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Abstract: Real-time bidding has become a major means for online advertisement exchange. The
goal of a real-time bidding strategy is to maximize the benefits for stakeholders, e.g., click-through
rates or conversion rates. However, in practise, the optimal bidding strategy for real-time bidding
is constrained by at least three aspects: cost-effectiveness, the dynamic nature of market prices,
and the issue of missing bidding values. To address these challenges, we propose Imagine and
Imitate Bidding (IIBidder), which includes Strategy Imitation and Imagination modules, to generate
cost-effective bidding strategies under partially observable price landscapes. Experimental results
on the iPinYou and YOYI datasets demonstrate that IIBidder reduces investment costs, optimizes
bidding strategies, and improves future market price predictions.

Keywords: real-time bidding; imitation learning; bidding landscape prediction; partially observable
Markov decision processes

1. Introduction

Machine learning has initiated an advertising revolution from traditional “buying
ad position” to “buying targeted customers” [1]. This has helped advertisers achieve
precise marketing through online advertisement and made real-time bidding (RTB) the
most popular way to trade online advertisements for stakeholders [2].

An advertiser’s goal is to develop an optimal bidding strategy that can maximize
revenue (e.g., clicks or conversions) for the advertisements placed under certain constraints
such as fixed budgets and unknown market price distributions. It is particularly important
to develop a bidding strategy that can balance the budget and the ad transaction price
and can make decisions with censored or incomplete input. Appendix A provides domain
knowledge details. Despite recent advances, we are still faced with challenges: (1) Models
have to make decisions under strict distributional assumptions [3–8], which are usually not
the real cases; (2) In real-world scenarios, there exist considerable amounts of censored and
incomplete data, transmitted from demand-side platforms (DSPs) to which the existing
models are vulnerable [9].

Most algorithms tend to make the consumption of advertising budgets as smooth
as possible, with ignorance of the fluctuation of market transaction prices. The price
distributions, or landscapes, are usually modeled as certain parametric distributions [3,4,10].
However, the specific assumptions, such as the Gaussian distributed assumptions, may not
be the ground truth in such a changing environment. This makes the methods susceptible
when bidding high-cost and high-value advertisements. Meanwhile, existing algorithms
yield larger variance under partial observations than expected, bringing in higher costs,
as our experiments show. On the other hand, in an RTB environment with multiple
players, advertisers who have failed in bidding will not receive the transaction price just
made, meaning that the information on market price is not fully accessible for the next
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decision process. Moreover, the model occasionally has to deal with the data with a
certain percentage of missing values. To gamble with market adversaries, an agent has to
make decisions with frequently incomplete information. Although some deep learning
methods, such as [11], seem to work well in fitting a small number of samples containing
market prices to induce their distribution, these independent and identically distributed
(i.i.d.) assumption-based methods may not be well adaptable to dynamically changing
RTB environments.

Based on the above analysis, this paper proposes IIBidder, based on the generative
adversarial imitation learning (GAIL) [12] framework. The idea is to win the bidding
by making the bidding decisions to approximate the implicit distribution of the market
prices with incomplete market states. To be specific, we obtain the market price landscape
by fitting the expert samples with a deep neural network. We employ proximal policy
optimization (PPO) [13], the latest deep reinforcement learning algorithm, to make the
strategy more stable. Meanwhile, we introduce an “Imagination” module to predict the
missing value and to help “Imitation” be more robust.

Figure 1 illustrates that the proposed method has a notable improvement in terms
of cost-constrained metrics. Meanwhile IIBidder reduces the variance relative to DRL
methods and allows for more stable policy generation. The proposed method can help
advertisers win the most valuable bidding opportunities at lower costs in the RTB business.
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Figure 1. An overlook on the frequency of performance ranking of Imagine and Imitate Bidding
(IIBidder) compared with others in a series of experimental combinations concerning budget and
mask. The vertical axis lists different methods, while the horizontal axis represents ranking frequency.
IIBidder ranks 1st in most of the combinations.

Overall, the method proposed in this paper contributes the following.

• Our work jointly optimizes bidding strategy and landscape prediction, leveraging
market price distribution data to enhance bidding strategies.

• IIBidder introduces the Imagination module, enabling the model to infer hidden infor-
mation and adapt to expert bidding samples, resulting in more accurate real-world
bidding strategies, particularly in the presence of incomplete data.

• Experimental results demonstrate that our method outperforms current RTB methods
in terms of click-through rates and winning rates considering cost constraints.
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The rest of this paper is organized as follows. Section 2 describes the related work from
bidding landscape prediction, bidding strategy design, and an imitation learning context.
Section 3 elaborates the framework. In Section 5, experiments verify the feasibility and
validity of the proposed method through baseline models. Section 6 concludes the study.

2. Related Work
2.1. Bidding Landscape Forecasting

Bid landscape prediction focuses on the problem of how to fit the distribution of
transaction prices. By tracking the distribution of market prices, advertisers can predict
the probability of winning auctions that may result in clicks or conversions, which helps
optimize bidding strategies [14]. At the same time. Directly predicting price distribution
is challenging. Existing methods model market prices as random variables and then
heuristically learn single-peaked distributions from historical market price data. These
distributions include normal distributions [3], log-normal distributions [4], heavy-tail
distributions [5], gamma distributions [6], Gompertz distributions [7], and tanh-shaped
distributions [8].

Subsequent researchers have proposed more comprehensive solutions by employing
deep neural network [10] or tree models [15]. Wang et al. developed a model to better
capture the multiple peaks in the market price distribution while considering the potential
impact of impression-level features on the price distributions [16]. A potentially neglected
problem is that only the winners of the auctions have access to the actual market prices,
while the information of other competitors is truncated [9]. This right-censored issue may
lead to significant biases in landscape prediction.

2.2. Bidding Strategy Design

Many suggest seeking the optimal bidding function that directly maximizes key
performance indicators (KPI) of ad campaigns, e.g., total click count or revenue, based
on the static distribution of input data and market competition models [17]. For instance,
adhering to the assumption of a linear bidding strategy, the bidding price should be
proportional to the expected click-through rate for that opportunity. Methods include
segmented functions for click-through rates [18], combined predictions of click-through
rates and winning bids [19], and assumptions based on gamma distributions [6].

Another way to construct a bidding function is an expected revenue function of
advertisers as a nonlinear function of click rate and click cost eCPI = CTR× CPC [20].
High conversion rates are also one of the goals to seek. The lag time between clicks and
conversions became an effective factor in predicting the value of ads and in assisting
advertisers in pricing [10,21–23].

However, this static bidding optimization strategy may still not perform effectively in
a highly dynamic RTB market due to significant discrepancies between the real data distri-
bution during model training and the assumed data distribution [24]. A more promising
branch of research is to model the bidding process as a Markov decision process (MDP),
which is then solved by using deep reinforcement learning [25]. This was firstly done by
Cai, who transformed the bidding strategy problem into a Markov decision process, where
the reward function was quantified as the difference between the click-through rate (or
conversion rate) and the bid winning price [17]. While the huge exploration space and the
stochasticity of state transition in reinforcement learning still remain unsolved [26]. Efforts
have been made to address these challenges. DASQN tackled synchronization and random
state shifts [26]. The Soft Actor–Critic method reformulates a bidding strategy problem
into hyper-parameter adjustments, avoiding the exploration space hurdles [27]. Wang
proposed a course-guided Bayesian reinforcement learning (CBRL) framework adaptable
to dynamic and reward-sparse RTB environments [28]. Lu addressed the oversight of
sequence information and sparse state space in bidding strategy algorithms by introducing
sequence information extraction and clustering-based state aggregation [29] based on the
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A3C model [30]. Using multiple intelligent agent reinforcement learning with different
reward functions also improved the win rate and ROI in various scenarios [31,32].

2.3. Imitation Learning and GAIL Optimization

RTB problems used to be sparsely rewarded in nature. In many cases, it requires
human-designed reward functions, which may be costly. Sometimes it is often impractical
to set up the reward functions manually [33] in online advertisement bidding. Imitation
learning (IL), as a method to learn strategies from expert examples, is believed to be an
effective solution concerning the above problems [34]. Along this line of research, behav-
ior cloning (BC) method [35] learns example data alone; however, sometimes it ends up
generating cascading errors, and has poor generalization and robustness when expert
samples are insufficient [36]. On the other hand, the inverse reinforcement learning method
(IRL) [37] uses expert instances to fit the unknown reward function automatically but is
computationally expensive. Analogous to the idea of GAN [11], generative adversary
imitation learning (GAIL) used a generator to generate action sequences and a discrimi-
nator to distinguish between the action sequences and the expert’s examples [12]. GAIL
automatically fits the reward function from expert samples as IRL does, and generates
pseudo samples as in GAN. By combining these techniques, it avoids the errors generated
by human-designed rewards and makes the model more robust. Appendix B provides
more background on reinforcement learning and generative adversary imitation learning
in this regard.

On the other hand, to encourage the agent to explore novel states, the intrinsic curiosity
module (ICM) was proposed [38], inspired by the curiosity-driven learning mechanism
in human brain research. The ICM infers the action taken by an agent based on two
consecutive states. The inverse prediction error, which is the difference between the
predicted and actual actions, is then used to train the Encoder. Recent advancements also
include some prediction techniques in model-based agent [39]. They try to predict the next
step Q values in hidden space.

3. Problem Statement
3.1. Problem Definition

The objective function is to maximize the advertiser’s revenue and is subjected to
conditions. The advertiser’s cost spent on bidding ads should not exceed the budget,
but should be larger than the bottom price. The cost of bidding should be close to but
not exceeding the total budget. The symbols used in the paper is defined in Table 1.
The problem can be formulated as:

max
N

∑
i=1

xivi, (1)

s.t.
N

∑
i=1

xibi ≤ B,

B−
N

∑
i=1

xibi ≤ ε,

bi ≥ RPi,

∀i ∈ {1, 2, 3, . . . , N}.

In practice, the above model carries high complexity since N is usually an unknown
variable. Moreover, the advertiser’s bidding strategy (bidding price b) is determined by
taking into account the feature of bidding request z, the value v of the corresponding
bidding request (bidding landscape), and other factors. Thus, the advertiser’s bid price
is mapped to the value evaluation of the ad b = f (v, z), which means that the bid price
could be affected by the characteristics of the ad bid and the value of the ad. We turn the
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problem into a conditional extreme value problem. Due to the limit of space, we put the
intermediate derivation in Appendix C.

Table 1. Symbol definitions.

Symbol Description

N the total number of bid requests
x whether to win the bidding request (1 if success, 0 otherwise)
v value evaluated for bid request
b bid price for bid request
RP reserved price for bid request
B total budget of an advertiser
ε a positive number infinitely close to 0
z feature vector denoting bid request
b(z) bid price function that wins
w(b) probability function of winning
v(z) estimated value of advertised bid request
p(z) prior distribution of the feature vector for bid request ad

The bidding process is based on the generalized second price mechanism, which
means that advertisers have no access to the final knock-down price if the bidding fails. It
is unlikely to accurately assess the value of the advertisement under these circumstances.

λw(b(v(z))) = [v(z)− λb(v(z))]
∂w(b(v(z)))

∂b(v(z))
(2)

Inferred from Equation (2), p(x) has little influence on the model. The influence of
b(v(z)) depends on w(b(v(z))) and λ, namely the bid landscape prediction problem and
the bid strategy optimization problem, respectively.

3.2. Bidding Strategy as Markov Decision Process

A restricted Markov decision process (S ,A,R,P) can be transformed from the above
probabilistic model.

State space S : a state st ∈ S includes the time t(when an ad display opportunity
arrives), the proportion of advertisers’ current budget left (LBt = 1− bt

B ), the consumption
rate of budget BRt =

LBt−LBt−1
LBt−1

, the characteristics of the ad itself zt, the winning rate wt,
and the ratio of the number of winning opportunities vt, to total number of participating
bids from time t− 1 to t. st is defined as below:

st = (LRt, BRt, zt, wt, vt) (3)

Action space A: at ∈ A can be obtained by solving the regulation factor λ(i). But un-
der the auction mechanism of generalized second price, the bid price is the predicted value
of the ad display opportunity product with the conditioning factor, (e.g., b = v ∗ 1

λ [5]).
Also, to simplify the scale of the problem, the action space is a discrete space, and the
specific values are the adjustment parameters of the base price. The bid action at is con-
sidered successful when the offered price is greater than or equal to the predicted bid
price bt. Conversely, if the bid price is less than the predicted bid price, the bid is deemed
unsuccessful, indicating an ineffective bidding action.

Reward functionR: To underscore the advantages of joint optimization, the rewards
for this Markov chain process consist of three components, amalgamating the strengths of
expert strategy, imitation strategy, and exploration mechanisms. The experiments section
will further elucidate how the integration of these components contributes to the overall
efficacy of the bidding strategy.
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Hence, a Markov decision process-based bidding strategy model is formulated
as follows.

max ∑
s∈S,a ∈A(s)

π(s)R(s, a) (4)

s.t. ∑
s∈S,a ∈A(s)

π(s)C(s, a) ≤ B,

∑
a∈A(s)

π(s) = 1, ∀s ∈ S

where the objective function is to maximize the expected return. π(s) is the bidding strategy
function, denoted as the probability of executing a bid action a in state s. B is the total
budget for an ad placement cycle, while C(s, a) is the cost function required for bid action a
in state s.

3.3. Partially Observable Scenario

A random masking process is applied to a specified percentage of the market state.
This masking operation involves obscuring or hiding certain components of the state,
making them unavailable for observation. The masked elements include features related
to expert samples, bidding landscapes, or other relevant market dynamics. We simulate
a more realistic bidding environment by masking a certain percentage of the market
state, including expert samples. The motivation is to mimic the inherent uncertainty and
incomplete information that advertisers often encounter in real-world bidding scenarios.
The masking process randomly masks a certain percent of the state, while the Imagination
module tries to recover the state by extrapolating the missing part of the state sequence
with consecutive states. We apply a random masking operation to both the training and
testing datasets. We construct a masking matrix Mm×n = {xij|xij ∈ {0, 1}} randomly with
a uniform distribution:

xij =

{
1 if U(i, j) > 1−m,
0 otherwise

(5)

where U(i, j) is a random variable uniformly distributed over the range [0, 1]. Define the
masked state as sM ∈ Rm×n, which is masked using M from original state s element-wise.

sM = Mask(s, m) = (LR, BR, z⊙M, w⊙M, v⊙M) (6)

4. The IIBidder Model

As shown in Figure 2, the IIBidder is composed of four parts, including IIBidder Agent,
Imagination module, Expert Sample Transitions, and Discriminator.

Mask
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Figure 2. The Imagine and Imitate Bidding (IIBidder) framework.
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4.1. IIBidder Agent

IIBidder agent executes a reinforcement learning process involving the proximal
policy optimization (PPO) algorithm and the Imagination module. The reward is composed
of both extrinsic rewards from the environment and intrinsic rewards generated by the
Imagination module.

The extrinsic reward rex comes from the environment and is part of the transition data
stored in the replay buffer. In the PPO update, the extrinsic reward is used in calculating
the advantage, which measures the advantage of taking a specific action in a given state
compared to the expected value.

The intrinsic reward rin is generated by the Imagination module based on the predic-
tion error of the next state and the action. This intrinsic reward promotes exploration by
encouraging the agent to visit states that are not yet well understood. rex, together with rin,
forms the total reward used in the PPO update.

r(s, a) = −log(1− (rex + rin)) (7)

The generative adversarial imitation learning (GAIL) part involves training the Dis-
criminator to distinguish between expert sample transitions and policy-generated tran-
sitions. The actor is trained to maximize the negative log probability assigned by the
discriminator to the policy-generated transitions. The GAIL update includes both the
expert sample transitions and policy-generated transitions in the loss calculation.

4.2. The Imagination Module

Our finding is that, although missing values are occasionally found in a single state,
agents still have the chance to “guess” the missing data by observing consecutive states,
which may contain enough information.

The Imagination module not only encourages an agent to expand the search space and
acquire successful bidding samples that even expert strategies have not encountered to alle-
viate the sparse reward problem in a high-dimensional state. On top of that, it also predicts
the missing value of the price landscape by learning the expert sample’s distribution in
consecutive states. The method also differentiates itself from the model-based Dreamer [39]
and ICM [38] by predicting the missing values in a model-free environment. As shown
in Figure 3, the Imagination module is composed of three neural networks, a forward
prediction network, an inverse extrapolation network, and a state encoder.

The Imagination module takes (st, st+1, at) as input, where st denotes values taken from
the state space of the Markov decision process model for real-time bidding advertising,
and at denotes the bid price of the imitation policy. We define a neural network function
φ(st), to process the state st. The bid decision ât is inferred by the inverse inference network
g(φ(st), φ(st+1)). By sequentially comparing consecutive states, the module learns the
most relevant information and infers the missing part in ŝt+1. Then, the parameters of the
inverse inference network and the state encoder are, respectively, updated according to the
following loss function.

L1 = ||at − ât||22 (8)

The forward prediction network f (φ(st), at, ŝt) generates a next possible state φ̂(st+1),
and a internal reward rin

t is obtained by comparing the difference between φ(ŝt+1) and
φ(st+1), while updating the parameters of the forward prediction network from L2-norm
loss function as Formula (9).

L2 = ||φ(st+1)− φ(ŝt+1)||22 (9)
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4.3. Expert Sample Transitions

For the bidding strategy, we can define the expert samples as samples that win the
ad display opportunity transaction. Suppose the data set in the expert sample database is
Ed = {τ̂1, τ̂2, τ̂3, . . . , τ̂i, . . .}, where τ̂i denotes a trajectory of expert experience for episode i.
Let τ̂i = {(sij, aij)}T

j=1 for each step j, where sij denotes the feature vector of bid requests
z, and aij equals the bid price b when it wins the deal. Also, for the samples with failed
bids, we increase their bid prices by a certain degree so that they can also be used as expert
samples. With a pool of expert examples, the distribution of market prices can be fitted
using deep neural networks, as probability density function p(v|z). We use a deep neural
network with parameters θ to approximate the conditional probability density function
p(v|z) during the learning process:

p(v|z) ≈ πE(z; θ) (10)

4.4. Discriminator

The main job of a discriminator D is to judge whether a bid decision is derived from
an expert policy τ̂t or from an imitation policy τt, and to output a score indicating to what
extent that the input is close to expert policy. In other words, D acts as the classical reward
function in a reinforcement learning paradigm so that we no longer need to define the
reward function manually. In general, discriminator D expects decisions derived from the
expert policy to have higher scores than ones derived from the imitation policy, namely,
D(b̂i) ≥ D(bi). The discriminator is updated based on the following loss:

Ld = D(b̂i)−D(bi) (11)

4.5. The IIBidder Algorithm

We integrate the GAIL with the Imagination module I to fit an unknown distribution
of incomplete expert examples. The system consists of an expert example database Ed,
an expert policy πE, an imitation policy πA, an Imagination module Iη , and a discriminator
D. In the RTB process, training the imitation policy πA corresponds to the problem of
solving the bidding strategy, while training the expert policy πE corresponds to the problem
of fitting the market price distribution. Further, the discriminator D is used to update the
two strategies simultaneously and make the imitation policy πA as close as possible to the
expert policy πE.
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As shown in Algorithm 1, it comprises majorly of nested loops, which are set to N
epochs for the outer loop and to k steps for the inner loop. At the n-th epoch, initialize
the RTB environment in a linear time and execute the inner loop, including the updating
of the policy network, imagination module and discriminator network. In the inner loop,
masking the state, obtaining action and reward, storing tuple in transition, and calculating
score, can all be done in linear time. Therefore, the time complexity for training is O(N · k).

Algorithm 1: The IIBidder algorithm.

1 Input Expert policy πE, Expert samples Ed ∼ πE, Imitation policy πA
θ with

random weight θ, experience buffer B, Discriminator D with random weight α,
Imagination module Iη , mask percentage m

2 Output Bidding Strategy
3 for each epoch do
4 Initialize RTB environment s0 = env.init() ;
5 for each step do
6 sM

t = Mask(st, m);
7 Get action and reward by at = πA(sM

t );
8 sM

t , sM
t+1, rex = env.step(at);

9 Store (sM
t , sM

t+1, at, rex) in B;
10 rin = Iη(sM

t , sM
t+1, at);

11 Calculate score = ∑T
t (rex + rin);

12 Set r(sM, a) = − log(1− score);

13 Update αi+1 ← αi with Equation (11);
14 Update θi+1 ← θi based on r(sM, a);
15 Update ηi+1 ← ηi with Equations (8) and (9);

5. Experiments

The experiments aim to answer the following questions:

• Under budget constraint, what is the performance of IIBidder in comparison to other
classic algorithms? In terms of modeling dynamic price environments, what advan-
tages does this algorithm have?

• In an incomplete data scenario, is IIBidder effective in addressing the challenge of
missing values within the competitive bidding environment?

• Does the incorporation of the Expert sample module, Discriminator module, and Imag-
ination module effectively stimulate favorable behavior in the agent? Under budget
constraints and incomplete data landscapes, can these modules operate effectively?

5.1. Experimental Settings
5.1.1. Implementation Details

For the experimental setting, the hardware consists of a CPU (Intel Xeon Gold 6140)
and a GPU (Tesla V100 with 32 GB of memory) with Ubuntu 18.04 running on it. The model
is implemented using PyTorch, a well-known deep learning framework.

5.1.2. Datasets

Due to the availability and fair comparisons, we choose the popular iPinYou and YOYI
datasets for the experiments.

iPinYou encompasses over 15 million impressions and user feedback data from nine
distinct campaigns by various advertisers over a ten-day period in 2013. Each bid request
in the log contains comprehensive information, including user details (e.g., segmentation),
advertiser specifics (e.g., creative format and size), and publisher information. The data set
has 26 original features that roughly fall into three categories: ad bids, ad exposure, and user
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feedback (clicks and conversion rate). Details are shown in Table A1. Meanwhile, the data
set includes nine advertisers of various industries in Table A2. Appendix D provides the
details of the datasets.

YOYI recorded multi-device advertising during 8 days in January 2016, which contains
5.64 million impressions. The first 7 days of data are used for training, while the rest are
used for testing. To facilitate fair comparison, all records are used as a single campaign
since the specific campaign information is unavailable.

5.1.3. Data Preprocessing

There are 10 days’ records in the data set, which are partitioned into a training set
and a test set by a ratio of 7:3. That is, the records from the first 7 days of the data set are
used as the training set, and the ones from the last 3 days as the test set. Except for the
mobile e-commerce advertiser with ID 2997, the click-through rate of real-time bidding ads
is below 0.01%, mainly because advertiser’s ads are usually placed on the pages of mobile
APPs, resulting in high probabilities of mistaken touch by users. Meanwhile, since the test
set is used to verify the effectiveness of the algorithm, all samples in the test set are samples
of successful bids, which means the win rate is 100%.

Moreover, judging by a significant difference between different types of advertisers,
the results indicate that advertisers in different industries will face different bidding en-
vironments. Therefore, in this research, different types of advertisers will be trained and
tested separately.

5.1.4. Evaluation Metrics

Traditionally, the RTB performances were assessed using metrics like click-through
rate (CTR) and winning rate (WR). However, we opt for a more sophisticated evaluation by
introducing cost-effective rate (CER) and win rate cost (WRC). CER and WRC provide a
more comprehensive evaluation of securing valuable clicks and successful bidding actions
associated with the costs, particularly under certain constraints of budgets.

CER emphasizes the effectiveness of the bidding strategy in generating clicks relative
to the cost incurred. A higher CER suggests an effective strategy in maximizing clicks
relative to the overall cost. The average CER is computed as follows:

CER =
1
n

n

∑
i=1

click2(i)
cost(i)

. (12)

WRC is a metric that gauges the effectiveness of the bidding strategy by evaluating the
win rate relative to the cost incurred. A higher WRC signifies a more cost-effective strategy.
Average WRC is calculated as below, where cost(i) denotes the cost per click spent by the
advertiser i.

WRC =
1
n

n

∑
i=1

winrate(i)
cost(i)

, (13)

where n = 9 represents the number of advertisers involved.
In the context of a simulated environment, characterized by dynamic variations in

budget allocations and information masking levels, CER and WRC emerge as more suitable
metrics considering the cost-effectiveness. Their capacity to handle the intricate interplay
between budget constraints and data masking conditions provides a more nuanced and
insightful evaluation of algorithmic performance. This adaptability ensures that the metrics
accurately capture the true cost-effectiveness of bidding strategies in scenarios where
missing values are a prevalent factor.

CER and WRC not only enhance the depth and relevance of our evaluation but also
ensure a more precise reflection of algorithmic efficiency within the challenging landscape
of our simulated environment, marked by the intricate interplay of budget considerations
and varying levels of information masking.

5.1.5. Budget, Masking and Hyper-Parameter Setting

To optimize advertising revenue within specified budget constraints and consider-
ing the partial observability of the market state, we incorporate a masking mechanism.
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The mask is designed to simulate real-world scenarios where advertisers have incom-
plete information about the pricing landscape. The masking scale, denoted by m, repre-
sents the proportion of state values that are concealed. We consider six masking scales:
m ∈{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where m = 0.0 means no masking.

To obtain the maximum advertising revenue under certain budget constraints, we
adopt the budget allocation formula commonly used for reinforcement learning bidding
strategies [17].

Btest, camp = c0 · Btrain,total ·
Ntest,camp

Ntrain,total
, (14)

where B(test,camp) denotes the budget allocated in the testing process for each advertiser.
B(train,total) is the total cost of the training set for all advertisers. N(test,camp) is the total
number of records for each advertiser, and N(train,total) is the total number of records in
the training set for all advertisers. The specific values of all of the above four variables
can be derived from the totaling row of Tables A3 and A4. We set a scaling factor c0 ∈
{1/2, 1/4, 1/8, 1/16, 1/32}, where a larger value corresponds to a higher allocated budget.

5.1.6. Baseline Models

The baselines are categorized into two types: parametric models and reinforcement
learning models. We introduce linear, deep reinforcement learning and random models for
comparison. For random policy, the study covers several common distributions, such as
Uniform , Gamma, and Normal.

• Uniform: This strategy assumes that the bid price is uniformly distributed between the
lowest bid bmin and the highest bid bmax, namely

bi ∼ Uni f orm(bmin, bmax). (15)

• Gamma [6]: Similarly, the strategy is made upon the Gamma distribution, characterized
by a shape parameter k and a scale parameter θ. The probability density function
(PDF) of the Gamma distribution is given by:

f (x; k, θ) =
xk−1e−

x
θ

θkΓ(k)
, (16)

where x ≥ 0, Γ(k) is the Gamma function, and k, θ > 0 are the shape and scale
parameters, respectively.

• Normal: The logarithm assumes that market price follows the Gaussian distribution
N (µ, σ2).

• Lin [19]: The bid bi for the ith ad display opportunity depends on the historical
average click-through rate CTRavg, the estimated click-through rate pCTRi for that
opportunity, and the base price b0.

bi = b0 ·
pCTRi

CTRavg
. (17)

• GMM [16]: a Gaussian mixture model to describe and discriminate the multimodal
distribution of market price by utilizing the impression-level features.

• DLF [40]: A method combining deep recurrent neural networks and survival analysis
to forecast the distribution of market prices.

• DRLB [41]: A DQN-based reinforcement learning bidding strategy. It converts the
problem of solving the bidding strategy into determining a factor γ according to
the optimal bidding theory [41], where the bid price is the ratio of the estimated
click-through rate pCTRi to γ.

Q(st, at) = Q(st,
pCTRi

γ
). (18)

5.2. Experimental Results and Discussions
5.2.1. Performance under Budget Constraints (Q1)

Cost-Effectiveness: As shown in Table 2,the IIBidder outperforms other classical algo-
rithms on both datasets and across both metric dimensions. This indicates that, under bud-
get constraints, IIBidder better manages the cost-effectiveness of ad bidding, achieving



Big Data Cogn. Comput. 2024, 8, 46 12 of 23

superior performance. The heatmap in Figure 4 gives the detail ranking w.r.t. each budget
and mask combination for metric CER and WRC, respectively.

Table 2. Performance comparison of different methods on various budgets. The best one in each
column is marked as bold.

Budget 1/32 1/16 1/8 1/4 1/2

Metric CER WRC CER WRC CER WRC CER WRC CER WRC

Lin
ipinyou 0.669 5.313 1.166 5.062 1.734 4.978 2.105 5.052 2.177 5.135
yoyi 1.420 5.105 5.826 4.817 15.900 4.743 19.999 4.740 19.999 4.740

Normal
ipinyou 0.055 2.550 0.128 2.537 0.271 2.573 0.486 2.502 0.724 2.585
yoyi 0.180 1.429 0.231 1.433 0.425 1.432 1.705 1.433 4.751 1.430

Uniform
ipinyou 0.089 3.350 0.193 3.895 0.456 4.115 0.915 3.928 1.401 4.090
yoyi 0.521 2.288 0.540 2.278 1.129 2.287 3.053 2.285 11.553 2.282

Gamma
ipinyou 0.112 4.162 0.208 3.975 0.471 4.143 0.859 3.887 1.379 3.997
yoyi 0.462 2.283 0.497 2.285 1.010 2.283 2.862 2.287 11.560 2.280

GMM
ipinyou 0.173 1.718 0.405 1.725 1.141 1.677 2.334 1.687 3.718 1.687
yoyi 0.118 1.427 0.202 1.529 0.171 1.353 0.166 14.3 0.166 1.592

DLF
ipinyou 0.555 2.816 1.015 2.828 2.306 27.725 5.211 2.615 6.272 2.611
yoyi 0.208 1.482 0.244 1.466 0.247 1.481 0.212 1.475 0.243 1.472

DRLB
ipinyou 8.962 29.510 9.822 28.615 8.235 15.083 7.088 19.427 4.476 13.360
yoyi 79.398 73.275 46.065 23.460 58.283 42.432 44.447 31.852 52.897 43.047

IIBidder
ipinyou 26.249 52.373 24.055 45.688 14.176 54.110 16.567 22.567 22.132 71.337
yoyi 50.913 23.827 71.430 60.452 75.622 56.535 55.325 28.522 53.773 30.577
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Figure 4. The rankings of our method for certain mask and budget combinations for each dataset and
metric. Each cell represents an experiment of a specific mask-budget combination, with a ranking
number inside. The smaller the ranking, the better. Our method ranks the first in most of experiments.

Regarding the CER metric, IIBidder outperforms all models on both IPinYou and YOYI
datasets. This underscores IIBidder’s ability to generate cost-effective bidding strategies,
yielding higher click-through rates at lower costs. DRLB ranks second with a click-through
rate of 0.03 per unit cost, while Normal models perform the poorest, with only 0.0008
click-through rate per unit cost. Results for Gamma, Uniform, Lin, GMM, and DLF are also
below 0.007 click-through rate per unit cost.

Concerning the WRC metric, IIBidder achieves superior performance under most
budget constraints, securing a lower unit win rate per cost. IIBidder performs well on
the IPinYou dataset with an average WRC of around 4× 10−7. In the majority of budget
conditions, it outperforms other algorithms, exhibiting high unit cost win rate values.
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On the YOYI dataset, it significantly surpasses Lin, Gamma, Normal, Uniform, GMM, and
DLF, and in many cases, outperforms DRLB.

The results under different budget factor settings are shown in Figure 5.
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Figure 5. The overall performance of Imagine and Imitate Bidding (IIBidder) under different budget
constraints on datasets and metrics.

Dynamic modeling capabilities: Reinforcement learning models, including IIBid-
der and DRLB, demonstrate superior dynamic modeling capabilities compared to para-
metric models and sequence models on both IPinYou and YOYI datasets. The results shed
light on the two modeling types in dynamic temporal scenarios: (1) Parametric models
often struggle to focus on specific localities, resulting in suboptimal performance, while
reinforcement learning models leverage neural networks to effectively handle fluctuating
markets. (2) Sequence models, such as DLF, outperform parametric models on two metrics
but fall short compared to reinforcement learning models. (3) With the support of the
imitation and imagination mechanism, IIBidder stands out for its exceptional dynamic
modeling capabilities, showcasing the substantial disparity in dynamic modeling prowess
between parametric and reinforcement learning models.

5.2.2. Analysis on Incomplete Data Scenario (Q2)

Increasing Trend: The overall increasing trend in metrics with different levels of
masking is attributed to the construction of the missing environment. Masking click
information and bidding prices in the dataset cover a portion of click situations, implying
that algorithms treat unknown click situations as non-clicks. Additionally, some bidding
prices are masked, prompting each algorithm to adopt more aggressive bidding strategies.
As a result, with increasing mask levels, the performance of CER and WRC tends to rise.

Handling Complete Landscape Capabilities: As Table 3 and the Figure 6 show,
IIBidder outperforms DRLB, DLF, and parametric models in dealing with missing values.
Parametric models show no significant difference in performance under different masking
levels and struggle to handle situations with missing landscape information.

Table 3. Comparative performance on different masking scales. The best one in each column is
marked as bold.

Masked 0% 10% 20% 30% 40% 50%

Metric CER WRC CER WRC CER WRC CER WRC CER WRC CER WRC

Lin
ipinyou 1.875 2.260 1.812 2.992 1.707 3.994 1.531 5.178 1.381 6.854 1.117 9.370
yoyi 13.491 2.624 16.653 3.276 14.258 4.046 12.656 4.980 10.646 6.182 8.068 7.866

Normal
ipinyou 0.360 1.724 0.380 2.054 0.350 2.316 0.330 2.502 0.300 3.014 0.277 3.686
yoyi 1.642 1.009 1.453 1.124 1.285 1.272 1.269 1.446 1.644 1.698 1.459 2.040

Uniform
ipinyou 0.475 2.454 0.571 2.798 0.621 3.496 0.668 3.884 0.676 5.106 0.654 5.516
yoyi 3.490 1.566 3.468 1.762 3.387 2.004 3.232 2.316 2.835 2.734 3.744 3.322
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Table 3. Cont.

Masked 0% 10% 20% 30% 40% 50%

Metric CER WRC CER WRC CER WRC CER WRC CER WRC CER WRC

Gamma
ipinyou 0.451 2.152 0.588 3.100 0.626 3.664 0.634 4.008 0.660 5.004 0.678 6.268
yoyi 3.450 1.564 3.265 1.758 3.280 2.004 3.040 2.318 2.782 2.740 3.853 3.318

GMM
ipinyou 1.355 1.162 1.474 1.324 1.530 1.498 1.481 1.728 1.696 2.012 1.793 2.468
yoyi 0.159 0.778 0.168 1.222 0.177 1.226 0.153 1.362 0.180 2.202 0.151 2.008

DLF
ipinyou 3.332 20.2 3.240 2.244 2.915 2.466 2.982 2.766 2.802 3.182 3.176 3.692
yoyi 0.275 1.054 0.279 1.172 0.254 1.312 0.209 1.296 0.211 1.736 0.155 2.082

DRLB
ipinyou 6.504 3.284 6.074 6.164 11.526 16.534 8.944 24.560 8.244 33.692 5.007 42.960
yoyi 27.604 3.300 25.999 5.546 40.039 13.634 38.998 23.592 52.123 42.806 152.546 168.000

IIBidder
ipinyou 12.234 4.302 25.757 20.780 32.898 46.128 18.115 45.060 22.070 87.720 12.739 91.300
yoyi 28.259 6.194 41.269 14.328 58.737 26.820 56.365 41.412 102.873 85.820 80.970 65.320
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Figure 6. The overall performance of Imagine and Imitate Bidding (IIBidder) for different masking
scales on different datasets and metrics.

IIBidder also demonstrates superior performance over DRLB, DLF, and GMM. As the
masking level increases, its advantage becomes more evident. When the mask is set to 0,
the CER of parametric models remains below 0.02, while reinforcement learning models
can achieve around 0.03. However, when the mask is set to 0.4, parametric models still stay
below 0.02, DRLB, GMM, and DLF below 0.06, while IIBidder exceeds 0.1. This indicates
its proficiency in handling missing data. The WRC metric yields a similar conclusion.

The incorporation of expert and imitation strategies, along with an imagination mech-
anism, contributes to the success of IIBidder. It can reference successful cases from the
expert pool during the learning process, enhancing its probability of successful bidding.
The Imagination module allows IIBidder to “imagine” future states based on previous data,
thereby alleviating the problem of missing data.

5.2.3. Ablation Studies on Different Module (Q3)

To assess the efficacy of the Expert sample module, Discriminator module, and Imagi-
nation module, the ablation study is to determine whether or not the incorporation of the
aforementioned modules successfully induces positive behavior in the agent.

We conducted PPO, AC-GAIL (using the Actor–Critic instead of PPO), PPO-GAIL
(without the Imagination module), and IIBidder (GAIL-PPO with Imagination module),
across diverse budget constraints and masking scales.

Ablation Studies under Budget Constraints:With the increase in the budget, IIBid-
der maintains a consistently superior position in both CER and WRC metrics, showcasing a
stable performance trend independent of budget variations. In terms of CER, IIBidder ranks
highest. Comparatively, IIBidder demonstrates a remarkable 43% increase in CER and a
substantial 68% rise in WRC when compared to PPO-GAIL. In contrast, the increase in CER
is marginal at 9%, accompanied by a modest 0.6% decrease in WRC when transitioning
from PPO to PPO-GAIL. Furthermore, in comparison to AC-GAIL, PPO-GAIL showcases a
significant 48% improvement in CER and an impressive 77% boost in WRC. This empha-
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sizes that the AC architecture struggles to effectively learn competitive bidding strategies
under budget constraints. In summary, the architectural elements of IIBidder, such as the
expert pool, imagination module, and discriminator module, collectively contribute to
more accurate bidding strategies under both budget constraints and scenarios involving
missing landscape data.

Ablation Studies on Incomplete Data Scenarios: With an increasing degree of mask-
ing, the advantages of the imagination module become increasingly evident. In the realm
of CER, IIBidder takes the lead, followed by IIBidder, PPO-GAIL, PPO, and AC-GAIL.
In comparison to PPO-GAIL, IIBidder exhibits a substantial 43% increase in CER. Similarly,
PPO-GAIL outperforms PPO with a modest 9% increase in CER. This underscores the
crucial role played by the imagination module in enhancing IIBidder’s performance in
coping with incomplete price landscape scenarios. The expert pool also contributes to the
decision-making process of the agent. The imagination module’s mechanism to predict
unknown distributions based on existing data distribution allows IIBidder to resist inter-
ference from missing values, resulting in a more robust bidding strategy. Contrasted with
AC-GAIL, PPO-GAIL shows a remarkable 62% improvement in CER, even surpassing PPO
by 21%. Hence, in a straightforward AC architecture, reinforcement learning models face
challenges in handling scenarios involving missing prices. Similar conclusions apply to the
analysis of the WRC metric.

Moreover, our approach also alleviates the cold start problem by leveraging other
advertisers’ expert bidding as prior domain knowledge to initialize the bidding strategy.
Advertisers can utilize industry insights, market trends, and competitor analysis to make
informed decisions in the absence of historical bidding data. By incorporating domain
expertise into the bidding process, advertisers can establish a solid foundation for their
bidding strategy and adapt it over time as more data becomes available. We found that
an advertiser can be provided some reliable expert samples from other advertisers’ expert
transition in the cold start.

6. Conclusions

Aiming at the bidding strategy optimization for RTB, this study proposes a framework
for the joint optimization of bidding strategy and bidding landscape prediction, capable
of handling incomplete price landscapes with cost-effectiveness. The experimental results
on the popular data sets show that the proposed method achieves impressive results over
existing approaches. This study has proved that inference on market price distribution
has a positive effect on developing bidding strategies under the market of incomplete
information. Further, in this kind of dynamically changing environment, it is unrealistic for
one to gain the maximum advertising revenue in the long run by artificially setting up a
reward function. Therefore, the Imitation and Imagination mechanism we proposed in the
paper is universal and effective in pursuing long-term revenue.

In RTB, the process of solving the bidding strategy is highly time-dependent, and the
neural networks used are fully connected neural networks. As such, recurrent neural
networks (LSTM, GRU, etc.) might be considered in extracting the temporal features in the
bidding process. Meanwhile, for advertisers without bid samples, IIBidder cannot build
an expert sample pool, so pre-training methods can be considered to solve the cold start
problem of bidding strategies.
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Appendix A. Real-Time Bidding for Online Advertisement

In an online advertisement RTB eco-system, advertisers and publishers interact with
each other via some intermediaries, including supply-side platforms (SSP), demand-side
platforms (DSP), and ad exchange (ADX), where ADX acts as an exchanging hub between
SSP and DSP. This paper focuses on DSPs (the advertisers). Real-time bidding (RTB) [2]
incorporates big data technology to analyze the user’s cache information, and then to
explore the user’s potential interest for advertising. The goal of RTB is to show the most
appropriate ad only to the user of interest. A real-time bidding advertising system consists
of the following roles, the interaction between which is also shown in Figure A1.

• Advertiser: An individual consumer or organization that needs to display an adver-
tisement who has a certain budget and bids actively in the bidding process to get the
opportunity to display their ads.

• Publisher: A provider with online advertising resources, usually the owner of web
pages, search engines, and mobile apps. Publishers earn profits by selling their
ad positions.

• Supplier Side Platform (SSP): SSP represents the interests of publishers. SSP integrates
media advertising resources for centralized management. It provides publishers with
functions such as bottom price setting and automatic ad placement. Since SSPs connect
to a large number of partners, they need to formulate a reasonable allocation strategy
for each partner to obtain the same amount of advertisers.

• Demand Side Platform (DSP): DSP represents the interests of advertisers, who register
on the DSP platform and initiate the requests for ad placement. DSP recommends the
most valuable ad positions for advertisers by various means such as big data analysis
and user behavior analysis. At the same time, DSP provides advertisers with functions
such as user response prediction, budget management and control, and automatic
real-time bidding.

• Ad Exchange (ADX): ADX is the hub of the RTB system, which connects many DSPs
and SSPs and handles all ad bidding requests in the system. Each bidding process is
conducted under the auspices of ADX, making sure that the whole process is fair and
open. Meanwhile, ADX sells ad display opportunities to the bidder who has given the
highest price according to the generalized second price (GSP) mechanism [42].

• Data Management Platform (DMP): After collecting information such as users’ cookies,
click records, purchase records, and search contents, DMP tries to clean, transform,
and refine the collected information. It adopts machine learning methods to mine user
preferences and recommend accurate target customers to the advertisers.

Online exchange requires recommending ads to target users automatically and in-
stantly, so it necessitates close cooperation from all parts of the RTB ecosystem. Figure A1
illustrates a typical bidding process.

1. When a user opens an app or web page developed by a third party (publisher), an ad
request will be generated and sent to an SSP with the user’s information. The request
contains the user’s cookie information and the ad context information (e.g., web page
URL, ad position, ad position length and width, ad position reserve price, etc.).

https://github.com/JNU-Tangyin/imagineRTB
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2. Once the SSP receives the ad display request, it forwards the request to the ADX with
an attachment.

3. ADX broadcasts the bid request, including the user’s cookie information and contex-
tual information of the ad, to all advertisers on the DSP platform.

4. After receiving the bid request, an advertiser makes a bid, probably with a bidding
robot. The ADX platform will compare these bid prices and determine a final winner.
Meanwhile, the process needs to be completed within a specified time (usually 100 ms).
When the time is out, the bidding opportunity is considered abandoned.

5. The winning advertiser only needs to pay the second-highest price. If all advertisers’
bid prices are lower than the reserved price defined by the publisher, the bidding
process for that ad display is considered abandoned.

6. ADX notifies the winner and automatically deducts the cost from the winner’s budget.
Then, the ADX platform sends back the winner’s ad content to the corresponding SSP.

7. The SSP shows the ad to the user and records the user’s feedback, such as clicks
and conversions.

① Browse Web or App
② Send Bidding Request
③ Notify Advertisers of Bids
④ Advertiser Bid Offer
⑤ Determine the Winner
⑥ Send AD Content with Payment
⑦ Show Ads

DMP

ADX

SSP

ADX

DSP

User

1

2

345

6

7

Advertiser SSP DSP Publisher

DMP：Data Management Platform
ADX：Ad Exchange
DSP：Demand Side Platform
SSP：Supply Side Platform

User

Figure A1. The real-time bidding (RTB) ecosystem and its process.

Appendix B. From Reinforcement Learning to Generative Adversarial
Imitation Learning

Reinforcement learning has long been an active area of research [25], aiming at auto-
matic decision making in many domains. A reinforcement learning architecture usually
consists of two parts, an agent and an environment. It models states and decision sequences
(trajectory) as Markov decision processes (MDP), where the agent continuously interacts
with the environment by receiving a state st and a reward rt, and by resending an action
at back to the environment. The environment, on the other hand, affected by the action
received, returns a reward rt+1, together with the next state st+1 if available. The purpose of
the agent is to obtain the maximum cumulative reward, with a discount factor γ recursively
scaling down the future reward. The interaction can be defined as a state value function:

V(s) = Rt︸︷︷︸
instant reward

+ γ ∑
s′∈S

P
(
s′ | s

)
V
(
s′
)

︸ ︷︷ ︸
discounted sum of future rewards

(A1)

Reinforcement learning (RL) has advanced to deep reinforcement learning (DRL)
with the emergence of the deep neural network in recent years. It can tackle a variety of
domain problems, such as electronic games [43], mechanical control [44], recommendation
systems [45], and financial investment [46]. The major idea of DRL is to replace the tabular
representation of the agent with a deep neural network. With the strength of approximating
significantly high dimensional functions, the deep neural network overcame the problem
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of high dimensional feature space and equipped the agents with the power to deal with
more complicated problems such as video games and robotic control.

There are three main types of deep reinforcement learning agents, namely the value-
based methods (e.g., Deep Q-network [47], or DQN for short), policy-based methods
(e.g., Proximal Policy Optimization, or PPO for short [13]), Actor–Critic methods, or combi-
nation. Value-based methods are less likely to fall into local optimum, having the advan-
tages of relatively high sampling efficiency and small variance of value function estimation.
However, it cannot handle continuous action space problems. On the other hand, policy-
based methods enjoy simple strategy parameterization, fast convergence, and suitability of
continuous or high-dimensional action spaces. Last but not least, Actor–Critic methods
combine the advantages of both methods and bring in disadvantages of both as well.

The convergence of reinforcement learning depends heavily on the design of the
reward function. Unfortunately, real-world problems are often sparsely rewarded in nature,
which usually require human-designed reward functions. Yet it is often impractical to set
up the reward functions manually [33]. Therefore, Imitation Learning (IL), as a method to
learn strategies from expert examples, is believed to be an effective solution concerning the
above problems [34]. It can be summarized as follows:

min
π

V(πE)−V(π) (A2)

where function V is cumulative return function, πE is expert strategy fit by expert samples,
and π is the parameterized imitation strategy. In other words, the key of imitation learning
is how to recover an expert strategy πE.

Along this line of research, the behavior cloning (BC) method is first proposed [35] to
replicate the expert strategies to speed up the learning process. However, Ross revealed
that the BC method using example data alone may generate cascading errors, and had poor
generalization and robustness when expert samples were insufficient [48]. He proposed
Dagger (a Dataset Aggregation algorithm) to generate data through continuous interaction
with the environment and to constantly update the strategy, which could reduce the
number of unvisited states and cascading errors by using data augmentation and strategy
iteration [36]. The inverse reinforcement learning method (IRL) uses expert instances to
fit the unknown reward function automatically [37]. However, the IRL method consumes
quite a lot of computational resources in its iterative process. Wang proposed the GAIL
algorithm [12] based on GAN and IRL, which used a generator to generate action sequences
and a discriminator to distinguish between the action sequences and the expert’s examples.

The generative adversarial network (GAN) [11] borrows the idea of a zero-sum game
from the game theory. The vanilla version of GAN consists of two neural networks, a gen-
erator and a discriminator. The generator continuously creates data for the discriminator,
while the discriminator distinguishes whether the data are ‘genuine’ or not. Both parties
play with each other and obtain results from each other so that they can continuously
upgrade themselves. The objective function of GAN is as follows:

min
G

max
D

V(D, G) = Ex∼p(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))], (A3)

where both generator G and discriminator D are parameterized neural networks. The first
part of the formula seeks to maximize the discriminative ability of D, while the second part
seeks to minimize the difference between the data distribution p(z) generated by G and the
real data distribution p(x). Analogous to the idea of GAN, GAIL [12] automatically fits the
reward function from expert samples as IRL does, and generates pseudo samples as in GAN.
By combining these techniques, GAIL can avoid the errors generated by human-designed
rewards and make the model more robust. We summarize the objective function of the
GAIL method as:
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min
π∈Π

max
S×A

E(s,a)∼d̂π [log(D(s, a))] +E(s,a)∼dπ [1− log(D(s, a))], (A4)

where dπ is a sample obtained from the interaction of the imitation strategy with the
environment, while d̂π is a sample obtained from the interaction with the environment
according to the expert strategy, and discriminator D judges whether the action a is gener-
ated by imitation strategy π or the expert strategy πE. The imitation strategy π is a deep
reinforcement learning agent, while the discriminator D is a parametric neural network
whose main function is to fit the reward function using the expert’s example data.

Appendix C. Formula Derivation

We further convert the formula into a probabilistic one. The market price is represented
by v(v ≥ 0) and p(v|z) to denote the probability density function of the market price given
a bid request z. If for any bid request, the price is b(b ≥ 0), the bid will be successful when
b ≥ v. We can, therefore, obtain the winning function of the bid request w(b) and the losing
function l(b), respectively.

w(b) = w( f (v, z)) = P(v < b) =
∫ b

0
p(v|z)dv (A5)

l(b) = P(v ≥ b) = 1− w(b) =
∫ ∞

b
p(v|z)dv (A6)

Further, the probabilistic model on the bidding strategy is as follows:

max
N

∑
i=1

∫ t

0
v(zi)w(b(v(zi), zi), zi)b(v(zi), zi)p(zi)dzi (A7)

s.t.
N

∑
i=1

∫ t

0
w(b(v(zi), zi), zi)b(v(zi), zi)p(zi)dzi ≤ B

B−
N

∑
i=1

∫ t

0
w(b(v(zi), zi), zi)b(v(zi), zi)dzi ≤ ε

The probabilistic model is further simplified into a model considering a single ad bid
request. The bidding strategy is only related to the ad value [18], so the strategy function
b(v(z), z) can be simplified to b(v(z)) as:

(w∗, b∗) = argmax
∫ t

0
w(b(v(z)))v(z)p(z)dz (A8)

s.t.
∫ t

0
w(b(v(z)))b(v(z))p(z)dz =

B
N

Among them, the prior distribution of bid requests p(z), the value assessment of ad
display opportunities v(z), and the distribution of winning bids w(b) can be obtained by
fitting historical market prices. The total budget of B and the total number of bid requests
are determined manually by operators. Therefore, the only variable in the model is the
bid strategy function b(v(z)). The problem finally turns into a conditional extreme value
problem as in Equation (2).
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Appendix D. Implementation Details

Table A1. Features and examples of iPinYou data set.

Feature Description Example

IP user’s IP address 121.225.158.3
adexchange the platform of the advertiser participating in the bidding 1
advertiser participating advertiser ID 1458

bidid the unique identifier of the bid record 72879b068fec2d3c2afd51
bidprice advertiser’s bid price 300

city user’s city 84
click the number of clicks on the ad 0

creative Ad creative logo 48f2e9ba1570a5e1dd653caa
domain user’s area trqRTuqbjoFf1mKYUV

hour time 0
ipinyouid user’s ID Vhk7ZAnyPIc9tbE
keypage URL of advertiser landing page befa5efe83be5e7c5085b
logtpye log type 1

payprice the transaction price of the ad display opportunity 55
region user administrative area information 80

slotformat format of the opportunity 1
slotheight the height of the opportunity 90

slotid the slot ID of the opportunity mm_34955955_11267874
slotprice the reserved price of the opportunity 0

slotvisibility the visibility of the opportunity 0
slotwidth width of the advertising display opportunity 728
timestamp the timestamp of the bid 20130606000105500.0

url URL address of the ad display opportunity de0cca5e4ff921ca803b
useragent the user’s browser information windows_chrome

usertag the user’s tag 100631304500037075861504
weekday indicates what day of the week it is 4

Table A2. The industry types of advertisers.

Advertiser ID Category

1458 E-commerce
2259 Milk powder
2261 Communication
2821 Footwear
2997 M-Commerce
3358 Software Development
3386 International E-Commerce
3427 Oil
3476 Tires

Table A3. Statistics of training data. Win Rate WR and Click Rate C are presented in average.

Adv.ID Impression Clicks Cost ($) W R C eCPC

1458 3,083,056 2454 212,400.20 20.97% 0.08% 86.55
2259 835,556 280 77,754.90 27.97% 0.03% 277.70
2261 687,617 207 61,610.94 31.84% 0.03% 297.64
2821 1,322,561 843 118,082.30 24.99% 0.06% 140.07
2997 312,437 1386 19,689.07 30.69% 0.44% 14.21
3358 1,657,692 1358 160,943.10 46.44% 0.08% 118.51
3386 2,847,802 2076 219,066.90 20.21% 0.07% 105.52
3427 2,512,439 1926 210,239.90 29.35% 0.08% 109.16
3476 1,945,007 1027 156,088.50 23.78% 0.05% 151.98

total 15,204,167 11,557 1,235,875.81 28.47% 0.10% 144.59
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Table A4. Statistics of test data. Win Rate WR and Click Rate C are presented in average.

Adv.ID Impression Clicks Cost ($) W R C eCPC

1458 614,638 543 45,216.45 100% 0.09% 83.27
2259 417,197 131 43,497.56 100% 0.03% 332.04
2261 343,862 97 28,796.00 100% 0.03% 296.87
2821 661,964 394 68,257.10 100% 0.06% 173.24
2997 156,063 533 8617.15 100% 0.34% 16.17
3358 261,001 339 34,159.77 100% 0.13% 100.77
3386 545,421 496 45,715.53 100% 0.09% 92.17
3427 514,559 395 46,356.52 100% 0.08% 117.36
3476 514,560 302 43,627.58 100% 0.06% 144.46

total 4,029,265 3230 364,243.66 100% 0.1% 150.71
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