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Abstract: In this paper, we find the solutions of fourth order fractional boundary value problems by
using the reproducing kernel Hilbert space method. Firstly, the reproducing kernel Hilbert space
method is introduced and then the method is applied to this kind problems. The experiments are
discussed and the approximate solutions are obtained to be more correct compared to the other
obtained results in the literature.
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1. Introduction

Boundary value problems come into view in many areas of science and engineering [1].
Many numerical methods have been presented for solving boundary value problems recently [2].
Wazwaz [3] has presented a modified decomposition method for investigating a special class of fourth
order boundary value problems. The series solution of fourth order boundary value problems has
been investigated by Adomian decomposition method in [4]. The differential transform method was
implemented in [5] for series solution of fourth order boundary value problems. The approximate
solution of two-point fourth order boundary value problems utilizing non-polynomial quintic spline
functions have been given in [6,7]. Lodhi and Mishra [8] have enhanced a numerical method for solving
fourth order boundary value problems utilizing quintic B-spline functions. A numerical technique
depending on non-polynomial spline functions has been applied in [9] for the numerical solution of
self-adjoint singularly perturbed fourth order boundary value problems. Akram and Amin [10] have
applied quintic spline collocation method for approximate solution of singularly perturbed fourth
order boundary value problems.

Fractional order boundary value problems have taken much interest by many investigators due
to their implementations in many areas of science and engineering. Recently, much attentions have
been given to investigate fractional order differential equations [11].

We take into consideration the following fourth order fractional boundary value problems arising
in plate deflection theory by the reproducing kernel Hilbert space method.

u®(z) + D'p(z)u(z) = g(2), z€ [a,b], @
subject to the end conditions

u(a) —a; = u(b) —ay =u"(a) —by =u"(b) — by = 0. ()
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where als, bls, (i =1,2) are real constants and 0 < ¢ < 1. p(z) and g(z) are continuous on the [a, b].

Let H be a Hilbert space of functions on some set X, which every point consideration at points in
X are continuous in the norm of H. Such space H, can be given by a positive definite kernel. This fact
is first presented by Aronszajn [12]. These Hilbert spaces are called the reproducing kernel Hilbert
spaces [13].

Arqub [14] has found the approximate solutions of DASs with nonclassical boundary conditions
using a novel reproducing kernel algorithm. Arqub [15] has investigated the reproducing kernel
algorithm for handling differential algebraic systems of ordinary differential equations. Arqub [16]
has applied a fitted reproducing kernel Hilbert space method for the solutions of some certain classes
of time-fractional partial differential equations subject to initial and Neumann boundary conditions.
Azarnavid et al. [17] have investigated the Picard-reproducing kernel Hilbert space method for
solving generalized singular nonlinear Lane-Emden type equations. Azarnavid et al. [18] have found
multiplicity results by shooting reproducing kernel Hilbert space method for the catalytic reaction
in a flat particle. Azarnavid et al. [19] have used an iterative kernel based method for fourth order
nonlinear equation with nonlinear boundary condition.

We arrange the paper as: The main notions of fractional calculus are given in Section 2.
The reproducing kernel Hilbert space method for fourth-order fractional order differential equations is
presented in Section 3. The numerical results and discussions are presented in Section 4. The conclusion
is presented in the last section.

2. Preliminaries and Notations

We give some definitions of fractional calculus in this section. There are many definitions of
fractional derivatives. The definitions of Riemann-Liouville fractional integral and Caputo’s fractional
derivative are presented as [17]:

Definition 1. The Riemann—Liouville left and right fractional integral of order v > 0 is given as [11]:

I;Lu(z) = 1"(17) /Z(z — 1) lu(tydr, m—1<y<m, meN, 3)
and 1 Z
Ilj,u(z) = —m/b (z—7)" tu(t)dt, m—-1<y<m, meN. 4)

where T defines the Gamma function.

Definition 2. The Riemann—Liouville fractional derivative of order «y > Q is presented as [11]:

1 an

DJu(z) = T =) 2

z
/ (z—7)" " lu(r)dr, m—1<y<m, méecN. (5)
a
Definition 3. The Caputo’s fractional derivative of order v > 0 is presented as [11]:

Z m
DJu(z) = 1"(n11—'y)/g (z— T)m*”‘flmdr, m—1<a<m, méeN. (6)

Lemma 1. Assume that f and g are analytic functions on (a — h,a + h) and let 0 < «y < 1. Then we have [11]:

(z—a)"

D{[f(2)8(2)] = r(17_7g(a)(f(z) — f(a)) + (Dag(2))f(2) @)

+ 1 (}) sk,

=1
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3. Reproducing Kernel Hilbert Space Method

We will construct reproducing kernel Hilbert spaces to solve the problem.
Definition 4. V.'[0, 1] is the first reproducing kernel Hilbert space that we need.
V20,1] = {r € AC[0,1] : ¥ € L2[0,1]}.

The inner product and norm for this reproducing kernel Hilbert space are defined by:

(g =000 + [ 7@ &)z g e VA0

and
Irllyy = \/(r )y, e VA0,

Lemma 2. The reproducing kernel function U, of V, [0, 1] is obtained as:

1+z, z<t,
Ut(Z)Z{

1+t z>t.

Definition 5. We construct the reproducing kernel Hilbert space V3[0,1] as:

v5[0,1] = {r € AC[0,1] : ¥, #", ", **) € AC[0,1], ¥® e L2[0,1],
r(0) = r(1) =7"(0) =+"(1) = 0}.

The inner product and the norm for this special Hilbert space is defined as:

4 . 1

)y = L r00a00) + [ rO@00@)dz g e 501
i=0

and

Iy = /e, re Vi)

Theorem 1. We obtain the reproducing kernel function for the reproducing kernel Hilbert space V3 [0,1] by:

ay(x), x<y,
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where,
a(x) = x? N 635131x%y4 N a6y 11x58 x7y?
Y 362880 ' 28582381440 ' 142911907200 15879100800 ' 10080
231x%y 105619x7y” 91723x7y° 23x°y°

8270365 3001150051200 + 428735721600 + 31758201600

| 88249x7y°  88249x7y*  91723x7y°  193x7y°
1442911907200 28582381440 3572797680 1000383350400

193x7y%  579x7y  2969x°y N 13x8y°
111153705600 8270365 66692223360 = 190549209600

1388 193287 1x%yS 69xPy°
21172134400 = 111153705600 15879100800 10586067200

_ 69x8y4 11x8y3 _ 13x%° 13x%8
2117213440 © 132325840 1714942886400 = 190549209600

193y’ 11x%° 23x%y°  635131x°y*
1000383350400 ~ 142911907200 = 31758201600 238186512

B 1% 9Ly 2969xy 1270132
6351640320 1190932560 33081460 ' 1654073 2381865120

9y’ N 819xy®  579xy” N 231xy° N 635131x%y°
33081460 ' 33081460 8270365 ' 8270365 = 142911907200

4347xy° +_4347xy4_ 5544xy° +_127013x3y3_ 636517x%°
16540730 ' 3308146 1654073 = 19848876 428735721600

91723x%y7 +»636517x3y6__ 635131x°y°  635131x°y°
3572797680 ' 3572797680 1190932560 1190932560

11y N 1%y 5544x7y __222389x4y4_1L 91723x%y”
1190932560 = 132325840 1654073 158791008 = 428735721600

88249x*y” 635131x*y®  319739x%y°  635131x*y°
28582381440 ' 28582381440 4763730240 238186512

23x%y° 69xty® 4347x%y | 222389x°y* | 4347x°y

+6351640320 2117213440 ' 3308146 ' 793955040 ' 16540730

 88249x%y7 635131x°y°  319739x°y°  69x°yP
142911907200 = 142911907200 23818651200 10586067200

The reproducing kernel function A, (x) is symmetric. Therefore, when exchange x and y in ay(x), we will obtain
by (x).
y

Proof. We have
SIAGIPN RGP
<r,Ay>V25 =) A (0)r9)(0) —0—/0 Ay (2)r®) (2)dz,
i=0
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by Definition 5. We obtain

(rAy)ys = Ay(0)r(0)+ A, (0)r'(0) + Ay (0)r"(0)

(A = 4070+ A7 0 ) + 457 (04 (0)

6 6
AP 1) (1) + Al (0)r®) (0)
1
8 8 9
ﬂgknﬂn+Aymwmy%oAy@w@mz
Since
5 6 8
A1) = a1y =aP ) =o,
we get
3 4
(7, Ay)ys = AL0)r(0) + AP (0)r®) (0) + ALY (0)r™®(0)
— AP 0y (0) + A (0)r)(0)
1
AP Or 0+ [ A7 @ @)z,
We have
4,(0) = 2969y | 4347y* 91y’ 8198
Y 1654073 ' 3308146 33081460 = 33081460
4347y°  5544y° 579y N 231y°
16540730 1654073 8270365 ' 8270365
A% 0) 33264y 635131y* 11y’ 338
y 1654073 39697752 198488760 = 66162920
635131y° +127013y3 _91723y7 N 636517y°
198488760 = 3308146 595466280 = 595466280
A ) = 52164y 222389y* 23y° 2078
y 1654073 ' 6616292 ' 264651680 264651680

319739y°  635131y° 88249y’ 635131y°
198488760 9924438 1190932560 = 1190932560’

50f13
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A9 0) = 52164y +222389y4 N 23y° 2078
y 1654073 ' 6616292 ' 264651680 264651680
319739y°  635131y3 88249y 635131y°
198488760 9924438 1190932560 ' 1190932560
A9 0) = 33264y 635131y* 1 338
y 1654073 ' 39697752 = 198488760 66162920
635131y°  127013y° = 91723y’ 636517y°
198488760 3308146 ' 595466280  595466280°
A0 = - 2969y 4347y 91y® 8198
y 1654073 3308146 = 33081460 33081460

4347y° N 55443 N 579y 231y°
16540730 = 1654073 = 8270365 8270365

Therefore, we reach

(r, Ay)ys = /0 LA ()7 (2)dz + /y 1 AV (2) (2)dz.

We have

where

k(y) = 819y° 1651104y = 4347y 4347y*
33081460 1654073 ' 165540730 = 3308146

91y° 5544y  579y” 231y°
33081460 1654073 8270365 ' 8270365

Therefore, we find
1

(r Ay = [+ k)r )z + [ k) @)d

y

(1, Ay)ys = (L+k@) (r(y) —(0)) +k(y)(r(1) —r(y)),

(1, Ay) s = 1),
Thus, the proof is completed. [

We investigate the solutions of the problem (1) and (2) in the reproducing kernel Hilbert space
V5[0, 1]. We need to homogenize the conditions to apply the reproducing kernel Hilbert space method.
We use the following transformation to homogenize these conditions.
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where
fz) = a2bby + 2abby — a?zby — 2a2zby — 2ab2b,
N 6(a—Db)
ab?by + 2abzby — 2azby + 3az%by + 2b%zb;
6(a—Db)

szbz — 3b22b1 + Z3b1 - Z3b2 + 611112 . 6b{11 + 6Z{11 — 62{12

6(a—Db) 6(a—0D)
After using the above transformation we obtain the following problem:
Ho = v™®)(2) + D'p(2)0(z) = M(z), z€ [a,b],

subject to the end conditions

where

Lemma 3. H is a bounded linear operator.

Proof. We will show
2 2
HHU||V21[0,1] <P HUHV25[0,1] ’
where P is a positive constant. We know

1

||Hv||%/21[0’1] = (Ho, Ho) ) = [Ho(0)]2 + | [Ho'(2)]? d.

We obtain

and
Ho(y) = <v(')/HA]/(')>V25[O,1]'
Therefore, we reach
|Ho| < HU||V25[0,1] HHAH||V25[O,1] =P HUHVZS[O,H'
Thus, we acquire
[Ho(0)] < PF [[0lf3sy -
Since

(Ho)'(2) = (00), (HA)'())ysion-

we obtain
|(Ho)'| < ||U||Eg[o,1] ||(HAy)IHE§[o,1] =D ”U”VZS[OJ]‘

Then, we find
2 2
[Ho)* < P3 HUHV;[QJ] .

At last we obtain

1
[Holyoy = [Ho©)P + [ [(Ho) ()% dz < (P + B) ol 35001

where P = P? 4 P2 is a positive constant. This completes the proof. [

7 of 13

®)

)



Fractal Fract. 2019, 3, 33 8of 13

We construct 4;(z) = U;(z) and ¢;(z) = H*a;(z), where H* is conjugate operator of H.
The orthonormal system {¢;(z) }zl of E3[0,1] can be obtained by Gram-Schmidt orthogonalization
operation of {;(z)},,

i
z) =) Batr(z), (Bi>0, i=12,...). (10)
k=1

Theorem 2. If v(z) is the exact solution of (8) and (9), then we obtain

ZﬁlkM i) i (2). (11)

k=1

Mg

I
—

where {z;}%°  is dense in [0, 1].

Proof. We prove this theorem by using the reproducing property, the features of adjoint operator and
the complete system as:

e

I
—

U(Z) = <U(Z), l:b\i(z)>v25[0,1] 11/[]\1'(2)

Bir (v(2), x(2)) 3 (0,1) $i(2)

I
™
-

Il
-
=

Il
—

Il
agh
-
3:‘

i (0(2), H*ay(2)) ysjoy $i(2)

i

N
T
I,

I
™
-

Il
—
-
Il
-

Bix (Ho(2), 4¢(2)) 3 o) $1(2)

I
e
-
=

] <M(Z)/ uzk>V21 [0,1] 111\1'(2)

I
—
=~
—

Y Bl (zi)9i(2).

I
e

[
—
=~
Il
_

This completes the proof. [

The approximate solution v, (z) can be obtained as:

=) Z wM(z1) i (2). (12)

=1k=1

4. Numerical Experiments

Two test examples have been taken into consideration to demonstrate the accuracy of the
reproducing kernel Hilbert space method in this section. The numerical simulation has been executed
in MAPLE 18.

Example 1. We consider the fourth order fractional boundary value problem as [17]:
u® (2) +0.05D7u(z) = g(z), ze€0,1], (13)
with the boundary conditions

u(0)=0, u(1)=0, u”(0)=0, u"(1)=8. (14)
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We have the exact solution of the problem as z*(z — 1).
The absolute errors for different values of vy applying the reproducing kernel Hilbert space method are given
in the Table 1. Figures 1-3 demonstrate the approximate and exact solution for v = 1.0 and y = 0.99.

Example 2. We take into consideration the following fourth order fractional boundary value problem [17]:
u®(2) + DVzu(z) = g(z), z€[0,1], (15)

with the boundary conditions

u”(0) =0,

u" (1) = 26(y — 1). (16)

We have the exact solution of the problem as z6(z7 — z2~7). The absolute errors applying the reproducing
kernel Hilbert space method are presented in the Table 2. Figures 4 and 5 show numerical solutions for v = 0.3.

Table 1. Absolute errors for Example 1.

x v = 0.99 v=10

0.0 0.000000000000000  0.000000000000000
0.1 1.172251330 x 107%  1.079370100 x 10~%
02 2.050389600 x 10~%  1.892279000 x 104
0.3 2501585000 x 10~%  2.301822740 x 10~*
0.4 2502148300 x 1074  2.286283000 x 104
0.5 2.134363900 x 10~%  1.922819800 x 10~*
0.6 1.537822000 x 10~*  1.353536000 x 10~*
0.7 8948229000 x 10~>  7.512914000 x 10~°
0.8 3.720321000 x 107>  2.799920000 x 10~°
0.9 7.854290000 x 10~®  3.736680000 x 10~°
1.0 1.591755364 x 1078 4.209367700 x 10~

Table 2. Absolute errors for Example 2.

X v=103

0.0 1.542329002 x 1011
0.1 1.509810086 x 104
02 2.928833663 x 104
03 4.165814337 x 104
04 5.106740380 x 104
05 5.655431300 x 104
0.6 5.714676400 x 104
0.7 5.202103100 x 10~
0.8 4.058811200 x 104
0.9 2300090700 x 10~*
1.0  2.085180231 x 1077
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Figure 2. Exact Solutions and Approximate Solutions of Example 1 for y = 0.99.
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Figure 3. Exact Solutions and Approximate Solutions of Example 1 for v = 0.99.

Figure 4. Exact Solutions and Approximate Solutions of Example 2 for « = 0.3.
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Figure 5. Exact Solutions and Approximate Solutions of Example 2 for ¢ = 0.3.

5. Conclusions

We studied the approximate solution of the fourth order fractional boundary value problems in

this paper. We applied the reproducing kernel Hilbert space method to our problem. We demonstrated
our results by tables and figures. We proved the accuracy of the reproducing kernel Hilbert space
method for solutions of fourth order fractional differential equations.
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