mechanisms.

Table 1. A comparative analysis of AC pavement cracking predictive models.

Models Considered Factors Accuracy Year References

1 Poisson loglinear model
1. Viscosity of the AC layer.
2. Min and Max mean annual temperature.
3. Average Annual Precipitation.

R2 = 0.47 2007 Ker, H.
et al. [39]

2 Generalized
additive mode

1. Age.
2. ESAL.
3. Average Annual Precipitation.
4. Average Annual Temperature.
5. Critical tensile strain.
6. Annual freeze–thaw cycle.

R2 = 0.49 2007 Ker, H.
et al. [39]

3 Multiple regression
1. Pavement age since overlay.
2. Moisture content of subgrade soil.
3. Climate data.

R2 = 0.88 2020 Radwan
et al. [40]

4 Machine Learning

1. Age.
2. ESAL.
3. Average annual precipitation.
4. Average annual temperature.
5. Average annual daily traffic.
6. Average annual Daily
Truck Traffic.
7. Annual freeze index.
8. International roughness index.

9. Total Thickness.
10. Moisture Content.
11. Annual Average Wind Velocity.
12. Climate Zone.
13. Resilient Modulus.
14. Annual Average Humidity.
15. Air Voids.
16. Min and Max Humidity.
17. Marshal stability.

R2 = 0.71 2024 Alnaqbi
et al. [41]

This study aims to leverage various ensemble learning techniques to develop robust
deterioration models that can comprehensively analyze pavement’s long-term performance
throughout its lifecycle and forecast the age of cracking initiation, as well as wheel path
crack values. The pertinent data, including various structural details, environmental factors,
traffic loads, construction quality, and maintenance and rehabilitation changes, collected
from LTPP program were processed and served as the input features. The research effort
employed three optimization algorithms, namely, random search, grid search, and Bayesian,
to find the most suitable approach for each machine learning model. Additionally, the
subgrade and base layer material data incorporation impact on the asphalt performance
prediction has been investigated. The objective of this research is to develop a highly
precise performance model for asphalt concrete pavement that can predict not only the
occurrence of wheel path cracking but also the age at which this cracking begins. This
study also will identify the most important factors affecting pavement deterioration using
both performance indicators.

In the following sections, the steps taken in the data collection and processing are
discussed, including the database tables and relationships, as well as the specific features
selected for the models. The following section describes the underlying attributes of the
proposed methodology, specifically, the random forest, extremely randomized trees, and
extreme gradient boosting models. Next, the results are presented for each of the three
models, including the training and testing steps, as well as the accuracy values obtained. A
discussion of the results is then presented, followed by the final section on the conclusion
and suggestions for future research.
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2. Data Processing

The FHWA’s LTPP database has pavement performance data of 2981 sections, collected
over three decades. The LTPP database is publicly accessible to monitor the location, quan-
tities, types, and severity of pavement distress for each section. All sections are grouped
by LTPP section identifiers, e.g., SHRP_ID, STATE_CODE, and CONSTRUCTION_NO.
The authors classified selected features from the LTPP tables into five categories, including
(1) pavement structure and construction, (2) construction quality, (3) climate, (4) traffic,
and (5) in-service. In this study, 367 unique pavement sections in the southern region of
the U.S., and 2578 observations were identified. The research is focused on the southern
United States, where the distinctive climatic and infrastructural factors are examined. For
instance, southern states are characterized by higher temperatures and fewer freezing
cycles, in contrast to the northern states, where more frequent freezing cycles occur. These
climatic differences significantly influence pavement performance and durability. This
geographical focus enables a thorough examination of how regional environmental con-
ditions influence road infrastructure. Due to the diverse regional characteristics in the
United States, including variations in structural design, material properties, and distinct
environmental conditions, the authors chose to focus on the sections that are located in
the southern U.S., including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi,
New Mexico, Oklahoma, South Carolina, Tennessee, and Texas, as mapped in Figure 1.
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Figure 1. The geographic location of the LTPP sites showing the number of pavement sections.

A short description, definition of acronyms, range of values, and units of the features
employed in this study are provided in Table 2.
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Table 2. A description of the extracted LTPP features.

Category Acronym Feature Description Range|Unit

1

Pavement Structure
and Construction

CN Construction Number Changes in pavement structure. 1–3|-

2 LyrC Layer Count The overall number of layers in a section
throughout a construction number. 3–11|-

3 OvrTh Overlay thickness The thickness of the overlay layer. 0–8|Inches
4 OslTh Original surface layer thickness The thickness of the original surface layer. 0–7.6|Inches

5 BiTh Binder layer thickness The thickness of the AC layer below the surface
(Binder Course). 0–13.4|Inches

6 BaTh Base layer thickness The thickness of the base layer. 2.5–17|Inches
7 SubbTh Subbase layer thickness The thickness of the subbase layer. 0–37.8|Inches
8 BaMat Base layer Material The type of material used for the base layer. -
9 SubgrMat Subgrade layer Material The type of material used for the subgrade layer. -

10

Construction Quality

AvWp Wheel path air void Average calculated air voids in the wheel path in the
binder, original surface, and overlay layers. 0–16|%

11 Den Density The density of the top surface layer, e.g., original surface
or overlay layers. 127–149|lb/ft3

12 VFA Voids Filled Asphalt
The percentage of the total volume of the voids in the
compacted aggregate that is filled with asphalt for the

binder, original surface, and overlay layers.
0–94|%

13 VMA Voids Mineral Aggregate

The percentage of the total volume of the voids between
the mineral aggregate particles of a compacted asphalt

mixture that includes the air voids and the volume of the
asphalt binder not absorbed into the aggregate for the

binder, original surface, and overlay layers.

0–30|%

14 SurfTmp Surface Laydown
Temperature

Average temperature of the asphalt concrete at lay down
for original surface or overlay layers. 200–340|
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Table 2. Cont.

Category Acronym Feature Description Range|Unit

18 Traffic ESAL Equivalent Single Axle Load
Estimated annual equivalent single axle load (ESAL) for

vehicle classes 4–13 on LTPP lanes. ESAL values are
cumulative traffic loading summary statistics.

0–12e+6|-

19
In-service

Service Age Age The service age of a given section during one
construction number period. 0–32|Years

20 WpCrAr Wheel path Crack per area The wheel path cracking length divided by
the area of the given section. 0–0.2|ft/ft2

21 AgeCrack Crack initiation age Age at which the initial wheel path
cracking was observed. 0.25–20/years
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The related LTPP tables were extracted using U.S. customary units into a singular Mi-
crosoft Access database, which comprises attributes from six key LTPP tables, including Analy-
sis_Tst_AC; Mon_Dis_AC_Rev; Tst_L05B; AC_Density_Meas; Merra_Temp_Precipitation; and
TRF_Trend. Table Analysis_Tst_AC contains relevant construction metrics, including air
voids on wheel path sections, voids filled with asphalt, and voids in the mineral aggregate.
Mon_Dis_AC_Rev provided cracking data, as well as surface width measurements. The
Tst_L05B table detailed the material used for distinct pavement layers within each test
section and their relative thickness values. Table AC_Density_Meas provided density
values for the top surface layer in each section. Table Merra_Temp_Precipitation supplied
environmental attributes, such as precipitation, temperature, and freeze–thaw, for analysis.
The TRF_Trend table provided the annual ESAL trend information to represent traffic load
for heavy vehicles in classes 4–13. The authors developed an SQL algorithm, as illustrated
using the entity relation diagram in Figure 2, to cross-reference all the exported attributes
for the selected sections from LTTP by linking their mutual STATE_CODE, SHRP_ID,
CONSTRUCTION_NO, LAYER_NO, and SURVEY_DATE values.
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As pavement ages, it can lead to a loss of flexibility and resilience, reducing its ability
to withstand traffic loads and environmental stressors, and ultimately deteriorating by
different types of cracking, especially when no rehabilitation is performed. The equivalent
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single axle load (ESAL), being one of the main stressors for a pavement section, represents a
single pass of a standard axle load (typically 18,000 pounds or 8200 kg), which quantifies the
impact of a vehicle on the pavement’s structural integrity. Over time, the cumulative effect
of ESAL loads can lead to fatigue cracking, rutting, and other forms of pavement distress.

Among the temperature-related input features, average daily ambient temperature
(AvgTmp) could affect the strain on the pavement for a given traffic stress. Therefore, for a
given traffic load, the pavement experiences greater stresses and strains in regions with
lower average temperatures than it does at higher temperatures, at which the materials
are less rigid [42]. Explicitly incorporating AvgTmp into asphalt performance prediction
models provides an opportunity to better capture the existing correlation between crack
progression and temperature-dependent factors. Asphalt mixture temperature during
laydown (SurfTmp) is also crucial, as it affects workability, compaction, and subsequent
performance. Proper temperatures at placement enable adequate compaction and avoid
distresses like cracking, while excess heat risks bleeding and segregation. The freeze–thaw
cycle, indicated by the FrzThaw feature, can also affect the soil underneath the pavement
(subgrade materials). When the soil freezes and thaws, it can shift and settle unevenly,
leading to a weaker foundation for the pavement, which can cause the pavement to crack
under the weight of heavy traffic [43,44]. Precipitation (Precip) infiltration into the subbase
can lead to a reduction in the resilient modulus and stripping in asphalt layers (resulting
in the loss of adhesion between aggregate and the asphalt binder), which weakens the
mechanical properties of the underlying layers [45].

The composition and characteristics of individual layers can contribute significantly
to the overall performance of the pavement. One of the primary functions of layering in an
AC section is to distribute the loads placed on the pavement surface. More layers can often
mean better load distribution, which can reduce the strain and decrease the rate of crack
progression, as the surface layer does not bear the entire force from tire pressure directly. To
account for maintenance changes in the pavement structure, the number of layers in each
construction number (LyrC) has also been taken into consideration as a separate feature.
The thicknesses of the subbase layer (SubbTh), base layer (BaTh), original surface layer
(OslTh), binder layer (BiTh), and overlay layer (OvrTh) have been considered in the models,
as well as the type of materials used for the subgrade and base layer.

AC compaction is a critical process in pavement construction, with a higher density
often leading to increased durability and fatigue resistance. Dense asphalt pavements that
can better withstand the stresses of traffic loads are less likely to experience fatigue cracking
over time and are less permeable, making them more resistant to moisture damage [46].
Air voids in the AC section, represented as the variable AvWp for wheel path air voids,
therefore play a critical role in the progression of cracking and the pavement’s overall
performance. The content of these air voids is a fundamental property that can directly
affect the durability and performance of the pavement. Theoretically, more air voids would
mean less asphalt binder and aggregate in the mix, which can reduce the overall strength
and durability of the asphalt concrete [47]. Higher air void content can increase moisture
susceptibility and accelerate aging, leading to premature cracking [48], but too few voids
may also cause pavement distress, such as rutting [49]. Voids mineral aggregate (VMA)
refers to the void spaces between compacted aggregates in an asphalt mix that provides
room for binder, whereas voids filled asphalt (VFA) represents the percentage of VMA
filled by binder versus air voids [50]. This study investigated, separately for each layer, the
impact of VFA and VMA percentage on the original surface layer, overlay, and binder layer.
The target variables analyzed are the time required for the initial appearance of cracks
in a specified pavement section (AgeCrack) and the measured crack length per pavement
surface area (WpCrAr).

One of the novel aspects of this research is the consideration of the change in the
number of layers for each pavement section, which reflects the chronological sequence
of maintenance and rehabilitation construction that has been carried out on the segment,
indicated by the construction number (CN1, CN2, and CN3) variable. The input variable
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for truck loads, as well as the precipitation amount, were estimated from the cumulative
ESALs for the respective CN interval. This study also employed a feature selection method
to reach a better understanding of the importance of each feature in correlation to the output
feature. The scatterplot matrix and mutual information feature selection (MIFS) methods
were used for feature selection, which are presented in Figures 3 and 4, respectively. The
scatterplot matrix indicates the correlation among the variables, while the MIFS quantifies
the mutual dependency between input variables and the output, especially in cases in
which the relationship is non-linear [51–53].
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In the scatterplot matrix, the lower triangle of the plot shows the corresponding
regression trendline for each feature pair. Additionally, the Pearson correlation coefficient
between each attribute pair is presented using as blue-to-red gradient heat map in the
upper triangle of the plot (with blue and red demonstrating the most negative and positive
correlations, respectively). Among input features, Age, Precip, LyrC, and FrzThaw have
the most significant correlation with WpCrAr (dependent variable). The scatterplot matrix
shows considerable intercorrelation between VMA and VFA features for different pavement
layers, i.e., the original surface layer, the overlay, and the binder layer. Moreover, the
intercorrelation of the AvWp feature with the VMA feature in those layers is also significant.
Considering the results of MIFS and the low importance of VMA_Bi, VMA_Ovr, and
VFA_Ovr and their higher correlation with their related AvWp features (0.86, 0.91, and 0.79,
respectively), the three features were removed from the further analysis to avoid overfitting
problems. Furthermore, VMA_Osl has a high correlation with AvWp_Osl (0.81) and was
also excluded from the machine learning models.
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Using the MIFS helped to reduce dimensionality while preserving the most informative
features for developing machine learning models. As Figure 4 suggests, Age, Precip, ESAL,
FrzThaw, and BaTh are the top five most influential factors among the input features,
whereas VFA_Ovr, VMA_Ovr, VMA_Bi, LyrC, and AvWp_Ovr have the lowest correlation
values. In contrast to MIFS, the correlation plot matrix did not identify ESAL as an
important feature input. Therefore, employing both methods for feature selection can be
a proper strategy because it capitalizes on their complementary strengths. This approach
provides a more comprehensive understanding of the intercorrelation between input
variable and output feature, ultimately leading to a more robust and accurate machine
learning model.

Considering the nominal type of material data, their interpretations through the output
of machine learning models such as feature importance analyses are somewhat limited and
irrelevant. As shown in Figure 5, the significance of employing material data is to obtain a
thorough understanding of the relationship between various material combinations for base
and subgrade layers and analyze their impact on the age at which cracking in pavement
sections begins.
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The 50th percentile value for AgeCrack represents the age by which 50% of the
sections started to crack. Therefore, if a material combination has a high 75th percentile
AgeCrack value, it means that the majority of sections (75%) took a longer time to start
showing cracks, indicating a potentially better performance in terms of durability. Among
the material combinations, the sections with open graded, hot laid/fine-grained soils
stand out for their remarkable durability, displaying the highest 75th percentile value of
17.25 years. This indicates that the majority of these sections took significantly longer to
start cracking compared to other combinations. In addition, this combination also has the
highest AgeCrack_Avg of 11.5 years, reinforcing its superior performance. However, the
compressed range between the median (50th percentile) and the 75th percentile suggests
that the majority of sections start cracking at median age and only a quarter shows higher
durability. From a practical point of view, this consistency in the performance can be
a useful insight for maintenance planning, as it suggests that once the median service
life is reached, the aforementioned pavement sections may need to be monitored more
closely for the onset of cracking. This trend is also observed in sections with a gravel base
layer paired with both coarse- and fine-grained subgrade layers, in which the majority of
sections begin exhibiting cracking only beyond the median age of cracking. Similarly, the
crushed stone/coarse-grained soils combination also showed high resistance to cracking
initiation, with a 75th percentile value of 11.30 years, making it another robust choice for
pavement materials. On the other hand, combinations involving fine-grained soils as base
material, whether paired with coarse-grained or fine-grained subgrade materials, exhibit
a much earlier onset of cracking deterioration, having lower median AgeCrack values
of 0.87 and 3.33 years, respectively. A combination of sand asphalt/coarse-grained soils
for base and subgrade layers has the lowest 50th percentile values of 0.25 and 0.34 years,
respectively, indicating early signs of cracking. The difference in AgeCrack values with
different pavement materials indicates a strong relationship between material selection and
pavement durability. This variability suggests that including various material types for base
and subgrade layer in the input database of machine learning models is not only reasonable
but necessary for capturing the full spectrum of factors affecting pavement longevity.
Further exploration of these datapoints, alongside other input features, could significantly
enhance the predictive maintenance of roadways and optimize material selection in the
design phase.

Recognizing the significant impact of material selection on pavement durability, as dis-
cussed above, underscores the necessity to incorporate this critical factor into our machine
learning regression models. The distinct performance metrics observed across various
combinations of materials for base and subgrade layers—particularly the correlation of
specific material types with the cracking initiation—highlight the complexity of predicting
pavement longevity. To effectively model these dynamics and improve the predictive accu-
racy of our models, the implementation of one-hot encoding emerges as a pivotal strategy
to address this challenge. By transforming categorical material data into a format that is
interpretable by machine learning algorithms, we aim to bridge the gap between qualitative
material attributes and quantitative model inputs for pavement performance models.

Using one-hot encoding transformation, pavement material data were embedded
into the input database to help provide more insight into the machine learning models
from a physical perspective. In this case, the “BaMat” and “SubgrMat” variables are
categorical, representing different types of materials used for base and subgrade layers.
Using this method, each unique category becomes a separate feature with a binary value
(0 or 1). This binary matrix format allows models to handle nominal material data that
lack any inherent order, weighting, or intrinsic relationships. By converting the diverse
material characteristics into a binary matrix, the models were able to discern patterns and
relationships that were not previously investigated, leading to a more precise and reliable
prediction accuracy. This methodological enhancement underscores the importance of
feature engineering in improving the efficacy of machine learning models, especially in
complex domains in which material properties play a crucial role. Figure 6 illustrates
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the methodological approach applied to the LTPP material database using the one-hot
encoding method.

Infrastructures 2024, 9, x FOR PEER REVIEW 13 of 43 
 

 
Figure 6. Methodological application of one-hot encoding on LTPP material data. 

The required computing resource to process such a big database is an important con-
sideration for the application of any machine learning methodologies. Table 3 outlines the 
hardware specifications of the high-performance computing (HPC) resource utilized for 
all the machine learning computations. The allocated computing node comprises an Intel 
Xeon (R) E5 2670 CPU operating at 2.60 GHz with 32 cores paired with 32 GB of DDR4 
RAM at 2600 MT/s. The table provided below is crucial for demonstrating both the com-
putational capability and the economic viability of using high-performance computing 
resources for sophisticated data processing tasks, especially for large-scale projects antic-
ipated at Departments of Transportation (DOTs). 

Table 3. High-performance computing specification. 

Parameters Resource 
CPU Intel Xeon (R) E5 2670 @ 2.60 GHz, 32 Cores 
RAM 32 GB DDR4 2600 MT/s 
GPU NVIDIA GeForce GTX 1080 Ti, with 11 GB GDDR5X Memory 
Disk Panasas Parallel Storage, Up to 156 TB usable in a RAID-6 configuration 

NCU/year 35.50 USD 
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The required computing resource to process such a big database is an important
consideration for the application of any machine learning methodologies. Table 3 outlines
the hardware specifications of the high-performance computing (HPC) resource utilized
for all the machine learning computations. The allocated computing node comprises
an Intel Xeon (R) E5 2670 CPU operating at 2.60 GHz with 32 cores paired with 32 GB
of DDR4 RAM at 2600 MT/s. The table provided below is crucial for demonstrating
both the computational capability and the economic viability of using high-performance
computing resources for sophisticated data processing tasks, especially for large-scale
projects anticipated at Departments of Transportation (DOTs).
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Table 3. High-performance computing specification.

Parameters Resource

CPU Intel Xeon (R) E5 2670 @ 2.60 GHz, 32 Cores
RAM 32 GB DDR4 2600 MT/s
GPU NVIDIA GeForce GTX 1080 Ti, with 11 GB GDDR5X Memory
Disk Panasas Parallel Storage, Up to 156 TB usable in a RAID-6 configuration

NCU/year 35.50 USD

3. Methodology

This section of the paper presents the overall methodology, the machine learning
algorithm frameworks, optimization methods, and evaluation criteria employed to develop
and fine-tune the model for processing the LTPP data. As shown in Figure 7, the research
methodology begins gathering and cleaning up the data, as well as data visualization. The
innovative distinction of this framework from previous models lies in its utilization of the
one-hot encoding method to transform pavement material data into binary features, as well
as capturing structural changes during multiple maintenance and rehabilitation phases.
Subsequently, machine learning models were developed, optimized, and compared. The
exploration process aimed to uncover the most important features and correlations existing
between long-term wheel path cracking and the age of cracking initiation (as dependent)
and various features (as independent).

3.1. Machine Learning Models

Ensemble models, such as random forest, extremely randomized trees, and extreme
gradient boosting (XGBoost), aggregate predictions from several models to provide a
more robust prediction. The ensemble models are beneficial for many machine learning
applications due to their diversity, which allows them to better handle missing data, reduce
overfitting, and improve the models’ capacity to generalize. Following the initial data
selection from the LTPP database, pre-processing techniques, including data cleaning,
filtering, merging, and normalization, were applied to prepare the final input dataset for
the machine learning models. Choosing an extensive range of machine learning algorithms
is beneficial, as it allows for the exploration of various models to find the most effective
technique to explain crack progression based on the attributes described above.

3.1.1. Random Forest

Random forest decision tree models can evaluate the importance of each input feature
and their contribution to predicting testing accuracy. Random forests are often considered
to be versatile due to their ability to handle a wider range of problems because they can
use a wider range of splitting rules, feature selection methods, and reliability to work with
imbalanced data. Random forest operates by constructing a multitude of decision trees
during training, with each tree grown independently to its full capacity on a different boot-
strapped subset of the data. Therefore, it does not utilize a global mathematical objective
function that guides the training of individual trees. Instead, the random forest algorithm
leverages the collective decision-making of the entire ensemble of trees to improve predic-
tive accuracy and robustness. The aggregation of these independent models, typically by
averaging their predictions, is what reinforces random forest’s performance on regression
tasks. Figure 8 shows the decision tree procedure of the random forest models.

The random forest regression model architecture could be utilized using the algorithm
shown in Algorithm 1.
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Algorithm 1 Pseudocode algorithm for random forest

Precondition: A training set S:= (X_train, y_train), features F, and number of trees in forest B.

1 function RandomForestRegression(S, F, B)
2 H← empty list//This will store all the individual trees
3 for i ∈ 1, . . ., B do
4 S(i)← BootstrapSample(S)//Generate a bootstrap sample from the original dataset
5 tree← BuildDecisionTree(S(i), F)
6 Append tree to H
7 end for
8 return H//Return the ensemble of trees
9 end function

10 function BootstrapSample(S)
11 sample← empty list
12 for i ∈ 1, . . ., length(S) do
13 s← Randomly select an instance from S with replacement
14 Append s to sample
15 end for
16 return sample
17 end function

18 function BuildDecisionTree(S, F)
19 if StoppingCriteriaMet(S) then
20 return a leaf node with the mean of y-values in S
21 end if
22
23 best_split← FindBestSplit(S, F)
24 left_subtree← BuildDecisionTree(S where instances match left side of best_split, F)
25 right_subtree← BuildDecisionTree(S where instances match right side of best_split, F)
26
27 return a node representing best_split with left_subtree and right_subtree as children
28 end function

29 function FindBestSplit(S, F)
30 best_score← infinity//Initialize with a very high value since we’re looking to minimize
error for regression
31 best_feature← null
32 best_threshold← null
33
34 for each feature f in F do
35 for each value v in f do
36 left_subset, right_subset← SplitData(S, f, v)
37 current_score← CalculateMSE(left_subset) + CalculateMSE(right_subset)
38
39 if current_score < best_score then
40 best_score← current_score
41 best_feature← f
42 best_threshold← v
43 end if
44 end for
45 end for
46
47 return best_feature and best_threshold as the best split
48 end function

49 function CalculateMSE(subset)
50 mean_value← Calculate mean of y-values in subset
51 mse←Mean of (y_i - mean_value)ˆ2 for each instance in subset
52 return mse
53 end function
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3.1.2. Extremely Randomized Trees (Extra Trees)

The extra trees algorithm leverages multiple decision trees and randomness to improve
model performance and generalization. Using random splits makes extra trees more
computationally efficient than random forest and more generalizable to an unseen dataset.
Extra trees, similar to random forest, constructs its ensemble without optimizing an explicit
objective function for the individual decision trees. Each tree is built in a highly randomized
fashion by selecting both features and splitting points randomly, which encourages diversity
among the trees. After building a large number of such trees, the extra trees algorithm
combines them by averaging their predictions to yield the final model. This averaging
process mitigates overfitting and enhances the generalization capability of the model,
leading to robust predictive performance. Figure 9 illustrates the decision tree procedure of
the extra trees models.
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Algorithm 2 shows the algorithm used in implementing the extra trees regression
model architecture.

3.1.3. Extreme Gradient Boosting (XGBoost)

XGBoost is a form of gradient boosting learning, in which the residual from one
decision tree is fed into the next one. As illustrated in Figure 10, XGBoost trains models
sequentially rather than separately, where each new model is trained to correct the weak-
nesses of the previous ones. The outcomes that were successfully predicted are given a
lower weight at each iteration, whereas the ones that were incorrectly forecasted are given
a higher weight [54]. In other words, the XGBoost uses a gradient descent algorithm to
minimize mistakes, which resembles how neural networks minimize the loss function
through an iterative process to optimize the model. In XGBoost, the feature importance can
be measured using SHAP (SHapley Additive exPlanations) values. SHAP values explain
the output of a model by computing the contribution of each feature to the prediction for
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each sample. In the SHAP summary plots provided later in this paper in the results section,
the blue and red dots represent the lower and higher impact on the model’s performance.

Algorithm 2 Pseudocode algorithm for extra trees

Precondition: A training set S:= (X_train, y_train), features F, and number of trees in forest B.
1 function Extra TreesRegression(S, F, B)
2 H← empty list // This will store all the individual trees
3 for i ∈ 1, . . ., B do
4 S(i)← BootstrapSample(S)//Generate a bootstrap sample from the original dataset
5 tree← BuildDecisionTree(S(i), F)
6 Append tree to H
7 end for
8 return H//Return the ensemble of trees
9 end function

10 function BootstrapSample(S)
11 sample← empty list
12 for i ∈ 1, . . ., length(S) do
13 s← Randomly select an instance from S with replacement
14 Append s to sample
15 end for
16 return sample
17 end function
18 function BuildDecisionTree(S, F)
19 if StoppingCriteriaMet(S) then
20 return a leaf node with the mean of y-values in S
21 end if
22
23 random_split← FindRandomSplit(S, F)
24 left_subtree← BuildDecisionTree(S where instances match left side of random_split, F)
25 right_subtree← BuildDecisionTree(S where instances match right side of random_split, F)
26
27 return a node representing random_split with left_subtree and right_subtree as children
28 end function

29 function FindRandomSplit(S, F)
30 random_feature← Randomly select a feature from F
31 random_threshold← Randomly select a value from random_feature’s values in S
32
33 return random_feature and random_threshold as the random split
34 end function

35 function CalculateMSE(subset)
36 mean_value← Calculate mean of y-values in subset
37 mse←Mean of (y_i-mean_value)ˆ2 for each instance in subset
38 return mse
39 end function

The objective function for XGBoost in the context of regression tasks is composed of
two primary components, as follows:

• Loss Function: This part measures the difference between the predicted value (ŷi) and
the actual value (yi) across all n training samples. The loss function (↕) can be any
differentiable function that quantifies the error of the model’s predictions.
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Regularization Term: This part penalizes the complexity of the model to avoid overfit-
ting. It is defined for a single tree ( ft) and involves the sum of a term linear in the number
of leaves in the tree (T) and a term quadratic in the leaf weights (ωj).

Obj(Θ, t) = ∑n
i=1
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where Θ represents the hyperparameter setting, ŷ(t−1)
i is the predicted value for the ith

observation at iteration t − 1, ft(xi) is the prediction of the new tree at iteration t, and Ω(ft)
is the regularization term for the iteration t, dependent on hyperparameters Θ, Y and λ as
regularization parameters, T as the total number of leaves in the tree, and ωj as the weight
of the jth leaf. The XGBoost regression model architecture was implemented using the
algorithm presented in Algorithm 3.

3.2. Model Comparison

Table 4 exhibits a comparison of the three techniques that were taken into consideration
in the present study, including random forest, extremely randomized trees (extra trees), and
extreme gradient boosting (XGBoost). By exploring the unique strengths and weaknesses
of each algorithm, the most significant features to explain pavement crack initiation and
propagation were identified. In the following table, scalability refers to the ability of the
model to handle augmented input datasets, e.g., more decision trees, both in terms of
training time and memory usage. Robustness refers to the ability of the model to handle
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noisy datasets with outliers. Versatility refers to the flexibility of a machine learning model
to handle different types of data and tasks such as classification, regression, clustering, and
anomaly detection [55].

Algorithm 3 Pseudocode algorithm for extreme gradient boosting

Precondition: A training set S:= (X_train,y_train), features F, and number of boosting rounds R.

1 function XGBoostRegression(S, F, R)
2 Initialize predictions P for all instances in S to a constant value (often the mean of y in S)
3 for r ∈ 1, . . ., R do
4 Compute the negative gradients (residuals) D based on the current predictions P
and true y-values
5 tree← BuildDecisionTree(S, F, D)
6 Update predictions P using the tree’s output values and a learning rate
7 end for
8 return Final model with R trees
9 end function

10 function BuildDecisionTree(S, F, D)
11 if Depth reaches maximum or other stopping criteria are met then
12 return a leaf node with the value that minimizes the objective (loss) function over D
13 end if
14
15 best_split← FindBestSplit(S, F, D)
16 left_subtree← BuildDecisionTree(S where instances match left side of best_split, F, D)
17 right_subtree← BuildDecisionTree(S where instances match right side of best_split, F, D)
18
19 return a node representing best_split with left_subtree and right_subtree as children
20 end function

21 function FindBestSplit(S, F, D)
22 best_gain← -infinity
23 best_feature← null
24 best_threshold← null
25
26 for each feature f in F do
27 for each value v in f do
28 Compute the gain (reduction in loss) if we split on feature f at value v over D
29 if computed_gain > best_gain then
30 best_gain← computed_gain
31 best_feature← f
32 best_threshold← v
33 end if
34 end for
35 end for
36
37 return best_feature and best_threshold as the best split
38 end function

3.3. Optimization Methods

Following the initial data selection from the LTPP database, pre-processing techniques,
including data cleaning, filtering, merging, and normalization, were applied to prepare
the final input dataset for the machine learning models. Evaluating various spectra of
optimization methods for hyperparameter tuning is advantageous for identifying the opti-
mal strategy for modeling crack progression, considering the diverse nature of previously
mentioned input features.
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Table 4. Comparing different aspects of machine learning models.

Attributes Random Forest Extremely Randomized Trees Extreme Gradient Boosting

Learning Method Ensemble learning Ensemble learning Ensemble learning–Gradient
boosting algorithm

Complexity Low to medium Low to medium Medium to high
Interpretability Medium Low to medium Low to medium
Scalability High High Medium to high
Robust-ness Medium Medium Medium to high
Versatility High High High

Regression Uses multiple trees; Average
results for Regression

Builds trees using the whole
dataset; Randomized
thresholds for splits

Sequentially adds trees; Each new
tree corrects predecessor errors

Optimization Technique Reducing variance through
averaging predictions

Reducing variance through
averaging predictions

Gradient boosting with
regularization terms

Base Learner Decision Trees Decision Trees Decision Trees or Linear Models
Handling Missing Data Imputation or surrogate splits Internally Sparsity-aware split finding

Hyperparameter tuning is the process of optimizing the parameters of a machine
learning model through exhaustive search [24,56]. Various methods were considered for
the hyperparameter tuning process to narrow down the range of values for each hyperpa-
rameter to the optimal output. The K-Fold cross-validation technique has been employed
across all optimization methods to evaluate the performance of the models. The process of
hyperparameter optimization is carried out using three methods. In traditional approaches
to optimization, such as grid search and random search, the process involves evaluating
the objective function throughout a predefined array of points. These points serve as
coordinates within the search space, in which the algorithm systematically or randomly
assesses the performance or suitability of potential solutions, aiming to identify the config-
uration that best satisfies the optimization criteria. Random search employs the stochastic
randomized search algorithm to explore a wide range of hyperparameter values, providing
a good starting point [57]. However, grid search utilizes a deterministic approach to assess
the nearby hyperparameter space for potential improvements in accuracy, ensuring a deep
evaluation of every parameter combination [58]. The Bayesian optimization approach was
also utilized as a more advanced method to efficiently determine the best hyperparameters
for each model utilizing a probabilistic objective function, which iteratively refines the
choice of hyperparameters based on previous results to achieve optimal performance [59].
In this study, a Gaussian process (GP) was adopted to estimate the objective function. A
Gaussian process establishes a prior distribution over functions, which is subsequently
refined with observed data into a posterior distribution over functions. This iterative refine-
ment process is articulated through a mean function and a covariance function k(x, x′). The
mean function, presenting the expected average performance metric across hyperparameter
space, can either be initialized at zero or tailored to reflect specific existing domain knowl-
edge. The covariance function, also referred to as the kernel, quantifies the relationship
in output between any two sets of hyperparameters, capturing our assumptions about
the function’s properties, such as smoothness and rate of change. Within the realm of a
finite set of hyperparameters, the Gaussian process previously suggests that the associated
performance metrics should follow a multivariate normal distribution.

GP(Θ) = (µ(Θ), σ2(Θ)) (4)

where

• µ(Θ) is the mean function estimating the expected performance metric for hyperpa-
rameters;

• σ2(Θ) represents the model’s uncertainty about the objective function’s value at
hyperparameters Θ, derived from the GP’s overall covariance structure, as determined
by the kernel function k(x, x′).
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The kernel function defines how the Gaussian process extrapolates the function values
from observed datapoints to unseen points in the hyperparameter space. Here, we will
briefly explain two commonly used kernels, including the radial basis function (RBF)
and the Matérn kernel. In this study, the RBF kernel was chosen due to its simplicity
and smoothness. The RBF kernel assumes that the similarity between two points in the
hyperparameter space decreases exponentially with the square of their distance. It is
defined as follows:

k(x, x′) = e−
||x−x′ ||2

2l2 (5)

where

• x and x′ are two points in the hyperparameter space;
• ||x− x′|| is the Euclidean norm (or L2 norm) of a vector between x and x′;
• l is the length scale parameter, which determines how quickly the correlation between

points decreases with distance. This parameter plays a crucial role in controlling the
GP’s flexibility. A small l makes the GP sensitive to small changes in the input space,
leading to a wigglier function. Conversely, a large l results in a smoother function.

To decide which point in the hyperparameter space to evaluate for the next hyperpa-
rameter combination, the Bayesian method uses an acquisition function that is derived from
the probabilistic model. The acquisition function balances the exploration of areas with
high uncertainty and the exploitation of areas with low predicted objective values, which
considers expected improvement (EI) changes. In the first step, the algorithm calculates the
improvement of the model, as shown in Equation (6).

I(x) = max
{

0, f (x)− f
(
x+

)}
(6)

where
f (x+) is the best hyperparameter combination selection so far, and f (x) at a new step

is defined on the training process.
The EI is the expected value of I(x) under the predictive distribution provided by

the Gaussian process, which, given its normal distribution, can be expressed analytically
as follows:

EI(x) =
(
µ(x)− f

(
x+

))
Φ(Z) + σ(x)ϕ(Z) (7)

where

• µ(x) is the predictive mean of f (x) given by the GP;
• σ(x) is the predictive standard deviation of f (x) given by the GP;
• Φ(Z) is the cumulative distribution function (CDF) of the standard normal distribution,

contributing to the expectation calculation by integrating over all possible improvements;
• ϕ(Z) is the probability density function (PDF) of the standard normal distribution,

contributing to the expectation of improvement by weighing the magnitude of the
potential improvement;

• Z is a standardized measure that allows the EI formula to balance the potential for
improvement (exploitation) against the uncertainty of that improvement (exploration),
given as follows:

Z =
µ(x)− f (x+)

σ(x)
i f σ(x) > 0, otherwise, Z = 0 (8)

Applying all three optimization strategies can be advantageous for managing big
datasets with multiple attributes in scenarios in which there is an expansive spectrum
of hyperparameters accompanied by a broad range of values for each parameter. These
insights can guide future endeavors in selecting the most effective optimization technique
tailored to each model’s needs. Table 5 demonstrates a comparative analysis of each of the
three optimization methods.
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Table 5. A comparison of different optimization algorithms.

Features Bayesian Grid Search Randomized Search

Search Type Probabilistic Deterministic Stochastic
Accuracy High Medium to High Medium

Computation Fast Slow Medium to Fast

Strategy Surrogate model-based
(e.g., Gaussian process)

User-defined (applicable to
various functions)

User-defined (applicable to
various functions)

Objective function Sequential model-
based optimization

Full factorial search over specified
parameter ranges

Random sampling of parameters
from specified distributions

Advantages Can handle noisy data Systematic exploration of
parameter space Less computationally intensive

Disadvantages Challenging to set priors Computationally intensive, not
scalable with dimensionality May miss optimal parameters

3.4. Evaluation Criteria

Transitioning from the optimization process, the authors selected four statistical met-
rics to assess the performance of each optimized model. The initial metric considered is the
coefficient of determination, R2, a measure of the variance proportion for the dependent
variable, presented in Equation (9). The second presented comparison metric is mean
squared errors (MSE), as shown in Equation (10), indicating the average squared difference
between the estimated values and the actual values. The third performance measure is the
mean absolute error (MAE), which is calculated using the formula shown in Equation (11)
and represents the average absolute difference between observed and predicted values.
The final statistical metric is root mean square error (RSME), which calculates the measure
of the magnitude of the prediction error and is presented in Equation (12). In the set of
equations below, yi is the actual value, ŷi is the predicted value by the model output, yi is
the mean of the actual values, and N is the total number of observations.

R2 = 1−∑N
i=1(yi − ŷi )

2

∑N
i=1(yi − yi )

2
(9)

MSE =
1
N

N

∑
i=1

(
yi − ŷi)

2 (10)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (11)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (12)

Described as follows is a summary of the sequential step-by-step framework that was
applied to developing all the machine learning models:

1. Data cleaning and preparation: The initial dataset may contain missing values,
outliers, or other errors that can affect the model’s performance. Data cleaning
involves identifying and correcting these issues to ensure that the data is consistent
and accurate.

2. Feature input selection: machine learning models rely on input features to make
predictions. Feature input selection involves selecting the most relevant features that
have the highest impact on the model’s performance. The authors performed MIFS
and correlation matrix analysis for the feature selection purpose.

3. Hyperparameter tuning: Three different approaches, including randomized search,
grid search, and Bayesian, were conducted to select the optimal combination of
parameters for each model.
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4. Fitting: Once the optimal hyperparameters and algorithm have been constructed, the
model can be fitted to the data. Also, 80% of the data was used for training, and the
remaining 20% was utilized for testing. The training and testing sets were consistently
maintained across all models fitting and evaluations processes to ensure uniformity
and comparability between different models.

5. Validation: To ensure that the model is accurate and reliable, it is essential to validate
the results by introducing testing subsets of the dataset to check its performance.

6. Performance Evaluation: MAE and R2 were evaluated to choose the best-performing
models in terms of prediction accuracy for both training and testing datasets.

4. Results

Ensemble learning methods are particularly useful for identifying important features
affecting output prediction. The crack initiation age (AgeCrack) is critical in understanding
and predicting pavement durability because it signifies the factors triggering pavement
degradation. Also, the crack propagation rate can be portrayed with the measured crack
per pavement area (WpCrAr). In the subsequent sections of this paper, the detailed results
of WpCrAr and AgeCrack analyses are presented, including the quantified impacts of the
various explanatory variables. The results include comparative plots of actual versus
predicted values for both training and testing datasets and the related kernel density
estimation (KDE) plots to visually compare the distributions of actual and predicted values.
A close alignment between KDE plots of actual and predicted value indicates a robust
prediction outcome.

4.1. Random Forest

As discussed in the methodology section, random forest models optimize and con-
struct each tree to maximize the accuracy of predictions on the training data. The random
forest model combines the predictions of multiple models (in this case, multiple decision
trees), and for each tree, the best split among a random subset of features is chosen at each
node. The variance in tree depth and structure across different predictions, as shown in
Figure 11, reflects the inherent ensemble nature of the random forest algorithm, which is
designed to capture a broad range of patterns in the data, thereby making the model robust
and accurate. More explicitly, when constructing each tree, the algorithm selects a subset of
features at each split, contributing to varying depths and structures.
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Figure 11. The depth of decision tree formation for three datapoints.

Figure 12a,b show the kernel density estimate plot for the training and testing datasets,
as well as their predicted vs. actual plot (c and d). It is shown that during the training
phase, the model is better at predicting the lower to middle range of wheel path crack
values. However, in the testing phase, the model is struggling to find a consistent fitting
and prediction pattern for the higher range of crack values. Overall, as evidenced by the
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density distribution plot, the performance of the model heavily depends on the range of
values and regularly overestimates the value of the crack.
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Figure 12. Comparative performance analysis of the random forest for wheel path crack per area
(WpCrAr) with the kernel density estimate (KDE) for the (a) training and (b) testing datasets, and
scatterplots of actual vs. predicted values for (c) training and (d) testing datasets.

Figure 13 shows the feature importance plot from the random forest’s prediction
output. The equivalent single axle load (ESAL), pavement age (Age), precipitation (Precip),
freeze–thaw cycles (FrzThaw), and original surface layer thickness (OslTh) are the most
significant feature inputs impacting the wheel path crack progression. The least influential
quantitative features are overlay thickness (OvrTh), air void on the wheel path of the overlay
layer (AvWp_Ovr), and VFA of the binder layer (VFA_Bi).

The random forest performance for “AgeCrack” prediction is shown in Figure 14, in
which the KDE plots for the training and testing datasets show a good alignment between
predicted and actual values. However, the scatterplot for the training data suggests a
perfect fit, which raises concerns about potential overfitting.

Figure 15 shows the feature importance plot from the random forest model, indicating
several key factors influencing the initiation of cracking in pavement sections. The pre-
cipitation (Precip), voids filled asphalt on the original surface and binder layers (VFA_Osl,
VFA_Bi), surface density (SurfDen), and ESALs are the most critical variables contributing
to early pavement distress. In contrast, OvrTh, AvWp_Ovr, and subbase thickness (SubbTh)
seem to have minimal impact at the initial cracking period.
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Figure 15. Feature importance plot for the crack initiation age (AgeCrack) under the random
forest model.

4.2. Extremely Randomized Trees (Extra Trees)

From the extra trees model, Figure 16a,b shows the KDE plot for the training and
testing datasets, as well as scatterplots of predicted vs. actual plots (c and d). When
analyzing the training set, the model finds a reliable fitting and prediction pattern, especially
for the lower to middle range of crack values. However, extra trees is better than random
forest in evaluating the testing set. Overall, the behavior of the model is more consistent
than random forest, although it slightly alternates between overfitting and underfitting
when dealing with the middle to high range of crack values.

Figure 17 shows the feature importance plot from the extra trees prediction output.
The number of layers (LyrC), Age, cumulative equivalent single axle load (ESAL), precipitation
(Precip), and freeze–thaw cycle (FrzThaw) are the most significant feature inputs impacting
the wheel path crack progression. The least influential features are AvWp_Ovr, AvWp_Bi,
and SubgrMat.

The extra trees model performance for “AgeCrack” prediction, as shown in Figure 18,
displays a tight overlap between predicted and actual values during training on the KDE
plot (a), suggesting a good fit. However, the KDE plot for the testing set reveals a slight
deviation, especially for lower values (below seven years). The training scatterplot shows
a good fit, while the testing scatterplot indicates a reasonable one as well. This model
outperforms random forest model predictions in terms of generalizability.

Analyses of the feature importance, depicted in Figure 19, reveal that precipitation
(Precip), surface layer temperature and density (SurfTmp, SurfDen), the number of layers
(LyrC), and original surface layer thickness (OslTh) are the predominant features influ-
encing crack formation in the early life of a pavement section. This finding aligns with
expectations, as increased precipitation would accelerate deterioration, while a denser
surface layer could potentially resist the initial cracking formation process. In contrast, air
void percentage (AvWp_Ovr, AvWp_Bi) appears to have negligible effects during this initial
period. The minimal impacts of air voids are plausible at this early stage, as compaction in
new pavements results in very low void content, and the cumulative effects of heavy loads
on subsurface layers have not yet accumulated.
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4.3. Extreme Gradient Boosting (XGBoost)

The XGBoost model is an optimized gradient-boosting algorithm that builds an en-
semble of decision trees, refining its predictions iteratively. Given that the predicted and
actual values have comparable distributions over the entirety of the cracking value range,
Figure 20a,b demonstrates that the model is performing exceptionally well in terms of
identifying the pattern of wheel path crack in the training dataset.
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As presented in Figure 21, the KDE plots (a and b) for the XGBoost model’s prediction
of “AgeCrack” show a good overlap between predicted and actual values in both training
and testing datasets, indicating the model is capturing the data distribution well. The
scatterplots (c and d), particularly for the training data, demonstrate a tight fit to the line
of perfect prediction, with very little deviation. However, the testing data scatterplot
shows more variance, with points deviating slightly, suggesting that the model performs
reasonably well.
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Analyses of feature importance for predicting wheel path cracking were conducted
using SHapley Additive exPlanations (SHAP) values from the XGBoost model, as presented
in Figure 22a. The SHAP summary plot reveals that ESALs, the number of layers (LyrC), Age,
precipitation (Precip), and original surface layer thickness (OslTh) are the major important
factors influencing the wheel path crack (WpCrAr). Features with greater prediction impact
are denoted by red dots; hence, the strong positive SHAP values for ESAL, Age, and Precip
indicate positive correlations with wheel path cracking. On the contrary, the majority of red
dots for LyrC, OslTh, and surface laydown temperature (SurfTmp) features have negative
SHAP values, which indicates a negative correlation with the output feature. The least
important quantitative features in the developed XGBoost model are overlay thickness
(OvrTh), voids filled asphalt of binder layer (VFA_Bi), and binder thickness (BiTh). These
findings are not unexpected, as increased traffic loads, aging, and moisture penetration
may accelerate cracking, while thicker surface layers and the increasing number of layers
may reduce the crack occurrence on pavement surfaces.
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(WpCrAr) and (b) crack initiation age (AgeCrack) from the XGBoost model.

Figure 22b shows the SHAP analysis of the AgeCrack feature from the XGBoost
model. The main factors influencing AC pavement cracking initiation are Precip, ESAL,
and VFA_Osl. The plot shows a rather strong negative correlation between BiTh and
AgeCrack, which indicates a thicker binder may result in an earlier crack initiation. How-
ever, the SHAP plot struggles to understand the expected correlation with VFA for the
original surface layer and overlay. Average ambient temperature (AvgTemp) has one of the
highest positive correlations with crack initiation, implying slower cracking in warmer
climates. The least important quantitative features, according to the SHAP summary plot,
are subbase thickness (SubbTh), air voids on the wheel path of the binder layer (AvWP_Bi),
and LyrC. This SHAP plot suggests that increasing the total number of layers in a section
might increase the long-term performance of pavement sections but has an insignificant
effect on cracking initiation time.

Table 6 provides a summary of significant insights into the most important features
influencing pavement performance across different models, particularly highlighting the
role of environmental elements. Precipitation emerges as a critical factor across different
prediction models, impacting the timing of crack initiation, as well as long-term cracking
propagation. Additionally, temperature-related features, such as SurfTmp and AvgTmp,
along with freeze–thaw cycles, are identified as influential, underscoring the complex inter-
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action between environmental conditions and pavement durability. ESAL, age, and LyrC
are pivotal for WpCrAr, with precipitation and freeze–thaw cycles also having significant
impact on the models’ prediction.

Table 6. A comparative analysis of the most important features for wheel path crack per area (WpCrAr)
and crack initiation age (AgeCrack) across three predictive models.

Random Forest Extra Trees XGBoost

Most Important Features

WpCrAr

1 ESAL LyrC ESAL
2 Age Age LyrC
3 Precip Precip Age
4 FrzThaw ESAL Precip
5 OslTh FrzThaw OslTh

AgeCrack

1 Precip Precip Precip
2 VFA_Osl SurfTmp ESAL
3 VFA_Bi SurfDen VFA_Osl
4 SurfDen LyrC AvgTmp
5 ESAL OslTh FrzThaw

5. Discussion

Climate factors, such as precipitation, temperature, and freeze–thaw cycles, can influ-
ence the occurrence and rate of crack progression by directly affecting the mechanical and
chemical properties of the pavement material. For example, precipitation can weaken soil
layers and result in stripping in asphalt layers, while temperature extremes can lead to soft-
ening, brittleness, thermal cracking, and improper compaction of the asphalt. Freeze–thaw
cycles can cause existing small cracks to expand and weaken the pavement’s foundation.
The pavement structure, including layer details and air void characteristics, also influences
crack development. Optimal layer thickness and composition can help distribute loads
effectively, slowing crack progression. However, increased air void content can lead to accel-
erated cracking due to decreased pavement strength and susceptibility to moisture damage.
Therefore, considering all these attributes together can provide a holistic understanding
of pavement cracking behavior and help develop more effective and long-term strategies
for pavement maintenance and rehabilitation purposes. Three ensemble learning models
have been investigated, utilizing pavement structure and construction details, material
characteristics, traffic load, and environmental factors from 367 unique pavement segments.
Table 7 presents the outcome of hyperparameter optimization employing randomized
search techniques, in addition to the fine-tuned results derived from the more extensive
grid search approach and the Bayesian method for all the ensembled models.

Table 7. Hyperparameter tuning results of randomized search (RS) *, grid search (GS) **, and Bayesian
(B ***) optimization methods for the machine learning models.

Random Forest Extra Trees XGBoost

Parameters RS * GS ** B *** RS GS B RS GS B

bootstrap False False False False False False - - -
max_depth 30 29 45 26 25 46 17 13 23
max_features sqrt sqrt log2 log2 log2 sqrt - - -
max_leaf_node None None None None None None - -
min_samples_leaf 1 1 1 1 1 1 - - -
min_samples_split 2 3 3 5 4 3 - - -
n_estimators 1200 1100 2000 2000 1900 2000 2300 1850 2700
subsample - - - - - - 0.8 0.7 0.75
min_child_weight - - - - - - 8 7 7
learning_rate - - - - - - 0.01 0.009 0.01
gamma - - - - - - 1.2 0.95 0.93
colsample_bytree - - - - - - 0.85 0.8 0.85
cross-validation 5 5 10 5 5 10 5 5 10
n_iter 500 - 38 500 - 28 500 - 30
total fits 2500 400 380 2500 675 280 2500 1500 300
time 7.5 min 14 min 18 min 4.5 min 10 min 12 min 12 min 35 min 15 min
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Table 8 compares various metrics that were used to evaluate the performance of
models on the training and testing datasets for wheel path cracking prediction, as well
as crack initiation age. After evaluating the wheel path crack (WpCrAr) prediction, it
was discovered that XGBoost performed preferably with the lowest prediction errors
(MSE = 3.862, MAE = 1.071, RMSE = 1.965) and the highest R2 score of 79.1% on the
testing dataset. The random forest model performed second-best, with lower errors
(MSE = 4.177, MAE = 1.115, RMSE = 2.044) and a higher R2 score (0.756) than extra
trees (0.751). While considering the predicted values of crack initiation age (AgeCrack), the
XGBoost model, optimized using the Bayesian approach, yielded the highest R2 value of
0.921 and the lowest errors (MSE = 1.603, MAE = 0.747, RMSE = 1.266), demonstrating its
superior predictive accuracy and consistency. The extra trees model, optimized with the
Bayesian method, generated the second-best results, with a high R2 of 0.909 and compar-
atively low error metrics (MSE = 1.839, MAE = 0.791, RMSE = 1.356), suggesting robust
predictive capabilities. Considering the data analysis results, it is notable that the XGBoost
model not only performs well for wheel path crack prediction but also excels in predicting
the age of crack initiation. It is important to consider the tradeoffs between model perfor-
mance and computational efficiency, especially when working with large datasets and a
high number of features. Having relatively identical performance to random forest, the
extra trees model is suggested, considering its faster optimization process, especially in
scenarios in which time/resource efficiency is a critical factor for the project.

Table 8. Comparing performance metrics of machine learning models on training and testing datasets
for wheel path crack per area (WpCrAr) and crack initiation age (AgeCrack).

XGBoost Extra Trees Random Forest

Optimization Random Search Grid Search Bayesian Random Search Grid Search Bayesian Random Search Grid Search Bayesian

Model I II III IV V VI VII VIII IX

W
pC

rA
r

Tr
ai

ni
ng R2 0.948 0.957 0.983 0.973 0.970 0.972 0.939 0.965 0.970

MSE 0.888 0.725 0.453 0.464 0.528 0.470 1.046 0.995 0.513
MAE 0.472 0.427 0.352 0.296 0.319 0.296 0.587 0.456 0.315
RMSE 0.942 0.851 0.673 0.681 0.727 0.686 1.022 0.997 0.716

Te
st

in
g R2 0.753 0.761 0.791 0.749 0.747 0.751 0.725 0.756 0.747

MSE 4.250 4.131 3.862 4.302 4.442 4.302 4.820 4.177 4.345
MAE 1.131 1.104 1.071 1.088 1.102 1.089 1.264 1.115 1.099
RMSE 2.061 2.032 1.965 2.074 2.107 2.074 2.195 2.044 2.084

A
ge

C
ra

ck

Tr
ai

ni
ng R2 0.952 0.961 0.987 0.993 0.990 0.992 0.968 0.994 0.999

MSE 0.373 0.270 0.117 0.152 0.190 0.156 0.535 0.484 0.002
MAE 0.293 0.248 0.173 0.195 0.218 0.195 0.291 0.200 0.019
RMSE 0.611 0.520 0.342 0.390 0.436 0.395 0.360 0.335 0.054

Te
st

in
g 0.883 0.891 0.921 0.902 0.905 0.909 0.865 0.896 0.907

MSE 1.855 1.777 1.603 1.839 1.979 1.839 2.190 1.766 1.874
MAE 0.807 0.780 0.747 0.790 0.804 0.791 0.930 0.781 0.765
RMSE 1.362 1.333 1.266 1.356 1.389 1.356 1.480 1.329 1.369

As shown in Figure 23, the difference between the training performance and the testing
performance can provide valuable insight into how models generalize to new datasets.
When analyzing “WpCrAr” as a target feature, the performance metrics of XGBoost closely
follow each other on both the training and testing sets, indicating that it generalizes the
best among all models.

In summary, the major factors ascertained through the relative importance feature of
the random forest, extra trees, and XGBoost methodologies show a strong consensus with
the prevailing understanding of pavement deterioration and performance. Throughout
an examination across all three models, it was concluded that age, ESAL, layer count,
precipitation, freeze–thaw cycles, and OslTh are the most significant factors that influence
the initiation of cracking and the long-term appearance of surface cracks on asphalt concrete
pavements. Other features with profound influence include precipitation, freeze–thaw
cycles, and the number of layers. While comparing the three models’ performance for the
“AgeCrack” target feature, XGBoost seems to provide a better balance between fitting the
training data and generalizing it to the testing data. It shows less evidence of overfitting
compared to the extra trees and random forest models, which both demonstrate a very
tight fit to the training data but greater deviation in the testing set. Although both models
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seem to have similar performance profiles, random forest’s testing predictions show a little
more spread, which could suggest slightly worse generalization compared to the extra trees
model. In terms of the performance of machine learning models, the incorporation of a
materials database for the subgrade and base layers as one-hot encoded features enhanced
the prediction accuracy by 15–20% across different models. This approach effectively
transformed the categorical data of different materials into a binary format that could be
efficiently processed by the models.
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6. Conclusions

The present research demonstrates the use of machine learning techniques with the
LTPP database to create models that effectively predict the propagation and initiation of
wheel path cracks (WpCrAr and AgeCrack) as pavement performance metrics. Inputs
such as structural design features, environmental conditions, traffic loads, construction
quality, and maintenance changes to pavement structure were analyzed. In conclusion, the
present research explored the intricacies of predicting pavement performance through a
comprehensive approach involving feature selection, machine learning techniques, and
meticulous model refinement. Key findings and their implications are as follows:
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1. To create a unified database, a unique SQL script was created that links various tables
extracted from the original LTPP dataset.

2. The mutual information feature selection was applied to narrow down the dimen-
sion of input by removing variables that did not contribute to model improve-
ment. The scatterplot matrix revealed no significant correlations among the vari-
ables, underscoring the complexity and varied nature of the factors influencing
pavement performance.

3. The ensemble learning techniques instantly outperformed linear regression methods,
demonstrating the capabilities of advanced machine learning technologies.

4. To achieve an even better prediction performance, three different optimization algo-
rithms, namely, random search, grid search, and Bayesian, were evaluated, resulting
in a total of nine models with various hyperparameter settings. The Bayesian opti-
mization approach offers the best balance between training and testing in terms of
prediction accuracy, as well as computational efficiency.

5. The most significant features that substantially affect the initiation and progression of
cracking over time were identified.

6. For WpCrAr, the XGBoost model optimized using the Bayesian method appears to
be the superior option, with the lowest errors (MSE = 3.862, MAE = 1.071) and the
highest R2 scores in both training (0.983) and testing (0.791).

7. For AgeCrack, the XGBoost model also achieved the highest prediction accuracy,
with an R2 value of 0.921 and the lowest error metrics (MSE = 1.603, MAE = 0.747,
RMSE = 1.266), proving its reliability and consistency.

8. Evaluating the best-trained models on WpCrAr (III, VI, VIII) revealed that ESALs
have been proven to be of the highest importance, despite displaying a surprising
negative Pearson correlation in the scatterplot matrix. In contrast to the correlation
analysis, the finding from the machine learning models output aligns significantly
better with the expected reality that traffic loads cause pavement deterioration. The
XGBoost model also revealed that pavement sections with a higher number of layers
and deeper original surface layers experienced lower crack propagation.

9. Future studies could focus on developing models that include more material data
such as stress–strain relationships or mean asphalt content in the pavement surface
layer. This would involve incorporating the principles of material science and the
mechanics of cracking to better understand the conditions leading to cracking and
employing neural network models, especially physics-informed models that are specif-
ically trained not only on data but also on the underlying physical laws governing
pavement deterioration.
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