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Abstract: The rapid expansion of e-commerce, particularly in the clothing sector, has led to a
significant demand for an effective clothing industry. This study presents a novel two-stage image
recognition method. Our approach distinctively combines human keypoint detection, object detection,
and classification methods into a two-stage structure. Initially, we utilize open-source libraries,
namely OpenPose and Dlib, for accurate human keypoint detection, followed by a custom cropping
logic for extracting body part boxes. In the second stage, we employ a blend of Harris Corner,
Canny Edge, and skin pixel detection integrated with VGG16 and support vector machine (SVM)
models. This configuration allows the bounding boxes to identify ten unique attributes, encompassing
facial features and detailed aspects of clothing. Conclusively, the experiment yielded an overall
recognition accuracy of 81.4% for tops and 85.72% for bottoms, highlighting the efficacy of the applied
methodologies in garment categorization.

Keywords: facial recognition; two-stage object detection; VGG16; SVM

1. Introduction

The fashion apparel industry’s reliance on imagery across various platforms, such as
print media, e-commerce, and social media, has spurred the development of numerous
object detection applications [1–4]. These applications aim to enhance apparel recognition,
recommendation, and online search, ultimately improving the consumer experience. In the
realm of computer vision, advancements in deep learning technology have significantly
impacted image classification, object detection, and instance segmentation [5–7], with object
detection emerging as a pivotal research area.

One of the primary challenges in clothing recognition stems from the immense di-
versity in the style, texture, and cut of clothing. This diversity is influenced by cultural
backgrounds, individual preferences, and constantly evolving fashion trends, leading to a
wide variation in the visual appearance of clothing items. Such variation presents signifi-
cant challenges for recognition systems, which often struggle to accurately identify styles
due to this high degree of diversity.

Moreover, clothing items in real-world scenarios frequently undergo deformation and
occlusion. Garments can change shape with the movement of the human body and may
be partially obscured by other objects in photographs [8]. These conditions complicate
recognition efforts, as they modify the appearance features of clothing, making it difficult
for models based on static images to accurately match clothing items.

Additionally, existing clothing recognition models are often characterized by high
complexity, necessitating significant computational resources and storage space [9,10]. This
limitation restricts the use of models on resource-constrained devices and escalates the costs
associated with model training and deployment. Consequently, there is a pressing need
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to develop efficient and lightweight clothing recognition models that can accommodate
various application scenarios and device constraints.

Despite advancements in clothing recognition and detection technologies, signifi-
cant limitations remain, including accuracy in style recognition, model complexity, and
adaptability to real-world variations [11,12]. Addressing these challenges, this paper
seeks to explore new methods and strategies aimed at ensuring the accuracy and effi-
ciency of clothing recognition while reducing model complexity to better meet real-world
application demands.

This paper describes a two-stage object detection structure that identifies facial features
and clothing attributes. In the first stage, we use OpenPose [13] for detecting human
keypoints, and Dlib [14] is employed for facial keypoint detection. Then, we complement a
custom logic segmentation to yield precise body bounding boxes. The second stage involves
using the VGG16 [15] model to classify multi-class attributes such as age and clothing
material, while a standard SVM model is utilized for binary attributes like the presence of
a zipper or collar type. This paper includes a review of related work on object detection
in Section 2, an introduction to the two-stage method and related models in Section 3, a
description of the dataset, experiments, and results in Section 4, and a conclusion of the
study in Section 5.

2. Related Work

With the rise of e-commerce and social media, fashion image recognition has become a
priority for computer vision research. This field focuses on traditional object detection and
image classification. It can also be extended to image segmentation [16] and multi-label
classification [17]. Recent advancements in deep learning have significantly enhanced the
precision and detail of image analysis.

Fashion image recognition has historically depended on two-stage detection meth-
ods [18–20]. These methods begin by generating candidate regions and then localizing and
classifying them. Despite their accuracy, these methods often require a longer processing
time, which makes them less suitable for real-time applications. However, deep learning
brings notable changes to these two-stage object detection methods. Deep CNNs and
transformer models [21,22], among others, have improved candidate region generation
and classification. For example, introducing a region proposal network (RPN) in faster
R-CNN [23] has markedly enhanced the speed and quality of region proposals.

One-stage detection methods such as YOLO [24] and SSD [25] have been introduced
to address the speed limitations of two-stage methods. These methods combine region
proposal and classification into a single step, significantly increasing processing speed
while maintaining reasonable accuracy. Recent advancements in object detection have seen
the YOLOv5 algorithm being extensively applied across various domains, particularly in
clothing recognition [26,27] and personal protective equipment (PPE) detection, showcasing
its versatility and efficiency. The YOLOv5 algorithm, known for its speed and accuracy,
has been adapted and improved to meet the specific needs of different applications. While
two-stage methods generally offer higher accuracy than one-stage methods, they are slower
than one-stage methods, which may compromise accuracy in complex scenarios.

Inspired by Liu Ziwei et al.’s work [28], this study proposes a two-stage method
incorporating the latest advancements in deep learning, particularly in facial and human
keypoint detection. They developed the DeepFashion dataset and introduced the VGG-
based FashionNet network for classification. Meanwhile, they identified challenges in
apparel recognition, such as clothing deformation and image variation under different con-
ditions. Our study addresses these challenges by simplifying apparel characteristics such
as collars, buttons, zippers, and clothing colors. We employ custom image segmentation
based on the keypoint distribution for precise individual figure structuring. This study
combines VGG and SVM to enhance the accuracy and efficiency of apparel recognition.
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3. Proposed Method

This study adopts a two-stage object detection approach that distinguishes it from
traditional machine learning algorithms which exhaustively search for candidate regions.
Traditional methods often generate redundant regions, demanding high computational
resources and slow processing speeds. The two-stage approach effectively reduces the
number of candidate bounding boxes, thereby lowering the computational requirements
for classification. In the first stage of this study, the input image was processed to extract
bounding boxes. We combined facial and body keypoint analysis and then divided body
parts through custom logic. The second stage applies deep neural networks and support
vector machines (SVMs) to classify different parts, with the collective attributes of all parts
constituting the detection outcome. The research explicitly analyzes attributes such as
gender, age, collar, zipper, top material, top pattern, bottom type, sleeve length, and bottom
length. The examples of top material and top pattern are shown in Figure 1.
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Figure 1. (a) Examples of top material, including cotton, denim, fur, lace, leather, and tweed;
(b) examples of top pattern, including floral, plaid, graphic, solid, spotted, and stripe.

Firstly, gender and age are associated with facial information. Original images are
marked with facial keypoints, identifying coordinates of eye corners, nose tips, and mouth
corners. These keypoints play a crucial role in facial expressions and individual charac-
teristics. After facial detection, the original images are cropped to obtain facial images.
These cropped facial images, with varied orientations, require facial calibration, which is
determined by the bridge of the nose keypoints to align the facial images in a uniform
direction. These facial images and corrected keypoint data are input into classifiers for
training to learn gender and age attribute information.

Additionally, this study introduces a discrete differential operator for edge detection,
the Scharrx operator, for preprocessing images to enhance horizontal edges in facial images.
This enhancement helps highlight features such as the jawline, eyebrows, and lip edges,
essential for learning age-related features (like wrinkles or structural changes in the face)
and gender-related features (such as facial hair or jawline shape), aiding in achieving more
precise classification outcomes. Thus, Scharrx edge images, as an additional channel to the
original images and facial keypoint information, serve as inputs for classification learning.

The structure of the facial feature model is illustrated in Figure 2.
Clothing features are also obtained by identifying essential body parts, such as the

head, elbows, knees, and ankles, to obtain corresponding coordinate information. We
propose a custom segmentation logic based on keypoints, dividing the body into detailed
areas like upper arms, forearms, neck, torso, collar, thighs, and calves to obtain respective
body part frames. These parts are then cropped to obtain detailed images of each section,
facilitating the subsequent classification learning of detailed features for each part.



Big Data Cogn. Comput. 2024, 8, 35 4 of 15

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 4 of 15 
 

 
Figure 2. The structure of the facial feature model. 

Clothing features are also obtained by identifying essential body parts, such as the 
head, elbows, knees, and ankles, to obtain corresponding coordinate information. We pro-
pose a custom segmentation logic based on keypoints, dividing the body into detailed 
areas like upper arms, forearms, neck, torso, collar, thighs, and calves to obtain respective 
body part frames. These parts are then cropped to obtain detailed images of each section, 
facilitating the subsequent classification learning of detailed features for each part.  

We also combine Harris Corner Detection and Canny Edge Detection [29–31] to meet 
the demands of learning clothing features. Both are used for detecting corners and edges 
in images, providing preliminary feature extraction for clothing attributes such as collar 
shapes, zippers, and bottom type, and offering enriched features for classifiers to improve 
accuracy. Harris Corner Detection and Canny Edge Detection are first used to identify key 
features like corners, edges, and contours in clothing images. These features are then 
transformed into feature vectors and combined with bounding boxes to create a rich com-
posite input. Support vector machines (SVMs) use this input for classification, finding the 
optimal hyperplane in the feature space to separate different categories. This method 
achieves high accuracy by blending local features with the global structure of images, 
making SVMs more effective in classifying complex clothing images. However, Harris 
Corner Detection and Canny Edge Detection focus on corners and edges in images, po-
tentially causing overfitting. Therefore, the input for classifying patterns and materials of 
tops includes only the original pixels of the corresponding torso region. The structure of 
the clothing feature model is illustrated in Figure 3.  

 
Figure 3. The structure of the clothing feature model. 

In this research, keypoint detection methods utilize OpenPose and Dlib. OpenPose 
outputs a set of 2D coordinates for each keypoint on each individual in the image, along 

Figure 2. The structure of the facial feature model.

We also combine Harris Corner Detection and Canny Edge Detection [29–31] to meet
the demands of learning clothing features. Both are used for detecting corners and edges
in images, providing preliminary feature extraction for clothing attributes such as collar
shapes, zippers, and bottom type, and offering enriched features for classifiers to improve
accuracy. Harris Corner Detection and Canny Edge Detection are first used to identify
key features like corners, edges, and contours in clothing images. These features are
then transformed into feature vectors and combined with bounding boxes to create a
rich composite input. Support vector machines (SVMs) use this input for classification,
finding the optimal hyperplane in the feature space to separate different categories. This
method achieves high accuracy by blending local features with the global structure of
images, making SVMs more effective in classifying complex clothing images. However,
Harris Corner Detection and Canny Edge Detection focus on corners and edges in images,
potentially causing overfitting. Therefore, the input for classifying patterns and materials
of tops includes only the original pixels of the corresponding torso region. The structure of
the clothing feature model is illustrated in Figure 3.
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In this research, keypoint detection methods utilize OpenPose and Dlib. OpenPose
outputs a set of 2D coordinates for each keypoint on each individual in the image, along
with confidence scores for each detection, while Dlib outputs keypoint coordinates and the
bounding boxes of detected objects.

The primary classification model used in this study is VGG16, renowned for its
high accuracy in object detection algorithms and proven high performance in various
image recognition tasks. As backbone networks, VGG models are particularly effective
in recognizing and classifying facial features, capable of capturing complex patterns and
features in images. Moreover, VGG models pre-trained on large datasets can be easily
applied to other image tasks through transfer learning, achieving good performance even
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on smaller datasets. Additionally, SVM classifiers recognize features such as zippers and
collar shapes. The datasets for zipper and collar type are relatively small, whereas SVMs
can also perform well, offering efficiency compared to smaller neural network classifiers.

Additionally, we determine skin exposure based on the ratio of skin pixels within
a threshold range for sleeve length and bottom length attributes, employing empirical
values for skin pixel ranges [32] (77 < Cb < 127, 133 < Cr < 173). For instance, if the
ratio of pixels within the designated range in the forearm and lower leg regions exceeds
0.3, the garment is classified as long-sleeved or long pants, respectively; conversely, a
lower ratio indicates short sleeves or shorts. This range typically covers individuals with
lighter complexions well, but it may not be as applicable for those with darker skin tones.
To accommodate a variety of skin colors, this paper employs a combined approach of
leveraging the YCbCr color space range and statistical analysis of facial skin tones to detect
skin pixels comprehensively. Facial regions are converted from the RGB color space to the
YCbCr color space, and the values in the Cb and Cr channels are statistically analyzed. The
median (Md) and standard deviation (σ) of these values are calculated, and the threshold
range for the Cb and Cr channels is set to Md ± 2σ, resulting in a newly defined skin pixel
range. The specific process for skin pixel recognition is illustrated in Figure 4.
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4. Experiment
4.1. Dataset

In this research, data were sourced from the DeepFusion dataset, a publicly accessible
resource developed by the Multimedia Laboratory at The Chinese University of Hong
Kong [33]. This dataset comprises images obtained from various fashion shopping websites.
The study initially focused on object detection and then extracted and inferred facial and
clothing features using VGG16 and SVM. Notably, the data are manually annotated with
specific attributes such as age, gender, collar type, zipper, sleeve length, top material, top
pattern, bottom type, and bottom length.

In this study, we employed random preprocessing adjustments to images from the
same dataset to enhance the model’s generalization capability. By applying random trans-
formations such as cropping, rotation, and color adjustment, we generated a diversified
training sample set that simulates various scenarios and conditions encountered in the real
world. This data augmentation strategy is instrumental in mitigating model overfitting,
bolstering its robustness against new and unseen images.

Data augmentation is a widely used technique in machine learning, particularly in
the training of deep learning models, aimed at increasing the diversity of the training
set through the application of random transformations to images. These transformations
include rotations, scaling, cropping, flipping, and alterations in brightness and contrast. The
primary objective of data augmentation is to artificially enhance the diversity of training



Big Data Cogn. Comput. 2024, 8, 35 6 of 15

data by emulating different factors that might affect the appearance of images in the real
world, thus producing new images derived from the original training data. This approach
not only simulates environments with varying lighting conditions and color variations,
aiding the model in learning features independent of color changes, but also introduces
variability in the orientation of objects or the camera by flipping images horizontally or
vertically, thereby increasing the model’s invariance to image flipping. Figure 5 illustrates
the comparative images before and after image enhancement. The specific techniques used
for augmentation were as follows:

• Randomly mirror the image with a probability of 0.5.
• Randomly adjust the brightness between 0.9 and 1.1 times the original image.
• Randomly adjust the contrast between 0.9 and 1.1 times the original image.
• Randomly adjust the hue between 0.9 and 1.1 times the original image.
• Randomly adjust the saturation between 0.9 and 1.1 times the original image.
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4.2. Obtaining Bounding Boxes

Initially, body and facial keypoints are detected using OpenPose and Dlib. OpenPose
utilizes the “CoCo18keypoints” neural network structure to detect body keypoints. The
OpenPose website provides a Caffe framework for this neural network structure. The pre-
trained network is accessed using the readNetFromCaffe function [34]. The Dlib library [35]
in OpenCV identifies 68 crucial facial points, offering a more comprehensive representation
of facial features than OpenPose. These 68 keypoints together outline the facial contour.
OpenPose’s detection of keypoints and the corresponding pose map of the original photo
are illustrated in Figure 6. The facial recognition box and 68 keypoints generated by Dlib’s
facial recognition in the original photo are displayed in Figure 7.

In human images, variations like tilted head angles are common. Effectively calibrating
faces that are not fully oriented enhances facial feature recognition accuracy. Standard cali-
bration methods include DeepFace and DEX. This study adopts a self-improved calibration
method based on facial keypoints.
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For facial calibration, the rotation angle θ is calculated based on the nose bridge
keypoints (27, 28, 29, 30). The angle θ is then calculated as follows:

θ = arctan
(

y30 − y27

x30 − x27

)
This formula computes the arctangent of the slope formed by the line connecting

keypoints 27 and 30. The resulting angle θ is used for image rotation alignment. Notably,
during this process, the original image is rotated, and the facial recognition box is recali-
brated using the line between keypoint 27 and 30 as the rotation axis. This method involves
rotating the entire original image instead of just the cropped face portion. Rotating the
original image introduces edge information beyond the facial recognition box, including
hair, ears, and collars. This extra context, extending outside the original facial bounding
box, enhances facial recognition algorithms. It improves the algorithms’ ability to identify
facial features by providing more contextual information.
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A similar method is used for the body part boxes. Key points identify specific body
parts, and then the corresponding body part boxes are cropped. The principal logic for
cropping various body parts includes the following:

• Torso: Keypoints 2, 5, 8, 11, and 1 are primarily used. The logic involves forming a
rectangle using the line between keypoints 2 and 5 as the width and the line between
1 and 8 as the length. The length direction is determined by the line connecting the
midpoint of keypoints 8 and 11 with keypoint 1.

• Collar: Keypoints 0 and 1 are primarily used. The logic is to form a square with the
neck as the intersection point of the diagonals and the distance between the neck and
nose as the side length, oriented from the neck to the nose.

• Zipper: Primarily using keypoints 1, 8, and 11, the logic forms a rectangle with the
midpoint of the line between 8 and 11 as the central axis of the longer side. The length
is determined by the line connecting keypoint 1 and the midpoint, and the width is a
quarter of the line length between 1 and 8.

• Upper Arm: For the right upper arm, keypoints 2 and 3 are used, and for the left,
keypoints 5 and 6 are used. The method creates a rectangle with the line between
keypoints 2 and 3 (or 5 and 6) as the central axis of the longer side, and the width is
half the length of the longer side.

• Forearm: Keypoints 3 and 4 are used for the right forearm, and keypoints 6 and 7 are
used for the left. The logic forms a rectangle with the line between keypoints 3 and 4
(or 6 and 7) as the central axis of the longer side.

• Bottom: Keypoints 8, 10, 11, and 13 are used. The distance between the midpoint of the
line connecting keypoints 8 and 11 and the midpoint of the line connecting keypoints
10 and 13 is used as the length of the rectangle, with half of this distance serving as
the width.

• Thigh: For the right thigh, keypoints 8 and 9 are used, and keypoints 11 and 12 are
used for the left. The method involves forming a rectangle with the line between
keypoints 8 and 9 (or 11 and 12) as the central axis of the longer side.

• Lower Leg: Keypoints 9 and 10 are used for the right lower leg, and keypoints 12 and
13 are used for the left. The logic is similar to the thigh, forming a rectangle with the
line between keypoints 9 and 10 (or 12 and 13) as the central axis of the longer side.

During the final testing phase, 85 randomly selected images were used, with
71 successfully passing the detection, resulting in an 84% pass rate. An example image of
human body part boxes is shown in Figure 8.
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4.3. Facial Attributes

Models for age and gender recognition were developed by employing a randomized
shuffling of the training dataset. The age classification model accurately identified features
in 6698 out of 8667 test photographs, resulting in an accuracy rate of 77.28%. The gender
classification model achieved recognition accuracy of 95.89% on a test dataset comprising
5859 images. An age confusion matrix heatmap is displayed in Figure 9a. A gender
confusion matrix heatmap is displayed in Figure 9b.
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4.4. Clothing Attributes

The attribute of zippers and buttons was identified using an SVM classifier, which
demonstrated a 70% accuracy rate across a test set of 294 images. Collar shapes were
classified as either V-neck or round neck based on the features extracted from the collar
area, with the final accuracy reaching 78%. The performance of SVM with zipper on the
test dataset is presented in Table 1. The performance of SVM with collar type is detailed
in Table 2.

Table 1. Performance results table of SVM with zippers on the test set.

Zipper Attribute Precision Recall F1-Score Image Amount

with 0.71 0.66 0.69 149
without 0.68 0.72 0.70 145

Table 2. Performance results table of SVM with collar type on the test set.

Collar Type
Attribute Precision Recall F1-Score Image Amount

V-neck 0.81 0.77 0.79 247
round neck 0.75 0.79 0.77 213

In terms of top materials (cotton, denim, fur, lace, leather, and tweed), the model
achieved an accuracy rate of 57.04% on the test dataset. For the classification of top pattern
(floral, plaid, graphic, solid, spotted, and stripe), the model showed an accuracy rate of
89.81% on the test set. The confusion matrix heatmap for top material classification is
depicted in Figure 10a. The confusion matrix heatmap for top pattern classification is
presented in Figure 10b. Bottoms are mainly categorized into “Skirt” and “Trousers”. On
the test dataset, the model records an average accuracy of 91.2%. The confusion matrix
heatmap for bottom type classification is presented in Figure 11.
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The determination of sleeve length relied on the ratio of exposed skin pixels within the
detected lower arm frames. Sleeves were classified as short if the bare skin ratio exceeded
0.3 and as long sleeves if the ratio was below 0.3, with accuracy rates of 93.72% and 84.49%
for short and long sleeves, respectively. The methodology for determining the length of
bottoms was analogous, initially checking for the presence of skin pixels within thigh
frames. In the absence of skin pixels in thigh frames, calf frames were examined. Bottoms
were categorized as short or long based on the skin exposure ratio calculated within the
calf frames, with the model achieving an accuracy rate of 80.23% on the test dataset. Table 3
displays the performance of the sleeve and bottom length results.

Table 3. Performance results table of sleeve/bottom length on the test set.

Sleeve Length Precision Recall F1-Score Image Amount

long 0.85 0.79 0.82 1025
short 0.94 0.81 0.87 5935

Bottom Length Precision Recall F1-Score Image Amount

long 0.84 0.77 0.80 3186
short 0.80 0.78 0.79 2307

4.5. Proceeding Speed

The experiments used the Pytorch 0.4.0 deep learning framework on a 64-bit Ubuntu
16.04 operating system, facilitated by the Nvidia TITAN Xp GPU for training. The execution
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time of the code for each segment in the experimental setup of this study is presented in
Table 4. The final results of an example are shown in Figure 12.

Table 4. Running time of each section.

Stage Step Operation Average Cost Time

First Body bounding boxes Body keypoint detection and
segment logic 2.9022 s

Second Facial bounding boxes Facial keypoint detection and
segment logic 1.4905 s

Third Age/Gender Facial bounding box
and VGG16 classifier 1.6338 s

Forth

Zipper Zipper bounding box
and SVM classifier 0.0034 s

Collar Collar bounding box
and SVM classifier 0.0063 s

Collar shape Collar bounding box
and SVM classifier 0.003 s

Sleeves length Arm bounding box
and skin detector <0.0001 s

Top material Torso bounding box
and VGG16 classifier 1.6455 s

Top pattern Torso bounding box
and VGG16 classifier 1.6367 s

Bottom type Bottoms bounding box
and VGG16 classifier 0.8359 s

·········· Bottom length Leg bounding box
and skin detector <0.0001 sBig Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 12 of 15 
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4.6. Discussion and Results

In the realm of facial attribute recognition, the accuracy rate for gender identification
reached an impressive 95.89%, while age recognition achieved an accuracy of 77.28%. This
indicates that the employed models are adept at capturing the key features distinguishing
gender and age. For age recognition, the accuracy may be affected by factors such as
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makeup and obstructions. Obstructions like glasses, hats, or hair could conceal key age-
indicative features, thereby reducing the accuracy of recognition.

Regarding clothing attribute recognition, a significant variance in accuracy rates for
different attributes was observed. The recognition accuracy for top pattern in the test set
was 89.81%, whereas the accuracy for identifying top materials was only 57.04%. The
lower accuracy in recognizing clothing materials may be linked to the inherent constraints
of the VGG model. Patterns typically exhibit unique colors and shapes that are easily
identifiable, even in lower-resolution images. In contrast, the texture details of materials
may become indiscernible at lower image qualities. Material characteristics pose more
challenges than pattern features under the same data quality. The lower performance of
clothing materials in this study is also limited by the inherent limitations of the VGG model.
The model’s focus on extracting global features and shape information may not sufficiently
capture the nuanced differences in material textures, which are crucial for distinguishing
fabrics. These subtle textures and details within images, pivotal for material differentiation,
might be overlooked during the convolutional processing in VGG. Moreover, the model’s
performance is notably influenced by the image’s quality and resolution; images of lower
resolution or subpar quality might lack the necessary detail to differentiate between material
textures effectively.

To address these limitations, future research could consider ensuring high-resolution
images. The model’s generalization capability could be enhanced through increasing
the diversity of material samples, including variations in lighting, angles, and potential
obstructions. Additionally, more advanced deep learning architectures could be explored
which capture the fine details of material textures.

For specific attributes like sleeve and bottom lengths, a logic-based method relying
on the ratio of exposed skin pixels was employed, achieving an average accuracy of 89.1%
for sleeve length and 80.23% for bottom length, thereby validating the effectiveness of
this approach. Our study excluded the effects of stockings and tattoos because they could
interfere with the judgment of skin pixels. Future models will need to account for these
elements, facing challenges such as accurately distinguishing between tattoos and clothing
patterns, as well as addressing changes in skin color and texture caused by stockings.

Due to the feature segmentation of clothing in this study, the accuracy of individual
segmented features contributes to the overall recognition error for tops. In this experiment,
the overall recognition accuracy for tops was determined to be 81.4%, and the overall
recognition accuracy for bottoms was 85.72%. The overall recognition accuracy for tops is
calculated as the average accuracy of segmented features, including collar, zipper, pattern,
material, and sleeve length. Conversely, the overall recognition accuracy for bottoms is
determined by averaging the accuracies of two categories: type and length of the bottom
wear. By integrating different models for various features, we attained an above-average
recognition accuracy for complete top categories, underscoring the efficacy and practicality
of our method.

In terms of performance and processing time, our approach also demonstrated com-
mendable results. The experimental findings revealed that the complete recognition process
for top categories averaged only 1.6582 s, and the bottom category recognition process took
merely 0.8359 s, keeping the average total processing time within a reasonable range. This
ensures the practicality and operability of the model. These results suggest that, despite
the typically high computational demands of deep learning models, our method has been
optimized for performance, maintaining reasonable processing times.

In summary, our method, through the meticulous segmentation of clothing features
and the adaptive application of the most suitable classification models for different features,
not only enhances recognition accuracy but also ensures the efficiency of the model’s
operation. This showcases the potential and practical value of our approach in the fields of
clothing and facial attribute recognition.
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5. Conclusions

In this study, we have developed an innovative approach for identifying and classify-
ing clothing and facial attributes, with a particular emphasis on the detailed segmentation
of features on tops. Contrary to traditional research that classifies entire tops or lower body
attire directly, we further dissect tops into several feature categories, such as collars, zippers,
materials, and patterns. Depending on the specific characteristics of these features, such as
binary or multi-class issues, we select the most suitable classification model for processing.

The methodologies employed in this research, such as data augmentation, SVM
classifiers, and deep learning models like VGG16, provide several advantages. Data
augmentation enhances the model’s generalization capability by simulating real-world
variations in training data, reducing the risk of overfitting. SVM classifiers have been
proven effective in recognizing specific attributes such as zippers and collars. The VGG16
model is renowned for its deep architecture, adept at capturing complex patterns within
facial and clothing features, which aids in improving the accuracy of gender recognition
and certain clothing attributes.

Conclusively, the experiment yielded an overall recognition accuracy of 81.4% for tops
and 85.72% for bottoms, highlighting the efficacy of the applied methodologies in garment
categorization. The use of data augmentation and the combination of SVM and deep
learning approaches represent methodological advancements, offering a more nuanced
understanding of the complex interactions between different attributes in fashion images.

However, these methods also have limitations. SVM classifiers may not capture
hierarchical feature representations as effectively as deep learning models, potentially
limiting their performance in more complex classification tasks. The performance of the
VGG16 model may be influenced by the quality and diversity of the training data.

In summary, the method proposed in this study performs well in terms of overall
accuracy. In terms of computational performance, by optimizing models and algorithms,
as well as leveraging high-performance hardware, this approach can achieve rapid pro-
cessing times while maintaining high accuracy, making it suitable for practical application
scenarios. Future work could further explore the optimization of models and algorithms to
improve the accuracy of age recognition and certain clothing attribute identifications while
maintaining or enhancing computational efficiency.
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