
Citation: Hashmi, H.T.; Ud-Din, S.;

Khan, M.A.; Khan, J.A.; Arshad, M.;

Hassan, M.U. Traffic Flow

Optimization at Toll Plaza Using

Proactive Deep Learning Strategies.

Infrastructures 2024, 9, 87.

https://doi.org/10.3390/

infrastructures9050087

Academic Editor: Benedetto Barabino

Received: 14 March 2024

Revised: 26 April 2024

Accepted: 10 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

infrastructures

Article

Traffic Flow Optimization at Toll Plaza Using Proactive Deep
Learning Strategies
Habib Talha Hashmi 1, Sameer Ud-Din 1 , Muhammad Asif Khan 1 , Jamal Ahmed Khan 2 ,
Muhammad Arshad 2,* and Muhammad Usman Hassan 1

1 School of Civil and Environmental Engineering (SCEE), National University of Sciences and
Technology (NUST), Islamabad 44000, Pakistan; habib.tn20nit@student.nust.edu.pk (H.T.H.);
sameeruddin@nice.nust.edu.pk (S.U.-D.); muhammad.asif@nice.nust.edu.pk (M.A.K.);
usman.hassan@nice.nust.edu.pk (M.U.H.)

2 Department of Civil Engineering, University of Engineering and Technology (UET), Taxila 47080, Pakistan;
jamal.ahmed@uettaxila.edu.pk

* Correspondence: muhammadarshad@uettaxila.edu.pk

Abstract: Global urbanization and increasing traffic volume have intensified traffic congestion
throughout transportation infrastructure, particularly at toll plazas, highlighting the critical need
to implement proactive transportation infrastructure solutions. Traditional toll plaza management
approaches, often relying on manual interventions, suffer from inefficiencies that fail to adapt to
dynamic traffic flow and are unable to produce preemptive control strategies, resulting in prolonged
queues, extended travel times, and adverse environmental effects. This study proposes a proactive
traffic control strategy using advanced technologies to combat toll plaza congestion and optimize
traffic management. The approach involves deep learning convolutional neural network models
(YOLOv7–Deep SORT) for vehicle counting and an extended short-term memory model for short-
term arrival rate prediction. When projected arrival rates exceed a threshold, the strategy proactively
activates variable speed limits (VSLs) and ramp metering (RM) strategies during peak hours. The
novelty of this study lies in its predictive and adaptive capabilities, ensuring efficient traffic flow
management. Validated through a case study at Ravi Toll Plaza Lahore using PTV VISSIMv7,
the proposed method reduces queue length by 57% and vehicle delays by 47% while cutting fuel
consumption and pollutant emissions by 28.4% and 34%, respectively. Additionally, by identifying
the limitations of conventional approaches, this study presents a novel framework alongside the
proposed strategy to bridge the gap between theory and practice, making it easier for toll plaza
operators and transportation authorities to adopt and benefit from advanced traffic management
techniques. Ultimately, this study underscores the importance of integrated and proactive traffic
control strategies in enhancing traffic management, minimizing congestion, and fostering a more
sustainable transportation system.

Keywords: intelligent transportation system; variable speed limits; ramp metering and deep learning;
YOLOv7–Deep SORT and LSTM

1. Introduction

Traffic congestion is a global asset planning and management challenge driven by
urban sprawl and rapid traffic growth. Traffic congestion on highways, including at
toll plazas, led to the loss of over 4.3 billion hours of commuter time and resulted in a
productivity loss exceeding 101 billion USD in 2020 [1]. Similarly, the European Commission
estimates an annual cost of over 110 billion EUR due to highway congestion, accounting for
1% of Europe’s GDP [2]. Pakistan’s motorway and highway network carry approximately
80% of the total traffic. Therefore, congestion at toll plazas on motorways and highways
imposes a significant cost [3,4]. Moreover, vehicular emissions and local air pollution
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concentrations are generally higher when vehicles are queued at toll plazas or in stop-and-
go traffic compared to free-flowing conditions [5,6]. Consequently, high-demand-induced
traffic congestion at toll plazas significantly impacts travel time [7] and infrastructure
mobility and triggers severe environmental [8,9], social, and economic repercussions [10].

Toll plazas play a pivotal role in contemporary transportation systems, functioning
as gateways that ensure traffic fluidity and generate revenue through toll fees. These
are critical for maintaining and expanding essential road networks. However, these toll
plazas often encounter challenges linked to traffic congestion, resulting in lengthy queues,
prolonged travel times, and adverse environmental impacts. Intelligent transportation
systems (ITSs) have been proposed with advances in artificial intelligence (AI) to manage
traffic flow efficiently and reduce congestion. For instance, studies have proposed control
measures to optimize traffic flow and reduce congestion. Some studies mainly focused
on implementing strategies like electronic toll collection (ETC), lane configuration, and
freeway capacity control techniques to optimize traffic flow and mitigate congestion at toll
plazas. However, these solutions to alleviate traffic congestion encounter high costs, right-
of-way (ROW) issues, technical complexities, and inadequate real-time toll plaza capacity
consideration. Failure to account for current traffic conditions at toll plazas can result
in inefficient traffic management systems, leading to congestion and delays, particularly
during peak hours.

Identifying the limitations of previous approaches and aiming to mitigate adverse
toll plaza congestion, this study proposes a novel proactive traffic control approach for
preemptive management of traffic demand and flow at toll plazas. The first phase of this
proactive strategy entails accurate vehicle counting through video cameras. This study
utilizes two deep learning convolutional neural network (CNN) models: YOLOv7 and
Deep SORT. YOLOv7 handles vehicle detection, accurately recognizing vehicles within a
frame, while Deep SORT manages vehicle tracking across consecutive frames. Subsequent
postprocessing refines the models’ outcomes to ensure accurate vehicle counting and
calculation of the arrival rate. For better traffic management, this study examines variations
in arrival rates across weekdays. It utilizes the long short-term memory (LSTM) model for
short-term predictions of arrival rates within the next 15 min.

This predictive model aids in estimating the anticipated vehicle arrival rate, thus
facilitating real-time traffic management. A combination of variable speed limits (VSLs)
and ALINEA ramp metering (RM) control strategies are implemented at the toll plaza
when the arrival rate exceeds a predefined threshold to regulate vehicle flow during peak
hours. The primary objectives of this study encompass a comprehensive approach to
traffic demand management and environmental sustainability. It aims to optimize traffic
demand through proactive strategies like ramp metering to regulate the merging rate
of vehicles onto the main freeway lanes and prevent excessive queue formation at toll
plazas. Integrating variable speed limits (VSLs) allows real-time adjustments to speed
limits, ensuring smoother traffic flow. Furthermore, the study seeks to minimize the
environmental impact of congestion by optimizing traffic flow, thereby decreasing fuel
consumption and emissions through reduced idling and stop-and-go traffic. It ultimately
contributes to a more sustainable and eco-friendly transportation system.

The case study focused on the Ravi Toll Plaza in Lahore to validate the efficiency of
the proposed control strategy. This toll plaza stands as one of the country’s busiest, located
at the exit of the M-2 motorway connecting the major metropolitan cities of Lahore and
Islamabad. Given its substantial traffic volume and diverse traffic patterns, it is an ideal
testing ground for the proposed control strategy. This investigation employs PTV-VISSIMv7
to replicate outcomes. A VISSIMv7 model was formulated for Ravi Toll Plaza, and the
control strategy algorithm was integrated using VisVAP 2.16 software. This simulation
offers a realistic environment to evaluate the proposed control strategy’s effectiveness and
influence on traffic flow.

The study compares various scenarios for simulation results: the existing condition,
VSLs only, RM only, and the proposed strategy (i.e., both VSLs and RM). It demonstrates



Infrastructures 2024, 9, 87 3 of 23

a comparative analysis wherein the proposed strategy outperforms all other scenarios. It
offers the most efficient and practical approach to traffic flow management at Ravi Toll
Plaza and potentially other similarly busy toll plazas. The results validate the significance
of combining advanced computer vision (YOLOv7–Deep SORT), predictive modeling
(LSTM), and control strategies (VSL–RM) to enhance traffic management and optimize toll
plaza operation.

This article is organized into several sections that explore various aspects of traffic
flow estimation, proactive control strategies, and their implementation. The Literature
Review section provides insights into current research on traffic flow estimation techniques,
highlighting advancements in deep learning models for traffic demand forecasting. The
Methodology section outlines traffic flow estimation methodologies and the application
of proactive control strategies, including variable speed limits and ramp metering. Subse-
quently, the Simulation Model Development section presents the study site, data collection
methods, and the development and calibration of simulation models. The Results and
Discussion sections analyze the impact of proposed strategies on traffic and environmental
factors, while recommendations and limitations offer insights into practical implications
and potential avenues for future research. Finally, the Conclusions section summarizes
key findings.

2. Literature Review

Numerous studies have investigated and optimized toll plaza operations using dif-
ferent tools and simulation software. Most studies used PTV VISSIM microsimulation
software to model toll operations [11–13]. Similarly, Oskarbski et al. used PTV VISSIM
software to analyze the toll plaza’s safety, traffic efficiency, and driver behavior [14]. At the
same time, some studies modeled microsimulations based on the PARAMICS program [15].
The TPSIM microsimulation program was also used to model toll booth areas [16].

Additionally, microsimulation models within VISSUM software were used by
Aksoy et al. and Xing et al. to analyze toll booth performance and mitigate traffic congestion
effects [17,18]. Xing et al. built an optimization model to configure a toll lane that considers
various payment methods and vehicle-type proportions [18]. Özdemir et al. showcased
decreased delay values with electronic toll collection over manual toll booths [19]. Fur-
thermore, microsimulations have effectively demonstrated their utility in evaluating toll
plazas using traffic control strategies such as plate recognition technology [20], separating
passenger cars and heavy vehicles [20,21] and employing ETC system applications [22].

Traditional transportation studies relied on specialized sensors such as magnetic coils
and ultrasonic detectors for vehicle counting. However, these sensors have limitations
in capturing detailed information and are expensive to install [23]. The advancement in
computer vision and image processing technologies offers video-based vehicle counting
with a wider range of traffic parameters, including vehicle category, density, and speed.
These are cost-effective, easy to install, and simple to maintain [24]. The computer vision
method for vehicle counting encompasses three integrated procedures: detection, tracking,
and trajectory processing [25].

Detection-based methods encompass four main categories, which are frame differ-
ence [26], optical flow [27], background subtraction (BS) [28], and convolutional neural
networks (CNNs) [29]. CNNs have emerged as a popular object detection technique,
achieving significant advancements in vehicle detection and tracking [30]. Utilizing GPUs,
CNNs have become the leading approach for accurate vehicle detection and classification,
effectively handling complex appearance changes and occlusions [31]. Researchers have
extensively employed CNN-based approaches for vehicle counting. For instance, Alghya-
line et al. proposed a YOLO-based approach for object detection combined with Kalman
filtering and the Hungarian algorithm for tracking [32]. Xiang et al. presented a vehicle
counting framework using aerial videos from UAVs, offering flexibility in deployment and
a larger perspective for traffic monitoring compared to traditional sensors [33].
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Similarly, Z. Dai et al. developed a video-based vehicle counting framework com-
prising object detection, tracking, and trajectory processing, yielding accurate traffic flow
data [23]. Mandal and Adu-Gyamfi explored video-based vehicle counting through ob-
ject detection and tracking algorithms, achieving precise counts with YOLOv4 and Deep
SORT [25]. Leveraging the development of YOLOv5, Ren and Chen proposed a deep
learning model based on YOLOv5 and Deep SORT for vehicle detection and tracking,
resulting in enhanced accuracy [34].

Vehicle detection and classification advancements significantly enhance proactive
freeway traffic control strategies, improving traffic efficiency and safety throughout existing
infrastructure. These controls utilize real-time data, coordinating various methods based
on short-term traffic flow forecasting to manage demand and mitigate accident risks [35].
For instance, Anjaneyulu and Kubendiran’s proposed study presents a hybrid Xception
support vector machine (XPSVM) classifier model with a high accuracy rate for short-term
traffic congestion prediction [36]. Abdullah et al. proposed a bidirectional recurrent neural
network (BRNN) using gated recurrent units (GRUs) for simulating and forecasting traffic
congestion in smart cities, aiming to improve traffic management efficiency [37].

Various strategies, such as VSL, ramp metering (RM), and integrated controls, have
emerged recently. For example, Oskarbski et al. used surrogate safety measures and
simulation techniques to analyze how VSLs impact motorways and expressways [38]. Ad-
ditionally, a methodology had been proposed using surrogate safety measures to assess
the effects of ramp metering and other ITS services on traffic safety and efficiency across
different road network scales [39]. Similarly, Joo and Lim proposed an intelligent traffic
signal control system using deep Q-network reinforcement learning to optimize signal se-
quencing, aiming to alleviate traffic congestion by maximizing throughput and considering
queue length standard deviation as reward parameters [40].

Many researchers proposed VSLs combined with other ITS techniques; for instance,
Frejo et al. designed a VSL method based on a second-order discrete macroscopic traffic
model, META-NET, analyzing VSLs’ impact on freeway traffic flow by accounting for
segment capacities, critical densities, and driver compliance [41], and Han et al. proposed
VSL control with ITS control strategies using reinforcement learning methods [42]. Similarly,
Fares et al. used reinforcement learning to coordinate VSL and RM controls, alleviating
freeway network congestion [43]. Han et al. integrated future traffic flow predictions and
applied a discrete first-order model to predict future traffic flow and optimize freeway
variable speed limits (VSLs) [44,45].

Similarly, Vrbanić et al. proposed a CD-QL-DPVSL control approach that demonstrates
improved traffic management and safety on urban motorways through dynamic congestion
detection and variable speed limit optimization using connected autonomous vehicles [46].
Moreover, Gregurić et al. proposed STM-QL-DVSL algorithm leverages Q-learning and
speed transition matrices (STMs) with CAVs to optimize variable speed limit control,
surpassing other strategies by adapting dynamically to various traffic scenarios [46].

Limited research has focused on proactive traffic control at freeway toll plazas.
Zhou et al. LSTM predicted traffic flow and implemented proactive control strategies,
including variable speed limits (VSLs) and lane configuration before toll plazas [47]. Mean-
while, both Spiliopoulou et al. and Papageorgiou et al. proposed a comprehensive con-
ceptual framework for real-time merging traffic using the local ALINEA RM strategy,
improving toll plaza efficiency by reducing vehicle delay and queue length. The framework
demonstrated practical applicability [48,49]. Yuan proposed an integrated VSL–RM control
strategy to enhance freeway mainline efficiency [50]. This strategy coordinates traffic flow
between the mainline and toll plaza, adjusting traffic density in the mainline merging zone.

The literature review reveals significant research gaps in vehicle counting and traffic
management at toll plazas in developing countries. The use of deep learning CNN models
for vehicle counting encounters limitations in efficiency, especially with low-resolution
videos, making accurate counting a challenge in such surveillance footage. Secondly, some
studies propose increasing the number of lanes for toll plaza optimization. However,
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this solution can be costly and may encounter right-of-way (ROW) issues, particularly in
densely populated regions. Thirdly, specific approaches involve configuring lanes based
on vehicle classification and payment methods like ETC and MTC.

However, challenges arise when MTC-equipped vehicles use ETC lanes and vice versa
due to a lack of awareness and education among the population in developing countries.
Lastly, some research offers proactive control solutions using RM and VSLs to manage
freeway or mainline capacity without considering the actual real-time capacity at the
toll plaza. Neglecting the current traffic load at the toll plaza can lead to an inefficient
traffic management system, causing congestion and delays, particularly during peak hours.
Furthermore, implementing these strategies in developing countries has been inflexible,
with some lacking a well-defined implementation scheme.

Our proposed study addresses the limitations of previous approaches. It employs
the latest YOLO, YOLOv7, in conjunction with Deep SORT to achieve high accuracy in
vehicle detection, tracking, and counting. Additionally, this study proposes an integrated
control method to implement variable speed limits (VSLs) and ramp metering (RM) while
considering real-time capacity at the toll plaza area.

Dynamically adjusting traffic flow by VSLs and regulating vehicle entry via RM, this
proactive approach aims to reduce delays and congestion during peak hours, leading to a
smoother traffic experience for motorway commuters at the toll plaza section. Moreover,
the study provides a well-defined implementation scheme, demonstrating its feasibility and
ease of installation in developing countries. This comprehensive strategy holds significant
promise in optimizing toll plaza operations, addressing unique challenges, and benefiting
travelers and toll operators alike.

3. Methodology

The methodology encompasses data collection using high-resolution cameras for toll
plaza traffic footage, followed by preprocessing steps to align frames and standardize
resolution for optimal input into the YOLOv7 object detection model. Subsequently, the
Deep SORT algorithm is employed for robust vehicle tracking across frames, utilizing
deep appearance features to maintain identity consistency. After YOLOv7–Deep SORT,
the LSTM (long short-term memory) model is incorporated to predict short-term traffic
patterns based on historical data, enhancing the understanding of dynamic traffic behavior.
Concurrently, an integrated control method is developed using traffic data from YOLOv7–
Deep SORT and LSTM to implement variable speed limits (VSLs) and ramp metering
(RM) strategies, optimizing traffic flow dynamics at the toll plaza area. The proposed
proactive traffic control method operates in a time-step manner. It estimates the current
traffic state at the toll section and uses it to predict future traffic demand. Based on these
predictions, the control system determines the appropriate actions to regulate traffic flow
effectively. Figure 1 visually represents the entire control process of the proposed strategy.
The following subsection explains the methodology in detail.

3.1. Current Traffic Flow Estimation

This study utilizes the YOLOv7 deep-learning detection algorithm and the Deep SORT
tracker for vehicle counting. YOLOv7 is known for its speed and accuracy in real-time object
detection tasks among the YOLO family [51]. It employs convolutional neural networks
(CNNs) with an efficient network architecture, leading to better feature integration and
more precise object detection. Additionally, it uses a more robust loss function, improves
label assignment, and enhances model training efficiency [51]. In contrast, the Deep SORT
algorithm is an advanced object-tracking approach incorporating appearance information
through a ReID model. This integration enhances tracking accuracy and reduces ID
switching, resulting in more robust and accurate object-tracking results [52].

The proposed approach combines YOLOv7 for vehicle detection in video frames,
providing bounding box information for each detected vehicle. These detected vehicles
are then processed by Deep SORT, which assigns a unique ID to each bounding box across
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frames, ensuring consistent and accurate tracking of individual vehicles. With this com-
bined approach, vehicle counting is achieved by tracking the exact vehicle across multiple
frames, counting it only once. Additionally, the proposed technique performs vehicle
classification detection, enabling the counting of vehicles with their specific classifications
(i.e., cars, trucks, buses). As a result, vehicles with their classifications are counted for each
time interval, and the arrival rate for each interval is estimated. This approach provides
a powerful solution for accurate and efficient real-time flow-rate estimation, as shown in
Figure 2.
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3.2. Future Traffic Demand Prediction

Following estimation of the current flow rate at the toll plaza for every 15 min interval,
the LSTM model underwent training by analyzing distinct trends for each day of the week
to predict traffic flow for subsequent intervals. LSTM is a type of recurrent neural network
(RNN) architecture specifically designed to handle long-term dependencies in sequential
data—a challenge that traditional RNNs often encounter [53]. Throughout the training
phase, the model learned patterns and characteristics unique to each day of the week
individually. Consequently, the model was utilized to predict traffic flow for upcoming
time intervals based on these learned trends. Upon completion of the training process, the
model’s performance was evaluated using a testing dataset.
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3.3. Implementing Proactive Control Strategies

After predicting the short-term future traffic flow, proactive traffic control strategies,
namely, variable speed limits (VSLs) and ramp metering (RM), were implemented in
advance. These control measures aim to mitigate future congestion and ensure smooth
traffic flow at the toll section. When the predicted flow is projected to exceed 2500 vehicles
per hour, the system implements variable speed limits (VSLs). It involves adjusting the
speed limits displayed on overhead signs to encourage smoother traffic flow and prevent
congestion. If the predicted flow is anticipated to surpass 3400 vehicles per hour, ramp
metering (RM) comes into play, and a combination of VSLs and RM is implemented to
control the traffic situation efficiently. The following are brief descriptions of applied control
strategies, i.e., VSLs and RM.

3.3.1. Variable Speed Limit Control

The proposed methodology utilizes variable speed limits (VSL) to efficiently control
congestion at toll sections. Real-time data analysis dynamically adjusts speed limits con-
cerning traffic conditions. The fundamental model of traffic flow theory, which establishes a
connection between traffic flow q, traffic speed u, and traffic density ρ through the equation
q = ρxu, is utilized. The core equation derived from the Lighthill–Whitham–Richards (LWR)
traffic model is employed and expressed as Equation (1):

ρ(x, t) + ∂(ρu (x, t))/∂x = 0 (1)

where:
ρ(x, t) represents the traffic density at location x and time t.
u (x, t) denotes the traffic velocity at location x and time t.
Based on this model, VSLs are calculated using Equation (2):

VSL(x, t) = u_max − (q(x, t)− q_min) ∗ (u_max − u_min)/
(

qcrit − q_min
)

(2)

where:
VSL(x, t)—variable speed limit at location x and time t.
u_max—maximum speed limit under ideal traffic conditions.
u_min—minimum speed limit (often set to 0 to represent stopped traffic).
q(x, t)—flow rate of vehicles at location x and time t.
q_min—minimum flow rate.
qcrit—critical flow rate, representing the threshold beyond which congestion begins to

build up.
The proposed methodology continuously applies the traffic flow equation and updates

the VSL values based on the real-time flow-rate data, as shown in Equation (2). It regulates
traffic flow, optimizes travel conditions, and prevents congestion buildup in the upstream
area of toll plaza sections. The proposed approach is visually represented in Figure 3.

3.3.2. Ramp Metering Control

The proposed strategy also includes ramp metering to regulate the entry of vehicles
onto freeways through on-ramps. The fundamental objective of ramp metering is to
improve the overall freeway throughput and maintain a smoother traffic flow by using
traffic signals at the on-ramps. In this study, the chosen ramp metering strategy is ALINEA,
widely recognized for its adaptive and proactive approach to handling fluctuating traffic
conditions. ALINEA ramp metering uses the following equation for calculating the ramp
metering rate [54]:

r(k) = r(k − 1) + K ∗ [
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K—regulator parameter (smoothing factor).
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Initially, the measurement of traffic outflow Oout(k) on the main freeway near toll plaza
sections was undertaken using mainline sensors for the current time step k. The second
step is calculating the difference between the desired rate and the measured or current
occupancy Oout(k) at toll plaza sections. The negative sign ensures the system matches the
desired rate with the outflow. In the third step, the difference is multiplied by the control
gain K. The control gain represents the ramp metering system’s sensitivity to changes
in traffic conditions. Higher values of K indicate a more aggressive adjustment of the
ramp metering rate, while lower values result in a more gradual response. In the last
step, the product of K and the difference in occupancies to the previous ramp metering
rate r(k − 1) is added to obtain the new ramp metering rate r(k), which is then sent to
the signals. Through signals, the entry of vehicles on the freeway to approach toll plaza
sections is controlled, as shown in Figure 4. Through the iterative application of this control
mechanism at each step, the ramp metering system can continuously adapt and regulate
the rate of vehicle entry onto the freeway.

Infrastructures 2024, 9, x FOR PEER REVIEW 8 of 24 
 

 
Figure 3. Framework for variable speed limit. 

3.3.2. Ramp Metering Control 
The proposed strategy also includes ramp metering to regulate the entry of vehicles 

onto freeways through on-ramps. The fundamental objective of ramp metering is to im-
prove the overall freeway throughput and maintain a smoother traffic flow by using traffic 
signals at the on-ramps. In this study, the chosen ramp metering strategy is ALINEA, 
widely recognized for its adaptive and proactive approach to handling fluctuating traffic 
conditions. ALINEA ramp metering uses the following equation for calculating the ramp 
metering rate [54]: r(k)  =  r(k − 1)  +  K ∗  ȏ –  Oout(k)  (3)

where: r(k)—current ramp metering rate in seconds. r(k − 1)—previous iteration ramp metering rate in seconds. 
K—regulator parameter (smoothing factor). ȏ—desired downstream occupancy. 
Oout(k)—measured occupancy in vehicles per mile. 
The proposed mechanism for ramp metering control is through a series of steps. Ini-

tially, the measurement of traffic outflow Oout(k) on the main freeway near toll plaza 
sections was undertaken using mainline sensors for the current time step k. The second 
step is calculating the difference between the desired rate and the measured or current 
occupancy Oout(k) at toll plaza sections. The negative sign ensures the system matches 
the desired rate with the outflow. In the third step, the difference is multiplied by the 
control gain K. The control gain represents the ramp metering system’s sensitivity to 
changes in traffic conditions. Higher values of K indicate a more aggressive adjustment of 
the ramp metering rate, while lower values result in a more gradual response. In the last 
step, the product of K and the difference in occupancies to the previous ramp metering 
rate r(k - 1) is added to obtain the new ramp metering rate r(k), which is then sent to the 
signals. Through signals, the entry of vehicles on the freeway to approach toll plaza sec-
tions is controlled, as shown in Figure 4. Through the iterative application of this control 
mechanism at each step, the ramp metering system can continuously adapt and regulate 
the rate of vehicle entry onto the freeway. 

Figure 3. Framework for variable speed limit.
Infrastructures 2024, 9, x FOR PEER REVIEW 9 of 24 
 

 
Figure 4. Ramp metering at on-ramps. 

4. Simulation Model Development 
4.1. Study Site 

The selected site for this study is the Ravi Toll Plaza in Lahore, Pakistan, which serves 
as a hybrid toll plaza on the M-2 motorway, connecting two metropolitan cities: Islamabad 
and Lahore. This toll plaza encompasses 540 m, including diverging and merging sections. 
It comprises 25 lanes, with 15 designated for traffic bound for Lahore and 10 for traffic 
headed to Islamabad. The individual toll booths span a length of 140 m. This study aimed 
to effectively create a realistic and representative model of the Ravi Toll Plaza in PTV VIS-
SIMv7 by incorporating geometric details. 

All interchanges along the M-2 have been upgraded with an M-Tag (ETC) system for 
toll payment, and public awareness remains an issue that impacts system efficiency. Var-
iable message signs (VMSs) are installed before the toll booths and can display lane types, 
such as ETC or MTC. The current study focuses exclusively on traffic flow in the exit di-
rection, especially Lahore-bound. The site location is shown in Figure 5. 

 
Figure 5. Study site: Ravi Toll Plaza, Lahore. 

4.2. Data Collection and Analysis 
Video cameras were positioned to gather data at the toll plaza’s diverging section 

outsets, capturing vehicle trajectories. These data enabled the recognition of traffic pat-
terns and the prediction of traffic flow and composition at the studied toll plaza section. 
The video footage spans a week, encompassing 168 h from 30 January to 5 February 2017. 
The decision to record video footage spanning a week was deliberate: to capture compre-
hensive traffic patterns allowing for identification of peak hours and overall trends over a 
typical week. The selection of a camera angle at approximately 30 degrees relative to the 
vehicles’ travel direction was strategic. This angle provided an optimal view of the toll 

Figure 4. Ramp metering at on-ramps.



Infrastructures 2024, 9, 87 9 of 23

4. Simulation Model Development
4.1. Study Site

The selected site for this study is the Ravi Toll Plaza in Lahore, Pakistan, which serves
as a hybrid toll plaza on the M-2 motorway, connecting two metropolitan cities: Islamabad
and Lahore. This toll plaza encompasses 540 m, including diverging and merging sections.
It comprises 25 lanes, with 15 designated for traffic bound for Lahore and 10 for traffic
headed to Islamabad. The individual toll booths span a length of 140 m. This study aimed
to effectively create a realistic and representative model of the Ravi Toll Plaza in PTV
VISSIMv7 by incorporating geometric details.

All interchanges along the M-2 have been upgraded with an M-Tag (ETC) system
for toll payment, and public awareness remains an issue that impacts system efficiency.
Variable message signs (VMSs) are installed before the toll booths and can display lane
types, such as ETC or MTC. The current study focuses exclusively on traffic flow in the exit
direction, especially Lahore-bound. The site location is shown in Figure 5.
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4.2. Data Collection and Analysis

Video cameras were positioned to gather data at the toll plaza’s diverging section
outsets, capturing vehicle trajectories. These data enabled the recognition of traffic patterns
and the prediction of traffic flow and composition at the studied toll plaza section. The
video footage spans a week, encompassing 168 h from 30 January to 5 February 2017. The
decision to record video footage spanning a week was deliberate: to capture comprehensive
traffic patterns allowing for identification of peak hours and overall trends over a typical
week. The selection of a camera angle at approximately 30 degrees relative to the vehicles’
travel direction was strategic. This angle provided an optimal view of the toll plaza’s
diverging area and supported our tracking algorithm (Deep SORT), enabling accurate
vehicle tracking and trajectory prediction. The high quality of the recorded video, with
dimensions of 720 pixels (width) by 480 pixels (height) and a frame rate of 29.5 frames per
second, ensures clarity and precision in vehicle movement analysis.

Furthermore, our approach involved segmenting the collected data into 15 min inter-
vals to facilitate detailed analysis of traffic flow dynamics. This granularity was essential
for identifying peak traffic periods and served as input for the proposed LSTM (long
short-term memory) model. Our LSTM model was trained to predict the arrival rate
for the next 15 min by leveraging temporal traffic data, mainly focusing on peak hours.
These considerations collectively formed a robust data collection framework tailored to our
study objectives.

Once the camera videos were collected, preprocessing, decoding, frame resizing, and
normalization were executed. Subsequently, the preprocessed videos were used as input
for the YOLOv7–Deep SORT algorithm. This methodology enabled the acquisition of traffic
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counts for every 15 min interval. This process involved handling 168 videos, each spanning
1 h, culminating in the outcomes. A screenshot of the output video is shown in Figure 6.
The result showed distinct traffic patterns. During weekdays, the morning and evening
peaks start at 0800 and 1700 h, respectively. However, the morning and evening peaks
begin at 1000 and 1900 h on weekends. The trend is shown in Figure 7. On weekdays,
the observed maximum flow rate is 3400 vehicles per hour, whereas weekends witness a
3800 vehicles per hour flow rate, especially on Sundays.
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Further data analysis revealed four distinct traffic flow trends. From Monday morning
until Thursday, a consistent flow pattern prevails. Fridays show a noticeable deviation in
flow pattern behavior, indicating a distinct traffic dynamic. Saturdays exhibit a unique
flow trend distinct from weekdays, Fridays, and Sundays. Sundays display a flow trend
entirely different from the rest of the week, as shown in Figure 8. Additionally, the
results of mode share analysis showed that across the entire week, 81.85% of incoming
vehicles were passenger cars, while 10.8% constituted trucks and 7.3% were buses. Whereas
these mode shares varied over time, the proportion of trucks and buses slightly increased
during nighttime.
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To evaluate the accuracy of the proposed traffic counting method, the vehicle counts
obtained through this approach are compared with manually calculated counts. The process
involved manually counting the number of vehicles passing through 15 min videos under
different weather conditions, and these counts were then compared with the estimated
counts derived through the proposed methodology. The outcomes of this comparison
indicated a substantial degree of accuracy achieved by our approach. Significantly, under
normal daylight conditions (sunlight), the approach exhibited an impressive accuracy of
91%. However, the accuracy dropped in other scenarios, with accuracy rates of 87% during
morning dawn, 85% during evening twilight, 81% during the night, and 68% in foggy
morning conditions, as shown in Table 1.

Table 1. Arrival rate profiles of Monday, Friday, Saturday, and Sunday.

Weather
Condition

Vehicle
Type

Manual
Counts

Proposed
Method

Percentage
Error (%)

Sunlight Car 262 266 98.5
Truck 37 42 88.0
Bus 20 17 85.0

Morning Dawn Car 140 137 93.0
Truck 16 19 84.0
Bus 6 4 83.3

Evening
Twilight Car 287 264 92.0

Truck 32 38 82.0
Bus 21 17 80.0

Night Car 250 240 94.0
Truck 39 45 86.6
Bus 27 17 63.0

Fog Car 112 62 55.4
Truck 13 17 76.5
Bus 7 5 71.4

Rain Car 160 130 81.2
Truck 21 16 76.2
Bus 11 4 36.0
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Moreover, to enhance the comprehension of the accuracy achieved by the proposed
counting approach, confusion matrices are utilized to evaluate the classification of vehicles
and ascertain how effectively they have been counted. An illustration of the confusion
matrix for the same 15 min video recorded under sunlight conditions is shown in Figure 9.
Figure 9 displays the counts of true-positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) predictions generated by the algorithm. The results shown in
the confusion matrix reveal that 98% of cars, 86% of trucks, and 70% of buses have been
correctly counted.
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After estimating the number of vehicles passing in 15 min intervals, the LSTM model
underwent training by analyzing distinct trends for each day of the week to predict traffic
counts for subsequent intervals. This evaluation yielded encouraging results, with the
model achieving a mean squared error (MSE) of 128.18, a mean absolute error (MAE) of
8.55, and a root mean squared error (RMSE) of 11.93. The R-squared value of 0.94 indicated
a strong correlation between the model’s predictions and traffic counts. It underscores the
LSTM model’s capability to forecast traffic trends by leveraging the distinct day-specific
trends learned during the training phase.

4.3. Model Development on PTV VISSIMv7

Microsimulation tests were carried out to validate the proposed integrated control
method before its actual development. To this end, PTV VISSIMv7 software was used
to simulate the proposed control strategies during peak hour at Ravi Toll Plaza. PTV
VISSIMv7 has been widely recognized for its capacity to visually represent traffic flow
across various modes. It is an exceptional tool for graphical presentations and detailed
traffic flow analysis at specific points within a transportation system.

A detailed design process was undertaken to accurately model the system’s geometry
in VISSIMv7 using links and connectors. The initial step involved importing and appro-
priately scaling a background image. Next, links and connectors were added to build the
roadways. Specifically, two on-ramps were incorporated upstream of the mainline freeway
section. Downstream, the toll plaza was meticulously designed. A zone for desired speed
limits (variable speed limits) was introduced 8 km before the start of the toll VSL zone.

The study divided toll plaza sections in two: a diverging section spanning 238 m
and a merging section extending over 220 m. Both sections were meticulously drafted
in VISSIMv7 to mirror the as-built design accurately. With the diverging area, the 3-lane
mainline link was subdivided into 15 toll lanes, seamlessly connected to the mainline link
using connectors. Static routes were also assigned to every toll lane. This configuration
allowed smooth traffic transition from the mainline to the toll lanes. A 60 km/h speed limit
was considered to manage speed within the diverging section, ensuring safe and controlled
vehicle movement.

Varying speed limits at the mainline motorway section were introduced: 120 km/h
for cars, 110 km/h for buses, and 100 km/h for trucks, respectively. At the toll plaza, the
dwell time of the stop sign was synchronized with service time. Moreover, queue counters
and data collection points were placed before the stop sign to gather relevant data. This
allowed the measurement of queue length and the count of vehicles passing through the toll
plaza, providing essential insights into traffic flow and operational efficiency. Furthermore,
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collection points were integrated into the network to measure travel time across scenarios.
Additionally, a node was formed throughout the network to ascertain vehicle delay and
CO emissions.

The LSTM (long short-term memory) model’s predicted flow measurements consid-
ered the vehicle input for the network in VISSIMv7. A 40 percent expected flow was
allocated as the vehicle input for both on-ramp links, while the remaining 60 percent was
directed as the vehicle input for the mainline motorway link.

This study used default values for free lane selection for lane-changing behavior.
Meanwhile, the driver behavior parameters (CC0, CC1, and CC2) of the Wiedemann 99 car-
following model were calibrated and validated using PTV VISSIMv7 software to accurately
replicate various driver behaviors, including following, merging, and diverging within
specific roadway segments. The calibration involved adjusting these parameters to match
observed driver behaviors captured from field data, e.g., a representative segment of the
roadway and comparison of simulated vehicle trajectories with actual observed behaviors
to fine-tune the model parameters. Validation was then performed to assess the model’s
ability to reproduce real-world driver actions under different traffic conditions, ensuring
the fidelity and accuracy of our simulation results. Default parameter values of Wiedemann
99 in PTV VISSIMv7 and calculated average values from the field survey are shown in
Table 2.

Table 2. Wiedemann 99 parameters.

Wiedemann 99
Parameters

Parameter
Description

Default Values of
PTV VISSIM

Values Used after
Calibration and

Validation

Wiedemann 99-CC0

Standstill distance:
the average desired
standstill distance

between two vehicles.

1.5 m 1 m

Wiedemann 99-CC1

Headway time: time
distribution of

speed-dependent part
of desired safety

distance.

0.90 s 0.7 s

Wiedemann 99-CC2

Following variation:
refers to the distance
a driver intentionally
moves closer to the

vehicle in front

4 m 2.5 m

There were no challenging separations between lanes at the toll booths, allowing for
smooth vehicle flow and lane changes. In line with the real scenarios at Ravi Toll Plaza,
vehicles equipped with electronic toll collection (ETC) and manual toll collection (MTC)
were permitted to travel in both lane types (ETC and MTC lanes).

The network was configured such that 60 percent of vehicles used MTC for toll
payments, while the remaining 40 percent utilized the ETC payment method. Service times
were set at 5 s for ETC and 22 s for MTC. The VISSIMv7 simulation model for Ravi Toll
Plaza is shown in 3D in Figure 10, while a 2D view of toll booths is shown in Figure 11.
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4.4. Model Calibration

Before implementing the control strategy within the VISSIMv7 network, a meticu-
lous calibration of the model’s parameters was conducted. Traffic data collectors were
strategically positioned throughout the network to collect essential traffic parameters, in-
cluding queue length, delays, and vehicle travel time. Furthermore, during the field data
collection process using video recordings, actual queue length, delays, and travel time
were calculated.

The comparison between the model’s predictions and the field data showed that
the model achieved a mean absolute percentage error (MAPE) of 6.5%. This low MAPE
value signifies that the calibrated VISSIMv7 model accurately predicted traffic patterns
in free-flow and congestion situations, understanding its reliability for proactive control.
The delay, vehicle travel time, and queue length profiles presented in Figures 12–14 further
support the precision of the calibrated VISSIMv7 model.
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4.5. Proposed Logic Development Using VisVAPv2.16

After developing the toll plaza model, the control strategy was programmed using a
VisVAPv2.16-based approach on VISSIM. A brief methodology for establishing the control
strategy utilized in this research study is shown in Figure 15. PTV VISSIM annex software,
known as VisVAP, was used to develop changes in speed limits and apply ramp metering
throughout the simulation.

The development of a program within VisVAPv2.16 was undertaken to facilitate the
initiation of the simulation process and optimization of the control variables. This logic
was literately executed for each time interval. The current traffic parameters were extracted
and passed into the logical program for every interval, generating optimal control inputs.
Subsequently, these optimal inputs were returned to the VISSIM environment.

When the current flow changed, the VisVAPv2.16 program replaced the original
control parameters with new optimized controls within the VISSIM simulation. Specifically,
the program removed the initial limits when the flow exceeded 2500 vehicles per hour.
It introduced new desired speed limits of 100 km/h based on the Lighthill–Whitham–
Richards (LWR) traffic model, as explained in the methodology. When the flow exceeded
3000 vehicles per hour, the program set a desired speed limit of 80 km/h, and similarly,
when it went beyond 3400 vehicles per hour, the program established a desired speed limit
of 60 km/h.
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Concurrently, the program was designed to monitor whether the ramp metering rate
and cycle length exceeded 4 s after each time interval, utilizing the calculation method
explained in the methodology.

If the metering rate was below the cycle length of 4 s, the ramp metering signal
remained green. However, the ramp metering was triggered when the flow exceeded
3400 vehicles per hour, and the measured occupancy increased, causing the cycle length to
exceed 4 s. In short, when the vehicle flow rate surpassed 3400 vehicles per hour, variable
speed limits (VSLs) and ramp metering (RM) controls were activated to optimize traffic
flow at the toll plaza.

5. Results

The proposed study was conducted at Ravi Toll Plaza, analyzing various control
strategy scenarios. The outcomes were evaluated based on four efficiency criteria: queue
length, travel time, vehicle delay, and environmental impact. The efficiency of the proposed
scenario (VSL + RM) was evaluated by comparing it with three alternative scenarios: the
existing scenario, variable speed limits (VSLs) only, and ramp metering (RM) only.

In the VSL-only control scenario, ramp metering was not employed alongside VSLs
when vehicle flow exceeded 3400 vehicles per hour. Conversely, only ramp metering was
activated in the RM control scenario when the vehicle flow exceeded 3400 vehicles per hour.
These scenarios were analyzed and evaluated based on their influence on queue length,
travel time, vehicle delay, and environmental factors.

5.1. Traffic Impact Analysis

Traffic impact was analyzed based on its influence on queue length, travel time, and
vehicle delay in all scenarios. The queue lengths (measured in meters) for all scenar-
ios at toll booths, numbered 1 to 15, are depicted in Figure 16. The simulation results
reveal the scenario’s highest average queue length of 64.18 m. This observation aligns
with the real-world experience of long queues forming on weekends during peak hours
(04:00–10:00 p.m.) when traffic from Islamabad to Lahore is at its peak. The average queue
lengths for the VSL-only and RM-only scenarios were 33.40 m and 53.18 m, respectively.
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However, when both controls, VSLs and RM, were jointly operational, an average
queue length of 27.60 m was recorded. The average queue lengths are shown in Figure 17.
Average vehicular and stop delays were recorded from the node outcomes. The encom-
passing node covered the entire network, resulting in recorded vehicle delays that included
acceleration and deceleration due to variable speed limits. Recorded stop delays included
waiting delays at the ramp when the signal was red and waiting time for service at the
toll plaza.
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The outcomes showed that the scenario involving the combination of VSLs and RM
had average vehicle and stop delays of 95 and 43 s, respectively. In comparison, vehicle
delays for the VSL-only, RM-only, and existing scenarios were 125, 148, and 182 s (about
3 min). Stop delays for VSL-only, RM-only, and existing scenarios were 55, 75, and 78 s,
as depicted in Figure 18. These results underscore the traffic impact deduction by the
combined VSL–RM strategy.
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5.2. Environmental Impact Analysis

Fuel consumption and carbon emissions were analyzed to assess the environmental
impact across all scenarios using PTV VISSIMv7 microsimulations. The default VISSIMv7
emission calculation model was utilized to quantify carbon monoxide (CO), volatile organic
compound (VOC), and nitrogen oxide (NOx) emissions.

It was observed that the VSL and RM scenarios notably reduced carbon monoxide
(CO), volatile organic compound (VOC), and nitrogen oxide (NOx) emissions. Specifically,
the VSL–RM scenario demonstrated significant decreases, including a remarkable 28.4%
reduction in fuel consumption, lowering from 936 gallons in the existing scenario to 670 in
the proposed scenarios, as shown in Figure 19.
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Figure 19. Fuel consumption in all scenarios.

Additionally, CO emissions were reduced by 34.4%, as depicted in Figure 20, while
VOC emissions exhibited a reduction of 32%. The NOx emissions were also reduced by
35%, as illustrated in Figure 21. These results underscore the substantial environmental
benefits of implementing the combined strategy of VSLs and RM.
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5.3. Implementation of Proposed Proactive Control Strategy

Developing countries face a significant challenge regarding active transportation strate-
gies due to insufficient public awareness and acceptance. The proposed study tackles this
concern by proposing a comprehensive implementation strategy to enhance the successful
adoption of proactive control measures. This strategy facilitates governing bodies and law
enforcement agencies and benefits users. The deployment of variable message sign boards
ahead of the RM and VSL zones was facilitated. These signs offer real-time information
about the ongoing queue length, estimated waiting times, and travel durations required to
navigate the toll plaza. Such information empowers users to select the proper strategy.

Simultaneously, enforcement agencies have facilitated by the system to identify non-
compliant users. A pretrained model designed for signal violation detection is used for
this purpose. When a vehicle fails to stop at a red signal during ramp metering, the
system captures its ID. The vehicle’s ID is recorded as a traffic signal violator whenever
the model detects a violation. Furthermore, when all vehicles enter the VSL zone, their
IDs, geolocation, and entry times are recorded. The system also estimates the anticipated
time for each vehicle to approach the toll plaza. A vehicle entering the toll plaza before its
estimated arrival time could indicate a speed violation (exceeding the speed limit) within
the VSL zone. In such instances, the system flags the vehicle as a defaulter.

With a minimal utilization of resources, monitoring would not only be easy, but it
would also add value to the treasury, as violations are widespread in developing countries,
resulting in the highest accident rate in low- to middle-income countries, according to the
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WHO [55]. Upon toll payment, the system generates fines for all defaulters, aligning with
their respective violations, whether they are involved in violation of VSLs or RM or both.
This study has suggested an obligated acceptable payment and the toll tax is collected
as vehicles pass through the toll plaza to enhance transparency and early recovery. The
intricate proposal framework for violation detection is outlined in Figure 22.
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6. Discussion

This study achieved robust vehicle detection accuracy of 91%, comparable to or
exceeding the performance reported in previous studies, i.e., X. Zhao et al. [34], and V.
Mandal and Y. Adu-Gyamfi [25]. The proposed LSTM model for short-term flow prediction
demonstrated superior accuracy to models presented in Y. Han et al. [44,45]. Additionally,
the proactive control strategy proposed in this study resulted in substantial improvements
in traffic management, including a 57% reduction in queue length. After that, vehicle
delays were reduced by around 47%. It stopped delays by 44.8%, surpassing the efficiency
of recent studies with similar proactive strategies applied by N. Yuan et al. [50], A. D.
Spiliopoulou et al. [48], and M. Papageorgiou et al. [49].

Furthermore, the VSL–RM scenario achieved a 28.4% decline in fuel consumption
and a 34% reduction in air pollutant emissions, highlighting the importance of integrated
and proactive traffic control strategies in mitigating environmental impacts, enhancing air
quality, and fostering a sustainable transportation system. The detailed implementation
strategy presented in this study further enhances its robustness and practical applicability
in real-world traffic management scenarios.

Despite its potential, the proposed strategy for alleviating congestion at toll plazas has
notable limitations that should be addressed in future research endeavors. The reliance
on a simplified vehicle classification system may restrict the accuracy of real-time arrival
rate calculations, impacting the strategy’s overall effectiveness. Additionally, while the
prediction framework leverages existing traffic models, integrating more advanced models
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like the cell transmission model (CTM) could improve prediction accuracy and enhance
traffic management strategies.

Refining the training of the long short-term memory (LSTM) model with factors
such as seasonal patterns and public holidays is also essential to improve its performance
under diverse traffic conditions. Exploring synergies with autonomous vehicle systems
and connected environments would unlock additional opportunities to optimize traffic
flow and coordination, maximizing the strategy’s impact on congestion alleviation and
sustainable transportation systems.

7. Conclusions

Toll plazas, pivotal for traffic management and revenue generation, often grapple
with congestion, leading to delays and environmental repercussions. Our study introduces
an innovative traffic control strategy to tackle these challenges by employing advanced
technologies and strategic interventions. At its core lies the utilization of deep learning
CNN models, specifically YOLOv7–Deep SORT, for precise vehicle counting coupled with
LSTM models for short-term arrival rate prediction. These predictive insights inform the
deployment of variable speed limits (VSLs) and ramp metering (RM) strategies when
projected arrival rates exceed predefined thresholds. Validation through a case study at
Ravi Toll Plaza showcased remarkable efficiency, boasting a 75% reduction in queue length
and a substantial 47% decrease in vehicle delays.

Moreover, the proactive strategy significantly curtails fuel consumption by 28.4% and
air pollutant emissions by 34%, underscoring its environmental benefits. Beyond theoretical
insights, successful implementation requires a comprehensive framework. The proposed
implementation framework is a practical guide, facilitating the transition from theory to
real-world application. This study underscores the potential of innovative strategies in
improving traffic management and fostering sustainable transportation systems.
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