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Abstract: In this work, we investigate analytically the solutions of a nonlinear div-curl system with
fractional derivatives of the Riemann–Liouville or Caputo types. To this end, the fractional-order
vector operators of divergence, curl and gradient are identified as components of the fractional
Dirac operator in quaternionic form. As one of the most important results of this manuscript, we
derive general solutions of some non-homogeneous div-curl systems that consider the presence of
fractional-order derivatives of the Riemann–Liouville or Caputo types. A fractional analogous to the
Teodorescu transform is presented in this work, and we employ some properties of its component
operators, developed in this work to establish a generalization of the Helmholtz decomposition
theorem in fractional space. Additionally, right inverses of the fractional-order curl, divergence and
gradient vector operators are obtained using Riemann–Liouville and Caputo fractional operators.
Finally, some consequences of these results are provided as applications at the end of this work.

Keywords: fractional div-curl systems; Helmholtz decomposition theorem; Riemann–Liouville
derivative; Caputo derivative; fractional vector operators
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1. Introduction

From an analytical point of view, the literature offers a wide range of reports that
focus on the extension of integer-order methods and results for the fractional case. From a
more particular point of view, the fractional generalization of the classical vector calculus
operators (that is, the gradient, divergence, curl and Laplacian operators) has been also
an active topic of research, which has been developed from different approaches. Some
of the first attempts to extend these operators to the fractional scenario are described
in [1,2] using the Nishimoto fractional derivative. These operators were used later on
in [3] to provide a physical interpretation for the fractional advection-dispersion equation
for flow in heterogeneous porous media. In 2008, Vasily E. Tarasov described different
approaches to formulate a fractional form of vector calculus with physical applications
in [4] (see also references therein). More recently, a new generalization of the Helmholtz
decomposition theorem for both fractional time and space was proposed in [5,6] using
the discrete Grünwald–Letnikov fractional derivative. Another related work is [7], where
the authors investigate the dynamic creation of fractionalized half-quantum vortices in
Bose–Einstein condensates of sodium atoms.

In this work, we consider fractional derivatives of the Riemann–Liouville and the
Caputo types and provide extensions of the definitions of the main differential operators
from vector calculus using these fractional operators. In such a way, we present fractional
forms of the divergence, the rotational and the gradient operators. Moreover, we also con-
sider generalized forms of the Dirac and the Laplace operators using fractional derivatives.
Our goal in this work is to extend quaternionic analysis to consider fractional forms of
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the classical differential operators. Analogues of the properties satisfied by the classical
operators will be mathematically established in this work. For instance, we will show that

RLDα
a+ [w] = −RL divα

a+ ~w +RL gradα
a+ w0 +

RL curlα
a+ ~w, (1)

CDα
a+ [w] = −C divα

a+ ~w +C gradα
a+ w0 +

C curlα
a+ ~w. (2)

In other words, when we apply the fractional Dirac operator to a quaternion valued
function w = w0 + ~w, this expression can be decomposed in terms of a fractional divergence,
a fractional gradient and a fractional rotational operator. Based on this, we will also
provide explicit expressions of general weak solutions for some fractional forms of the
div-curl system, considering various analytical hypotheses. More precisely, we will prove
that if we restrict ourselves to the class of functions with fractional divergence zero and
whose Riemann–Liouville fractional integral has zero normal trace, then the fractional
Teodorescu transform represents a solution of the above-mentioned div-curl systems (see
Theorems 2 and 3).

This manuscript is organized as follows. In Section 2, we recall some important defini-
tions from the literature, including those of the left and right Riemann–Liouville fractional
derivatives, the left and right Caputo fractional derivatives and the two-parameter Mittag–
Leffler function. A useful characterization of the functions with summable fractional
derivatives is also recalled. In Section 2.2, the Riemann–Liouville and the Caputo Dirac and
Laplace operators are introduced. Moreover, some fundamental solutions for the fractional
Dirac operators are recalled in Section 2.3. In Section 3, we introduce fractional extensions
of the divergence, rotational and gradient differential operators. Some properties among
these operators are established, and a useful factorization theorem for the fractional Laplace
operators is proven. It is worth mentioning that this factorization is not new; however, we
were able to derive it only using the identities preserving the fractional gradient, diver-
gence and rotational operators. Among the most important results, we establish that the
fractional Teodorescu transform is a right inverse of the fractional Dirac operator under
suitable analytical conditions, and we prove a fractional form of the Divergence Theorem.

Section 4 is devoted to establishing the existence of weak solutions for Riemann–
Liouville and Caputo fractional div-curl systems. The explicit form of the operators
involved in the solution, as well as some of their properties, allow the solution to be re-
expressed as the sum of the fractional gradient of a scalar potential plus a fractional curl of
a vector potential; we can say that our solutions preserve a Helmholtz-type decomposition
(see Propositions 6 and 7). As a consequence, right inverses of the fractional rotational and
divergence operators are provided in a subclass of the fractional divergence-free vector
fields. In turn, Section 5 provides some consequences of the factorization results proven
in Section 2 to the construction of fractional hyper-conjugate pairs. A theorem providing
necessary and sufficient conditions for the existence of Caputo fractional hyper-conjugate
pairs is proven in this stage, along with a result of the existence of a right inverse for the
fractional gradient. Finally, this manuscript closes with a section of concluding remarks.

2. Background
2.1. Fractional Calculus

The present section is devoted to recalling some useful definitions from fractional
calculus. Throughout, we assume that a, b, α ∈ R satisfy α > 0 and a < b. Meanwhile,
we suppose that f : R → R is a sufficiently smooth function, with the property that f is
identically equal to zero outside of the interval [a, b].

Definition 1. The left and right Riemann–Liouville fractional integrals of f of order α with
respect to the interval [a, b] (whenever they exist) are the functions Iα

a+ [ f ] and Iα
b− [ f ], defined,

respectively, by (see [8])
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Iα
a+ [ f ](x) =

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt, x > a, (3)

Iα
b− [ f ](x) =

1
Γ(α)

∫ b

x

f (t)
(t− x)1−α

dt, x < b. (4)

Let m = [α] + 1 ∈ Z. The left Riemann–Liouville and the left Caputo fractional
derivatives of order α with respect to the interval [a, b] are, respectively, defined as follows:

RLDα
a+ [ f ](x) = Dm Im−α

a+ [ f ](x) =
1

Γ(m− α)

dm

dxm

∫ x

a

f (t)
(x− t)α−m+1 dt, x > a, (5)

CDα
a+ [ f ](x) = Im−α

a+ Dm[ f ](x) =
1

Γ(m− α)

∫ x

a

f (m)(t)
(x− t)α−m+1 dt, x > a. (6)

Finally, we define the right Riemann–Liouville and the right Caputo fractional derivatives
of order α with respect to the point a, respectively, as the functions

RLDα
b− [ f ](x) = Dm Im−α

b− [ f ](x) =
(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f (t)
(t− x)α−m+1 dt, x < b, (7)

CDα
b− [ f ](x) = Im−α

b− Dm[ f ](x) =
(−1)m

Γ(m− α)

∫ b

x

f (m)(t)
(t− x)α−m+1 dt, x < b. (8)

For the sake of convenience, we will employ the notation Dα
a± when we present

properties satisfied by both fractional derivatives RLDα
a± and CDα

a± . Throughout, we let
Iα
a+(L1) denote the class of all functions f that are represented by the fractional integral (3)

of some integrable function, i.e., f = Iα
a+ [g], for some g ∈ L1(a, b). Using this notation, the

following result provides a characterization of these functions.

Theorem 1 (Samko et al. [9]). Let α > 0 and m = [α] + 1. Then, the function f belongs to
Iα
a+(L1) if and only if Im−α

a+ [ f ] ∈ ACm([a, b]), and (Im−α
a+ [ f ])k(a) = 0, for each k ∈ {0, 1, . . . , m− 1}.

Definition 2. If (Im−α
a+ [ f ])(k)(a) = 0, for each k ∈ {0, 1 . . . , m − 1}, then it follows that

f (k)(a) = 0 holds, for each k ∈ {0, . . . , m− 1} (see [8,9]). In light of this fact, we will say that f
has a summable fractional derivative Dα

a+ [ f ] of order α on [a, b] if Im−α
a+ [ f ] ∈ ACm([a, b]).

In the following discussion, suppose that α > 0, f admits a summable fractional
derivative of order α > 0 on [a, b], and let m = [α] + 1. Then, the following composition
rules are satisfied:

Iα
a+

RLDα
a+ [ f ](x) = f (x)−

m−1

∑
k=0

(x− a)α−k−1

Γ(α− k)
(Im−α

a+ [ f ])m−k−1(a), (9)

Iα
a+

CDα
a+ [ f ](x) = f (x)−

m−1

∑
k=0

f (k)(a)
k!

(x− a)k. (10)

On the other hand, we know that both fractional derivatives RLDα
a+ and CDα

a+ satisfy
the one-sided invertibility property Dα

a+ Iα
a+ [ f ] = f . It is worth noting that this identity

is a particular case of the property Dα
a+ Iβ

a+ [ f ] = Dα−β
a+ [ f ], which holds for each α, β ∈ R

satisfying α ≥ β > 0.
It is important to recall also that the following semi-group property for the composition

of fractional derivatives is not generally satisfied:

CDα
a+

CDβ
a+ [ f ] = CDβ

a+
CDα

a+ [ f ] = CDα+β
a+ [ f ]. (11)

However, if f (k)(a) = 0 for k = 0, 1, . . . , max{[α] + 1, [β] + 1} − 1, then (11) does hold;
see Section 2.2.6 [8]. An analogous condition for the semi-group property in the context
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of the Riemann–Liouville derivative is found in Section 2.3.6 [8]. Finally, the following
relation between the Riemann–Liouville and Caputo fractional derivatives is valid:

CDα
a+ [ f ](x) = RLDα

a+ [ f ](x)−
m−1

∑
j=0

(x− a)j−α

Γ(j− α + 1)
D(j)

x [ f ](a). (12)

Definition 3 (Gorenflo et al. [10]). Let µ, ν ∈ R be such that µ > 0. We define the two-
parameter Mittag–Leffler function Eµ,ν : C→ C with parameters µ and ν in terms of the following
power series:

Eµ,ν(z) =
∞

∑
n=0

zn

Γ(µn + ν)
, ∀z ∈ C. (13)

2.2. Fractional Quaternionic Analysis

In this section, we will mention some recent results in fractional Clifford analysis.
The Dirac operator in Clifford analysis, also known as the Moisil–Teodorescu differential
operator, represents the cornerstone of the analysis in higher dimensions. A remarkable
number of systems of differential equations have been analyzed using this operator or
a perturbation of it, and the monographs [11–13] of the authors Gürlebeck and Sprößig
contain many examples of the applications that have been made over the years. See also [14],
where the authors introduced the fractional Dirac operator with Caputo derivatives as well
as the basic tool of a fractional function theory in more dimensions.

More precisely, this section is devoted to the collection of some recent results of the
authors Ferreira et al. [15–17], by whom fundamental solutions of the fractional Laplacian
were found, where the derivatives are of Riemann–Liouville and Caputo types, as well as
of the fractional Dirac operators.

For the remainder, let ai, bi ∈ R satisfy ai < bi, for each i = 1, 2, 3. We will suppose
that Ω = Π3

i=1(ai, bi) is a bounded open rectangular domain in R3, and let α = (α1, α2, α3),
with αi ∈ (0, 1], for all i = 1, 2, 3.

Definition 4 (Ferreira et al. [15–17]). The fractional Riemann–Liouville and fractional
Caputo Dirac operators are represented by RLDα

a+ and CDα
a+ , respectively, and they are defined as

RLDα
a+ =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai , (14)

CDα
a+ =

3

∑
i=1

ei
C∂

1+αi
2

xi ,ai . (15)

Here, RL∂
1+αi

2
xi ,ai and C∂

1+αi
2

xi ,ai are, respectively, the Riemann–Liouville and the Caputo fractional
derivative operators of order (1+ αi)/2 with respect to the variable xi ∈ (ai, bi), for each i = 1, 2, 3.
We define the fractional Laplace operators RL∆α

a+ and RL∆α
a+ , respectively, by

RL∆α
a+ =

3

∑
i=1

RL∂
1+αi
xi ,ai , (16)

C∆α
a+ =

3

∑
i=1

C∂
1+αi
xi ,ai , (17)

where RL∂
1+αi
xi ,ai and C∂

1+αi
xi ,ai are, respectively, the Riemann–Liouville and Caputo fractional derivatives

of order 1 + αi with respect to the variable xi ∈ (ai, bi), for each i = 1, 2, 3.

2.3. Fundamental Solutions

The purpose of this subsection is to determine fundamental solutions for the fractional
Dirac operator and use their properties in the investigation of the solutions of fractional
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div-curl systems. Beforehand, it is worth recalling that a family of fundamental solu-
tions for the fractional Laplace operators RL∆α

a+ and C∆α
a+ , and a family of fundamental

solutions for the fractional Dirac operators RLDα
a+ and CDα

a+ , were obtained in [15,16] for
the Riemann–Liouville and Caputo case, respectively. In the case of Riemann–Liouville
fractional operators, the authors employed some properties of the Mittag–Leffler function
and the Laplace transform in two dimensions.

We will begin this section by recalling some relevant results derived in [15]. To this end,
let u be an eigenfunction of the fractional Laplace operator, i.e., suppose that RL∆α

a+u = λu

for some λ ∈ C, and assume that u(~x) admits a summable fractional derivative RL∂
1+α1

2
x1,a+1

in

the variable x1, and that it belongs to I1+αi
a+i

(L1) in the variables x2 and x3. In what follows,

we will consider the following integral and differential conditions of Cauchy type: f0(x2, x3) = I1−α1
a+1

[u](a1, x2, x3),

f1(x2, x3) = ∂α1
x1,a+1

[u](a1, x2, x3).
(18)

Lemma 1 (Ferreira et al. [15,17]). A family of eigenfunctions of the fractional Laplace operator
RL∆α

a+ is given by the function

uλ(~x) = (x1 − a1)
α1−1E1+α1,α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

− λ
))

f0(x2, x3)

+ (x1 − a1)
α1 E1+α1,1+α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

− λ
))

f1(x2, x3).
(19)

Meanwhile, a family of fundamental solutions of the fractional Dirac operator RLDα
a+ is

obtained by considering λ ≡ 0 in (19). More precisely, this family of solutions is given by

RLEα
a+(~x) = −

RLDα
a+ [u0](~x), (20)

where u0 is a fundamental solution of RL∆α
a+ , i.e.,

u0(~x) = (x1 − a1)
α1−1E1+α1,α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

))
f0(x2, x3)

+ (x1 − a1)
α1 E1+α1,1+α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

))
f1(x2, x3).

(21)

Here, f0 and f1 satisfy the conditions (18).

Let v be an eigenfunction of the fractional Laplace operator, i.e., suppose that C∆α
a+v = λv,

for some λ ∈ C. Assume that v(~x) admits a summable fractional derivative RL∂
1+α1

2
x1,a+1

in

the variable x1, and that it belongs to I1+αi
a+i

(L1) in the variables x2 and x3. By Theorem 1,

v(x1, a2, x3) = v(x1, x2, a3) = 0. In what follows, we will consider the following Cauchy
conditions: {

g0(x2, x3) = v(a1, x2, x3),

g1(x2, x3) = v′x1
(a1, x2, x3).

(22)

As a consequence, g0(a2, x3) = g0(x2, a3) = g1(a2, x3) = g1(x2, a3) = 0.
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Lemma 2 (Ferreira et al. [16,17]). A family of eigenfunctions for the fractional Laplace operator
C∆α

a+ is given by the function

vλ(~x) = E1+α1,1

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3
− λ

))
g0(x2, x3)

+ (x1 − a1)E1+α1,2

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3
− λ

))
g1(x2, x3).

(23)

Meanwhile, a family of fundamental solutions of the fractional Dirac operator CDα
a+ is obtained

by considering λ ≡ 0 in (23). More precisely, this family of solutions is given by

CEα
a+(~x) = −

CDα
a+ [v0](~x), (24)

where v0 is a fundamental solution of C∆α
a+ , i.e.,

v0(~x) = E1+α1,1

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3

))
g0(x2, x3)

+ (x1 − a1)E1+α1,2

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3

))
g1(x2, x3),

(25)

where g0(x2, x3) and g1(x2, x3) satisfy (22).

3. Fractional Vector Calculus

For the remainder of this section, we will study the fractional divergence, gradient and
rotational operators as parts of a decomposition of the fractional Dirac operator in three
dimensions. More precisely, recall that if w = w0 + ~w is a quaternionic-valued function,
then the following decomposition in quaternionic form is satisfied:

Dw = −div ~w + grad w0 + curl ~w. (26)

Here, D = ∑3
i=1 ei∂i is the classical Dirac operator, which is also called the Moisil–

Teodorescu differential operator. For more details about quaternionic analysis, see [11,18,19].
Our goal in this section is to provide an extension of this decomposition (27) using fractional
operators of the Riemann–Liouville and Caputo types.

Let w = w0 + ∑3
i=1 eiwi be a quaternionic-valued function in AC(Ω), whose scalar

part is denoted by Sc[w] = w0 and its vector part by Vec[w] = ~w = ∑3
i=1 eiwi. Then, the

action of the operator RLDα
a+ on w reduces to

RLDα
a+ [w] =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w]

= −
(

3

∑
i=1

RL∂
1+αi

2
xi ,ai [wi]

)
+

(
3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w0]

)
+ e1

(
RL∂

1+α2
2

x2,a2 [w3]−RL ∂
1+α3

2
x3,a3 [w2]

)
+ e2

(
RL∂

1+α3
2

x3,a3 [w1]− RL∂
1+α1

2
x1,a1 [w3]

)
+ e3

(
RL∂

1+α2
2

x1,a1 [w2]− RL∂
1+α2

2
x2,a2 [w1]

)
.

(27)

The above decomposition of Equation (27) originates a fractional version of the classi-
cal divergence, rotational and gradient differential operators from vector calculus. These
operators are, respectively, the scalar component of (27), the vector term acting over ~w and
the vector term of the equation acting over w0. These facts are the motivation to analyze
the following fractional differential operators.
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Definition 5. Define the fractional divergence, curl and gradient operators in the Riemann–
Liouville sense by

RL divα
a+ ~w =

3

∑
i=1

RL∂
1+αi

2
xi ,ai [wi], (28)

RL curlα
a+ ~w = e1

(
RL∂

1+α2
2

x2,a2 [w3]−RL ∂
1+α3

2
x3,a3 [w2]

)
+ e2

(
RL∂

1+α3
2

x3,a3 [w1]−RL ∂
1+α1

2
x1,a1 [w3]

)
(29)

+ e3

(
RL∂

1+α2
2

x1,a1 [w2]−RL ∂
1+α2

2
x2,a2 [w1]

)
,

RL gradα
a+ [w0] =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w0]. (30)

It is important to point out that the fractional operators (28)–(30) reduce, respectively,
to the classical div, curl, and grad operators from vector calculus when αi = 1, for each
i = 1, 2, 3. Moreover, if α∗ > 0 and αi = α∗, for each i = 1, 2, 3, then the above fractional
operators coincide with the divergence, curl and gradient operators defined in [1,2] up to a
constant factor. See also [4] and references therein for a historic account of the efforts to
formulate a fractional form of vector calculus. Unlike the classical vector calculus operators,
these fractional operators are non-local. Consequently, the fractional divergence, curl and
gradient depend on the domain Ω.

Notice now that (27) can be rewritten as the following decomposition

RLDα
a+ [w] = −RL divα

a+ ~w +RL gradα
a+ w0 +

RL curlα
a+ ~w. (31)

Since the specific form of the Riemann–Liouville fractional derivative does not affect
the above decomposition, we analogously obtain the following decomposition in terms of
Caputo fractional derivatives:

CDα
a+ [w] = −C divα

a+ ~w +C gradα
a+ w0 +

C curlα
a+ ~w. (32)

Here, the operators C divα
a+ , C curlα

a+ and C gradα
a+ are defined as in (28)–(30), respec-

tively, using Caputo fractional derivatives instead of Riemann–Liouville operators.
We define now a class of functions in AC1(Ω) where we can apply the semi-group

property (11).

Definition 6. We set Zα
a+(Ω) = { f ∈ AC1(Ω) : f (a1, x2, x3) = f (x1, a2, x3) = f (x1, x2, a3)

= 0}.

Proposition 1. If f = f0 + ~f ∈ Zα
a+(Ω), then

(i) RL divα
a+

RL curlα
a+ [

~f ] = 0,
(ii) RL curlα

a+
RL gradα

a+ [ f0] = 0,
(iii) RL divα

a+
RL gradα

a+ [ f0] =
RL∆α

a+ [ f0],
(iv) RL gradα

a+
RL divα

a+ [
~f ]− RL curlα

a+
RL curlα

a+ [
~f ] = RL∆α

a+ [
~f ].

Moreover, the identities (i)–(iv) also hold for the Caputo fractional operators.

Proof. The results readily follow from the identities

RL∂
1+αi

2
xi ,ai

RL∂
1+αi

2
xi ,ai = RL∂

1+αi
xi ,ai , ∀i = 1, 2, 3. (33)

RL∂
1+αi

2
xi ,ai

RL∂
1+αj

2
xj ,aj = RL∂

1+αj
2

xj ,aj
RL∂

1+αi
2

xi ,ai , ∀i, j = 1, 2, 3, (34)

which are trivially satisfied in Zα
a+(Ω). The identities with Caputo fractional operators are

established in a similar fashion.
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Similar identities using Caputo fractional derivatives were proven in [4] when all
the orders of the fractional derivatives are equal, i.e., when there exists α∗ > 0 such that
αi = α∗, for each i = 1, 2, 3. On the other hand, a direct consequence of Proposition 1 is
that the fractional Dirac operator RLDα

a+ factorizes the fractional Laplace operator RL∆α
a+ . A

more general factorization for functions taking values in C l0,3 was proven in Section 4 [16].
In light of these remarks, the following result is a direct consequence of Proposition 1.

Corollary 1. If f = f0 + ~f ∈ Zα
a+(Ω), then the following factorizations of the fractional Laplace

operators are satisfied:

RL∆α
a+ [ f ] = −RLDα

a+
RLDα

a+ [ f ], (35)
C∆α

a+ [ f ] = −CDα
a+

CDα
a+ [ f ]. (36)

We turn our attention now to the right Caputo fractional Dirac operator, which is
given by the expression

CDα
b− =

3

∑
i=1

ei
C∂

1+αi
2

xi ,b
−
i

. (37)

The following fractional Stokes formula was proven in Theorem 10 [17]:∫
Ω

(
−([h]CDα

b−)(~y) f (~y) + h(~y)(RLDα
a+ [ f ])(~y)

)
d~y =

∫
∂Ω

h(~y)η(~y)ds~y Iα
a+ [ f ](~y). (38)

Here, we require that f , h ∈ AC1(Ω) ∩AC(Ω) and Iα
a+ [ f ] = ∑3

i=1 I
1−αi

2
a+i

[ f ]. It is worth

noting here that the operator CDα
b− acts on the right, while RLDα

a+ acts on the left. Intuitively,
the last formula shows that the left Riemann–Liouville and right Caputo fractional Dirac
operators act by ‘intertwining’ to obtain the fractional analogue of the Stokes formula.

The following result is a fractional form of the well-known Divergence Theorem.

Proposition 2 (Fractional Divergence Theorem). If ~f ∈ AC1(Ω) ∩AC(Ω), then∫
Ω

RL divα
a+ [

~f ](~y) d~y =
∫

∂Ω
η(~y) · Iα

a+ [
~f ](~y) ds~y, (39)∫

Ω

RL curlα
a+ [

~f ](~y) d~y =
∫

∂Ω
η(~y)× Iα

a+ [
~f ](~y) ds~y. (40)

Proof. Taking h ≡ 1 in (38) and using that [1]CDα
b− = 0 yields that∫

Ω

RLDα
a+ [

~f ](~y) d~y =
∫

∂Ω
η(~x)Iα

a+ [
~f ](~y) ds~y. (41)

Due to the decomposition (31) and because Iα
a+ [

~f ] is purely vectorial, we can readily
calculate their scalar and vector parts, respectively. As a consequence, we readily achieve
formulas (39) and (40), respectively.

Proposition 3. Let ~f ∈ Zα
a+(Ω), c0 ∈ AC(Ω) and 0 < αi < 1, for all i = 1, 2, 3. Then, the

following identities hold:

RL divα
a+ [c0~f ] = ~f · RL gradα

a+ [c0], (42)
RL curlα

a+ [c0~f ] = ~f × RL gradα
a+ [c0]. (43)

Proof. We will only calculate RL∂
1+α1

2
x1,a+1

[ fic0] using integration by parts and Leibniz’ rule,

the determination of RL∂
1+α2

2
x2,a+2

[ fic0] and RL∂
1+α3

2
x3,a+3

[ fic0] being similar. Beforehand, note that
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mi = 1, for all i = 1, 2, 3. Recall now that Dα
a+ is a left inverse of Iα

a+ ; and by hypothesis
fi(a1, x2, x3) = 0, for all i = 1, 2, 3. It follows then that

RL∂
1+α1

2
x1,a+1

[ fic0](~x) =
∂

∂x1

1

Γ( 1−α1
2 )

∫ x1

a1

fi(t, x2, x3)c0(t, x2, x3)

(x1 − t)
1+α1

2

dt

=
∂

∂x1

(
fi(t, x2, x3)I

1−α1
2

a+1
[c0](t, x2, x3)

∣∣∣x1

a1
− I1

a+1

[
I

1−α1
2

a+1
[c0]

∂

∂x1
fi

])
=

∂

∂x1

(
fi(x1, x2, x3)I

1−α1
2

a+1
[c0](x1, x2, x3)

)
− I

1−α1
2

a+1
[c0]

∂

∂x1
fi

= fi(~x)RL∂
1+α1

2
x1,a+1

[c0](~x).

(44)

Analogously, RL∂
1+αj

2
xj ,a

+
j
[ fic0] = fi

RL∂
1+αj

2
xj ,a

+
j
[c0], for each j = 2, 3 and i = 1, 2, 3. As

a consequence,

RL divα
a+ [c0~f ] =

3

∑
i=1

RL∂
1+αi

2
xi ,a

+
i
[c0 fi] =

3

∑
i=1

fi
RL∂

1+αi
2

xi ,a
+
i
[c0] = ~f · RL gradα

a+ [c0]. (45)

This establishes the first identity of the conclusion. The proof of the second equation
is analogous.

Before closing this section, it is natural to compare qualitatively the results obtained in
traditional vector calculus against those in the fractional case. In classical vector calculus,
the following product rules are satisfied:

div(c0~f ) = ~f · grad c0 + c0 div ~f , (46)

curl(v0~f ) = ~f × grad c0 + c0 curl ~f . (47)

On the other hand, in the fully fractional case considered in Proposition 3, when we
restrict ~f to the class of functions Zα

a+(Ω), the first part of these identities is also satisfied,
except that the second terms on the right-hand sides of (46) and (47) are not present
anymore. Notice that it is not difficult to construct a family of functions belonging to
Zα

a+(Ω), for instance ~f (x) = (x1 − a1)
γ1(x2 − a2)

γ2(x3 − a3)
γ3~g(x) for all ~g ∈ AC1(Ω) and

γi ≥ 0 for all i = 1, 2, 3.

4. Fractional Div-Curl Systems
4.1. Properties of the Fractional Teodorescu Transform

As a derivation of the fractional Borel–Pompeiu formula [17], the authors defined
the Caputo-type Teodorescu transform in a very similar way to the following definition,
the difference being that the kernel is now a fundamental solution of the fractional Dirac
operator defined in (20).

Definition 7. Let~x = (x1, x2, x3) with xi > ai, for all i = 1, 2, 3. Define the Riemann–Liouville
and Caputo fractional Teodorescu transform by

RLTα
a+ [w](~x) =

∫
Ω

RLEα
a+(~x + a−~y)w(~y) d~y, (48)

CTα
a+ [w](~x) =

∫
Ω

CEα
a+(~x + a−~y)w(~y) d~y. (49)

Here, we follow the nomenclature and conventions of Lemma 1. Moreover, the derivatives
RLEα

a+ = −RLDα
a+ [u0] and CEα

a+ = −CDα
a+ [v0] that appear in the kernel of (48) and (49), re-

specrively, are with respect to the variable ~x.
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In the following, it will be convenient to employ the translation operator, which is
defined by T~z f (~y) = f (~y +~z). Similarly, we will use the reflection operator given by
R~y f (~y) = f (−~y). An important relation between Dα

a+ and Tθ is

RLDα
(−θ+a)+ [Tθ f ](~x) = RLDα

a+ [ f ](~x + θ), (50)

where the derivative is taken with respect to the variable ~x. The proof is analogous to
Theorem 11 [17], which is for the Caputo case, but we will give it here for completeness.

Proposition 4. Let αi ∈ (0, 1), for each i = 1, 2, 3, and let α∗ = min1≤i≤3{αi}. The fractional
Teodorescu transform RLTα

a+ is a right inverse of the fractional Dirac operator RLDα
a+ in Lp(Ω), for

all p ∈ R satisfying 1 < p <
2

1− α∗
.

Proof. Observe firstly that the fundamental solution RLEα
a+(~x) of the fractional Dirac oper-

ator RLDα
a+ is defined only for xi > ai, for each i = 1, 2, 3. Moreover, it satisfies the iden-

tity RLDα
a+

RLEα
a+(~x) = δ(~x − a) or, equivalently, RL∆α

a+ [u0](~x) = −RLDα
a+

RLDα
a+ [u0](~x) =

δ(~x− a). In the following, the derivatives RLDα
~y+ and RLDα

a+ are with respect to the variable
~x. Using (50) with θ = a−~y yields

RLDα
a+

RLTα
a+ [w](~x) =

∫
Ω

RLDα
~y+

RLEα
a+(~x + a−~y)w(~y) d~y

= −
∫

Ω

RLDα
~y+

(
Ta−~y

(RLDα
a+ [u0](~x)

))
w(~y) d~y

= −
∫

Ω
Ta−~y

(RLDα
a+

RLDα
a+ [u0](~x)

)
w(~y) dy

=
∫

Ω
Ta−~yδ(~x− a)w(~y) dy

=
∫

Ω
δ(~x−~y)w(~y) d~y = w(~x),

(51)

which we wished to prove.

In the following, we will employ a key decomposition of the classical Teodorescu
operator used in [20–23] for different kinds of bounded or unbounded domains in R3. For
the fractional version, we denote the component operators of the fractional Teodorescu
transform as follows:

RLTα
a+ [w0 + ~w] := RLTα

0,a+ [~w] + RL−→T
α

1,a+ [w0] +
RL−→T α

2,a+ [~w]. (52)

The first term on the right-hand side of Equation (52) is the scalar part, while the last
two summands represent the vector part, and it has been split into two components for the
sake of convenience. These three terms are given by

RLTα
0,a+ [~w](~x) = −

∫
Ω

RLEα
a+(~x + a−~y) · ~w(~y) d~y, (53)

RL−→T
α

1,a+ [w0](~x) =
∫

Ω

RLEα
a+(~x + a−~y)w0(~y) d~y, (54)

RL−→T α
2,a+ [~w](~x) =

∫
Ω

RLEα
a+(~x + a−~y)× ~w(~y) d~y. (55)

We will see later in Corollary 2 how some of these component operators themselves
represent right inverse operators of the fractional divergence and rotational operators,
under certain conditions. Moreover, RLTα

a+ , as a good generalization of the classical Teodor-
escu operator in quaternionic analysis, preserves many of its properties. To this end, we
use the above decomposition (52), RLTα

a+ [~g] =
RLTα

0,a+ [~g] +
RL−→T α

2,a+ [~g], to see necessary
and sufficient conditions to guarantee that both its scalar part and its vector part belong
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to the kernel of the fractional Laplacian RL∆α
a+ . In order to apply the factorization of

Corollary 1 to the fractional Teodorescu transform, we will need to guarantee that the
condition RLTα

a+ [~g] ∈ Z
α
a+(Ω) can be satisfied.

Proposition 5. If RLTα
a+ [~g] ∈ Z

α
a+(Ω), then the following hold for the fractional Teodorescu

transform RLTα
a+ [~g]:

(i) The scalar part of RLTα
a+ [~g],

RLTα
0,a+ [~g], belongs to the kernel of RL∆α

a+ if and only if RL divα
a+

~g = 0.
(ii) The vector part of RLTα

a+ [~g],
RL−→T α

2,a+ [~g], belongs to the kernel of RL∆α
a+ if and only if

RL curlα
a+ ~g = 0.

Moreover, the statements (i) and (ii) also hold for the Caputo fractional Teodorescu transform.

Proof. Using the factorization in Corollary 1, Proposition 4 and the decomposition (31), it
readily follows that

RL∆α
a+

RLTα
a+ [~g] = −

RLDα
a+

RLDα
a+

RLTα
a+ [~g] =

RL divα
a+ ~g−

RL curlα
a+ ~g. (56)

Taking its scalar part or vector part, respectively, we obtain the desired result.

4.2. Riemann–Liouville System

In the following, we will study a fractional form of the classical div-curl system and
construct its solution. More precisely, we fix the domain Ω, and consider the fractional system{

RL divα
a+ ~w = g0,

RL curlα
a+ ~w = ~g,

(57)

where g0 ∈ Lp(Ω,R) and ~g ∈ Lp(Ω,R3), for some 1 < p < 2/(1− α∗). Notice that if
the solution is such that ~w ∈ Zα

a+(Ω), then ~g satisfies RL divα
a+ ~g = 0, i.e., ~g is a ‘fractional

divergence-free’ vector field. Let f0 ∈ AC(Ω). The following relations will be fundamental
in the sequel:

RL gradα
a+ [ f0](θ −~y) = −RL gradα

(θ−a)− [TθR~y[ f0]](~y),
C gradα

a+ [ f0](θ −~y) = −C gradα
(θ−a)− [TθR~y[ f0]](~y). (58)

Here, the derivatives are taken with respect to the variable ~y. In the sequel and for
the sake of convenience, we will employ Ker to denote the kernel of operators. As in the
previous section, we will let Ω = Π3

i=1(ai, bi) be a bounded open rectangular domain in R3,
and assume that α = (α1, α2, α3), with αi ∈ (0, 1), for each i = 1, 2, 3. Using this notation,
we have the following result.

Theorem 2. Let g = g0 +~g ∈ Lp(Ω) with 1 < p < 2/(1− α∗). If RL divα
a+ [~g] = 0 and the

normal trace of Iα
a+ [~g] vanishes, then a general weak solution of the fractional Riemann–Liouville

div-curl system (57) is given by

~w = −RL−→T
α

1,a+ [g0] +
RL−→T α

2,a+ [~g] +
RL gradα

a+ [h], (59)

where h ∈ Ker(RL∆α
a+) ∩ Z

α
a+(Ω) is an arbitrary scalar function.

Proof. By Proposition 4 and the decomposition (31), the fractional Teodorescu transform
RLTα

a+ [−g0 + ~g] is a quaternionic solution of the system (57). To obtain a pure-vector
solution, note that the decomposition (52) yields

RLTα
a+ [−g0 +~g] = RLTα

0,a+ [~g]−
RL−→T

α

1,a+ [g0] +
RL−→T α

2,a+ [~g]. (60)
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Taking h(~y) = T~x+aR~yu0(~y) and f (~y) = ~g(~y) in the Stokes formula (38) (all deriva-
tives with respect to the variable~y) and letting u0 be a fundamental solution of RL∆α

a+ given
in Lemma 1, we obtain∫

∂Ω
T~x+aR~y[u0](~y)η(~y)Iα

a+ [~g] ds~y

=
∫

Ω

((
−[T~x+aR~y[u0]]

CDα
b−

)
(~y)~g(~y) + T~x+aR~y[u0](~y)RLDα

a+ [~g](~y)
)

d~y.
(61)

Calculate the scalar part of (61) and use the hypotheses −Sc Dα
a+ [~g] =

RL divα
a+ [~g] = 0

in Ω and Iα
a+ [~g]| · η = 0 on ∂Ω to reach∫

Ω

C gradα
b−

[
T~x+aR~y[u0]

]
(~y) ·~g(~y) d~y = 0. (62)

By differentiating now under the integral sign and using the traditional Leibniz’ rule,
we readily obtain the following fundamental relation:

RL gradα
a+ ,~x[u0](~x + a−~y) = −RL gradα

a+ ,~y[u0](~x + a−~y). (63)

Here, the second sub-index indicates whether we are taking derivatives with respect
to the variable ~x or ~y. Recall that RLEα

a+ = −RL gradα
a+ ,~x[u0] with respect to the variable ~x.

On the other hand, due to u0 ∈ Zα
a+(Ω) and relations (12), (63) and (58), we obtain

RLEα
a+(~x + a−~y) = C gradα

a+ ,~y[u0](~x + a−~y) = −C gradα
x− ,~y[T~x+aR~y[u0]](~y). (64)

However, we know that RLEα
a+(~x+ a−~y) is only defined when xi > yi, for all i = 1, 2, 3.

As a consequence, we can readily replace the operator C gradα
b− by C gradα

x− in (62). Finally,
by employing (64) and (62), we readily reach

RLTα
0,a+ [~g](~x) = −

∫
Ω

RLEα
a+(~x + a−~y) ·~g(~y) d~y = 0, in Ω. (65)

This means that RLTα
a+ [~g] = −

RL−→T
α

1,a+ [g0]+
RL−→T α

2,a+ [~g] is purely vectorial and, moreover,(
−RL divα

a+ +RL curlα
a+
)RLTα

a+ [−g0 +~g] = RLDα
a+

RLTα
a+ [−g0 +~g] = −g0 +~g. (66)

Setting the scalar and vector parts equal to each other, we obtain that RLTα
a+ [~g] =

−RL−→T
α

1,a+ [g0] +
RL−→T α

2,a+ [~g] is a solution of the fractional div-curl system (57). Finally,
the fact that the solution is not unique is a consequence of the identities (ii) and (iii) of
Proposition 1.

In the limit αi → 1−, the fractional div-curl system (57) reduces to the well-known
integer-order system from vector calculus, and the hypothesis RL divα

a+ [~g] = 0 reduces to the

evident requirement that ~g be a divergence-free vector field. Moreover, I
1−αi

2
a+i

[u0~g]→ u0~g.

This means that it is sufficient to require that ~g has zero normal trace. Taking g0 ≡ 0 or
~g ≡ 0 in (57), we readily obtain

Corollary 2. Under the same assumptions of Theorem 2, RL−→T α
2,a+ is a right inverse operator of

RL curlα
a+ in the class of functions considered in Theorem 2. Meanwhile, −RL−→T

α

1,a+ is always a right
inverse operator of RL divα

a+ in Lp(Ω).

Another important analogy with the classical vector calculus is that the solution of the
non-linear fractional system (57) also admits a Helmholtz-type fractional decomposition
as follows.
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Proposition 6. Under the same assumptions of Theorem 2, the general weak solution of the
fractional Riemann–Liouville div-curl system (57) admits a fractional Helmholtz decomposition
as follows

~w = RL gradα
~x− ϕ0 − RL curlα

~x− ~ϕ, in Ω, (67)

where the scalar potential ϕ0 and the vector potential ~ϕ are given by

ϕ0(~x) =
∫

Ω
T~x+aR~y[u0](~y)g0(~y) d~y, ~ϕ(~x) =

∫
Ω
T~x+aR~y[u0](~y)×~g(~y) d~y.

Proof. Due to RLEα
a+ = −RL gradα

a+ [u0] and by relation (58), we can write

RL−→T
α

1,a+ [g0](~x) =
∫

Ω

RL gradα
~x− T~x+aR~y[u0](~y)g0(~y) d~y,

RL−→T α
2,a+ [~g](~x) =

∫
Ω

RL gradα
~x− T~x+aR~y[u0](~y)×~g(~y) d~y.

Finally, since the fractional gradient involved in the above re-expressions of the
component operators RL−→T

α

1,a+ and RL−→T α
2,a+ is taken with respect to the variable ~x, we

readily obtain (67).

4.3. Caputo System

For the corresponding fractional div-curl system in the sense of Caputo derivatives, we
will follow the same approach as that used with the Riemann–Liouville div-curl system (57).
Let us consider the system {

C divα
a+ ~w = g0,

C curlα
a+ ~w = ~g,

(68)

where g0 ∈ Lp(Ω,R) and ~g ∈ Lp(Ω,R3), for some 1 < p < 2/(1− p∗). The cornerstone
in our analysis will be again the fractional Teodorescu transform associated with Caputo
derivatives, which means that its kernel is a fundamental solution of the fractional Dirac
operator CDα

a+ . As in the case of the Riemann–Liouville fractional Teodorescu operator, we
define the decomposition

CTα
a+ [w0 + ~w] := CTα

0,a+ [~w] + C−→T
α

1,a+ [w0] +
C−→T α

2,a+ [~w], (69)

where CTα
0,a+ , C−→T

α

1,a+ and C−→T α
2,a+ are given by (53), (54) and (55), respectively, but using now

the Caputo kernel CEα
a+ in the integrand, instead of the Riemann–Liouville kernel RLEα

a+ .
Analogously to the proof of Theorem 2, it follows that CTα

a+ [−g0 +~g] is a quaternionic
solution of the fractional div-curl system (68). This is a direct consequence of the fact that
CTα

a+ is a right inverse of CDα
a+ in Lp(see [17], Theorem 11). Apply the decomposition (69)

to the quaternion-valued function g = g0 +~g, where g0 and ~g are the known data provided
by the fractional div-curl system (68). In this way, we notice that

CTα
a+ [−g0 +~g] = CTα

0,a+ [~g]−
C−→T

α

1,a+ [g0] +
C−→T α

2,a+ [~g].

To obtain a purely vectorial solution, we will impose suitable conditions over~g in order
to guarantee that the scalar part of CTα

a+ [−g0 +~g] vanishes in Ω, i.e., that CTα
0,a+ [~g] ≡ 0 is

satisfied in Ω. We will see that the fractional divergence-free functions of the Riemann–
Liouville type, whose Riemann–Liouville fractional integral has zero normal trace, belong
to the kernel of the operator CTα

0,a+ , in the same way as seen in Theorem 2 for the operator
RLTα

0,a+ . Nevertheless, the upcoming proof is relatively more straightforward.
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Theorem 3. Let g = g0 +~g ∈ Lp(Ω) with 1 < p < 2/(1− α∗). If RL divα
a+ [~g] = 0 and the

normal trace of Iα
a+ [~g] vanishes, then a general weak solution of the fractional Caputo div-curl

system (68) is given by

~w = −C−→T
α

1,a+ [g0] +
C−→T α

2,a+ [~g] +
C gradα

a+ [h], (70)

where h ∈ Ker(C∆α
a+) ∩ Z

α
a+(Ω) is an arbitrary scalar function.

Proof. It suffices to prove that CTα
0,a+ [~g] = 0 in Ω, in light of the previous discussion.

Take h(~y) = T~x+aR~yv0(~y) and f (~y) = ~g(~y) in the Stokes formula (38), and let v0 be the
fundamental solution of C∆α

a+ (25). It follows that∫
∂Ω
T~x+aR~y[v0](~y)η(~y)Iα

a+ [~g] ds~y

=
∫

Ω

((
−[T~x+aR~y[v0]]

CDα
b−

)
(~y)~g(~y) + T~x+aR~y[v0](~y)RLDα

a+ [~g](~y)
)

d~y.
(71)

Taking now the scalar part of (71) and using the hypotheses, we readily obtain∫
Ω

C gradα
b−

[
T~x+aR~y[v0]

]
(~y) ·~g(~y) d~y = 0. (72)

As a consequence of (58), we reach CEα
a+(~x + a − ~y) = −C gradα

x− [T~x+aR~y[v0]](~y).
However, we know that CEα

a+(~x + a−~y) is only defined for xi > yi, for all i = 1, 2, 3. This
implies that we can replace the operator C gradα

b− with C gradα
x− in (72). It is easy to see

then that
CTα

0,a+ [~g](~x) = −
∫

Ω

CEα
a+(~x + a−~y) ·~g(~y) d~y = 0, in Ω, (73)

whence the conclusion readily follows.

Corollary 3. Under the same assumptions of Theorem 3, C−→T α
2,a+ is a right inverse operator of

C curlα
a+ in the class of functions considered in Theorem 3. Moreover, −C−→T

α

1,a+ is a right inverse
operator of C divα

a+ in Lp(Ω).

Analogously to the Riemann–Liouville case, the fractional Caputo div-curl system
(68) also admits a fractional Helmholtz decomposition, but now the potential is in terms of
v0 defined in (25), which is a fundamental solution of the fractional Laplace operator of
Caputo type.

Proposition 7. Under the same assumptions of Theorem 3, the general weak solution of the
fractional Caputo div-curl system (68) admits a fractional Helmholtz decomposition as follows

~w = C gradα
~x− ψ0 − C curlα

~x−
~ψ, in Ω, (74)

where the scalar potential ψ0 and the vector potential ~ψ are given by

ψ0(~x) =
∫

Ω
T~x+aR~y[v0](~y)g0(~y) d~y, ~ψ(~x) =

∫
Ω
T~x+aR~y[v0](~y)×~g(~y) d~y.

Proof. The proof is analogous to that of Proposition 6 for the Riemann–Liouville case.

5. Application

Let Ω = Π3
i=1(ai, bi) be as in the previous sections, and assume 0 < αi < 1, for all

i = 1, 2, 3. The present section provides some consequences of the factorization provided
by Corollary 1 to the construction of fractional hyper-conjugate pairs. In addition, we
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will give an explicit expression of a right inverse of the fractional gradient of Caputo type
considering different derivative orders.

Definition 8. Let w = w0 + ~w ∈ AC(Ω). We say that (w0, ~w) is a Riemann–Liouville fractional
hyper-conjugate pair if w ∈ Ker(RLDα

a+). Analogously, (w0, ~w) is a Caputo fractional hyper-
conjugate pair if w ∈ Ker(CDα

a+).

The following result is a straightforward consequence of the factorization of the
fractional Laplace operator in the class Zα

a+(Ω) provided by Corollary 1. For this reason,
we omit the proof.

Corollary 4. Let w = ∑3
i=0 wi, and suppose that w ∈ Ker(RLDα

a+) ∩ Z
α
a+(Ω) (respectively,

w ∈ Ker(CDα
a+) ∩ Z

α
a+(Ω)). Then, wi ∈ Ker(RL∆α

a+) (respectively, wi ∈ Ker(C∆α
a+)), for all

i = 0, 1, 2, 3.

By Definition 8, it is obvious that (w0, ~w) forms a Riemann–Liouville fractional hyper-
conjugate pair if and only if the following fractional div-curl system is satisfied:

RL divα
a+ ~w = 0,

RL curlα
a+ ~w = −RL gradα

a+ w0. (75)

Similarly, (w0, ~w) is a Caputo fractional hyper-conjugate pair if and only if

C divα
a+ ~w = 0,

C curlα
a+ ~w=−C gradα

a+ w0. (76)

The above systems (75) and (76) can be considered fractional generalizations of the
Moisil–Teodorescu system studied for the first time in [24].

Let us define the following integral operator in terms of the Riemann–Liouville frac-

tional integrals I
1+αi

2
a+i

as

Aα
a+ [

~f ](~x) = I
1+α1

2
a+1

[ f1](x1, a2, a3) + I
1+α2

2
a+2

[ f2](x1, x2, a3) + I
1+α3

2
a+3

[ f3](x1, x2, x3). (77)

As the following result shows, it turns out thatAα
a+ behaves as a right-inverse operator

of C gradα
a+ in the class of functions satisfying C curlα

a+
~f = 0. For this reason, Aα

a+ is called
the fractional anti-gradient operator.

Proposition 8. If C curlα
a+

~f = 0, then C gradα
a+ Aα

a+ [
~f ] = ~f .

Proof. Using the characterization of Caputo fractional hyper-conjugate pairs given under
Corollary 4 and differentiating under the integral sign, we readily obtain

C∂
1+α1

2
x1,a+1
Aα

a+ [
~f ](~x) =C ∂

1+α1
2

x1,a+1

(
I

1+α1
2

a+1
[ f1](x1, a2, a3) + I

1+α2
2

a+2
[ f2](x1, x2, a3) + I

1+α3
2

a+3
[ f3](x1, x2, x3)

)
= f1(x1, a2, a3) + I

1+α2
2

a+2
C∂

1+α1
2

x1,a+1
[ f2](x1, x2, a3) + I

1+α3
2

a+3
C∂

1+α1
2

x1,a+1
[ f3](x1, x2, x3).

(78)

Now, by hypothesis C curlα
a+

~f = 0 or, equivalently, the following identities are satisfied:

C∂
1+α2

2
x2,a2 [ f3]−C ∂

1+α3
2

x3,a3 [ f2] =
C∂

1+α3
2

x3,a3 [ f1]−C ∂
1+α1

2
x1,a1 [ f3] =

C∂
1+α1

2
x1,a1 [ f2]−C ∂

1+α2
2

x2,a2 [ f1] = 0. (79)

Substituting (79) into (78) and using the composition rule (10), it follows that
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C∂
1+α1

2
x1,a+1
Aα

a+ [
~f ](~x) = f1(x1, a2, a3) + f1(x1, x2, a3)− f1(x1, a2, a3) + f1(x1, x2, x3)− f1(x1, x2, a3) = f1(~x). (80)

Analogously, one can establish that C∂
1+αi

2
xi ,a

+
i
Aα

a+ [
~f ](~x) = fi(~x), for i = 2, 3. The conclu-

sion readily follows now.

The next proposition shows that the fractional anti-gradient operator Aα
a+ allows us

to construct a Caputo fractional hyper-conjugate pair w0 when ~w ∈ Ker(C∆α
a+) is known

beforehand. The proposition is clearly a generalization of [20], Proposition 2.1.

Proposition 9. Let ~w ∈ Ker(C∆α
a+) ∩ Z

α
a+(Ω). A necessary and sufficient condition for the

existence of a Caputo fractional hyper-conjugate pair of ~w is that C divα
a+ ~w = 0. In that case, there

is w0 such that w = w0 + ~w ∈ Ker(CDα
a+).

Proof. The necessity is clear due to the characterization of Caputo fractional hyper-
conjugate pairs provided by (76). Suppose now that C divα

a+ ~w = 0. By Proposition 1(iv), it
follows that C curlα

a+
C curlα

a+ ~w = 0. On the other hand, Proposition 8 ensures that

C gradα
a+ A

α
a+ [

Ccurlα
a+ ~w] =C curlα

a+ ~w. (81)

The conclusion of this result follows from (76) if we let w0 = −Aα
a+ [

Ccurlα
a+ ~w].

6. Conclusions

In this work, we extend some results from vector calculus to the fractional case—for
instance, the space fractional Helmholtz Decomposition Theorem provided by Propositions 6 and 7.
The key tools used are the decompositions of the fractional Teodorescu transform in the
Riemann–Liouville case (52) and in the Caputo case (69) as well as various properties asso-
ciated with these fractional operators, which are thoroughly established in this manuscript.
To this end, we consider fractional derivatives in the senses of Riemann–Liouville and
Caputo, and we analyze fractional forms of various integer-order differential operators,
including the divergence, the rotational, the gradient, the Dirac and the Laplace operators.
As the most important result, we prove an existence theorem for the solutions of a div-curl
system, considering fractional differential operators of the Riemann–Liouville and Caputo
types (see Theorems 2 and 3). Other important generalizations of well-known theorems
from vector calculus are proven in this way. More precisely, we present fractional versions
of the classical Divergence and Stokes Theorems for vector fields (see Proposition 2). Fur-
thermore, we focus on the construction of fractional hyper-conjugate pairs, which represent
a fractional generalization of the well-known Moisil–Teodorescu system in quaternionic
analysis. Finally, we note that we are also able to provide an explicit expression for an
inverse of the fractional gradient operator when we restrict ourselves to vector fields whose
fractional rotational is zero, when we consider fractional derivatives of the Caputo type
(see Proposition 8).
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