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Abstract: It is well established fact that the functional effects, such as relaxation and retardation of
materials, can be measured for magnetized permeability based on relative increase or decrease during
magnetization. In this context, a mathematical model is formulated based on slippage and non-
slippage assumptions for Oldroyd-B fluid with magnetized permeability. An innovative definition of
Caputo-Fabrizio time fractional derivative is implemented to hypothesize the constitutive energy
and momentum equations. The exact solutions of presented problem, are determined by using
mathematical techniques, namely Laplace transform with slipping boundary conditions have been
invoked to tackle governing equations of velocity and temperature. The Nusselt number and limiting
solutions have also been persuaded to estimate the heat emission rate through physical interpretation.
In order to provide the validation of the problem, the absence of retardation time parameter led the
investigated solutions with good agreement in literature. Additionally, comprehensively scrutinize
the dynamics of the considered problem with parametric analysis is accomplished, the graphical
illustration is depicted for slipping and non-slipping solutions for temperature and velocity. A
comparative studies between fractional and non-fractional models describes that the fractional model
elucidate the memory effects more efficiently.

Keywords: heat transfer; slip effect; ramped conditions; porous medium; laplace transform; Caputo-
Fabrizio fractional model; physical aspect via graphs

1. Introduction

There is no denying fact that when heat extracts from a high temperature wall through
a fluid having a certain movement; such a mechanism is termed as heat convection (ad-
vection). This mechanism is interacted by molecular diffusion and the motion of the fluid
on the basis of natural, as well as forced convections. This is because of that convective
heat transfer transpires when the surface temperature varies from that of encompassing
fluid [1–6]. Solangi et al. [7] interrogated unique heat conduction properties for the en-
hancement of concentrations. The focus point in this work was to discuss the particle size
control for heat exchange and mass concentration behavior on fluids. Soomro et al. [8]
carried out the typical analysis of stretching surface to develop the heat transfer for flow of
non-Newtonian nano-fluid. For the sake of physical aspects, numerical computation has
been invoked to the governing equations based on the finite difference schemes to describe
heat transfer phenomena. Shafiq et al. [9] explored an interesting study for the magnetohy-
drodynamic convective flow to explore the transfer rate of heat, motile microorganisms,
and mass. They emphasized on the parametric study of the problem for Brownian motion,
buoyancy forces, thermophoretic, magnetic field, and Newtonian heating for temperature
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and concentration. Kashif et al. [10] investigated dual thermal analysis for knowing the
role of temperature dissimilarity versus the temperature or time by using the suspension of
nanoparticles. The core objective of this study was to highlight the finding of the problem
through fractional operators and special functions. Heat transmission over the stretching
sheet based on the magnetohydrodynamic two-dimensional Casson fluid flow is observed
by Hamid et al. [11]. They examined the linear convected heat effects on twofold solutions
in which numerical stability was discussed for the dual results from governing equation
of the problem. Abro et al. [12] suggested the fractional study for thermal radiation of
Jeffery fluid and educed the sub-solutions from fluid motion of the second grade with and
without magnetic fields. The thermal properties of the governing equations have been
treated by integral transform approach. Sheikholeslami et al. [13] observed magnetizable
hybrid fluid in the core of a circular cavity with two eaters in circular form subjected to
the carbon nanotubes. Their focus point of this work was to have created the magnetic
strengths by the wires through electrical current. Abdelmalek et al. [14] applied hybrid
technique known as control volume finite element scheme to the curvy circular heater
with nano sized particles on convective heat transmission. They suggested the finding and
concluded that conformation of the curvy heater played an essential role to manage the
heat transfer rate and controlling the convectional flow within the enclosure. Kashif [15]
applied surface modification technology to analyze the thermo dissipation, effects on time
dependent natural convectional flow of fluid. Finite Fourier sine transform, Laplace, and
fractional techniques have been utilized to the governing equations for exhibiting typical
and rheological properties of the problem. Although the studies on heat and transfer
analysis can be continue yet the relevant studies can be observed therein in categorical
format as heat transfer via analytical approaches [16–23], heat transfer via numerical ap-
proaches [24–29], heat transfer via fractional calculus approaches [30–33], and heat transfer
via multi-dimensional approaches [34–37]. Motivating by the above consideration, the main
theme of this manuscript is to have the significance of convective heating and variable
heat source on Azimuthal oscillatory MHD convective flows developed in a cylindrical
Darcy–Forchheimer porous medium filled by a radiating second-grade fluid.

Fractional order calculus has been rising these days vastly due to its useful and ex-
clusive features. The integer order calculus, it is presumed that instant rate of change of
the output, due to input level changes occur. Wherefore, it is unable to predict the earlier
state of the process called memory effect which is absent in classical models, but frac-
tional calculus famous for having memory effects. It is found in the literature, several
fractional differential operators exists, for instance, Caputo with kernel (singular and lo-
cal), Atangana–Baleanu with kernel (non-singular and non-local), Caputo–Fabrizio with
kernel (non-singular and local), and few others are discussed [31,32,38,39]. For local and
non-local kernel, convective flow with ramped conditions on temperature are studied by
Riaz et al. [40]. Additionally, comparative study for MHD Maxwell fluid, the heat effect,
with the application of local and non-local operators is highlighted by Riaz et al. [41]. Some
other fractional associated references are investigated [42–44], dealing with non-integer
differential operators, MHD Jeffrey fluid movement, heat transport, and second grade fluid.

Talha Anwar et al. [45] recently, discussed the same problem with different boundary
conditions and executed the approximated result for the proposed problem by using the
Laplace transformation technique and Durbin’s numerical algorithm. Based on aforesaid
literature, the object of this exploration to develop the fractional model by using the modern
interpretation of Caputo–Fabrizio, fractional time derivative operator, then derive the exact
solution of the considered problem and accomplish the comparison with obtained results
by Talha Anwar et al. [45]. The consequences of different related physical parameters,
such as relaxation time parameter λ1, retardation time parameter λ2, grashof number Gr,
magnetic field M, α, β fractional parameters and Prandtl number Pr, on non-dimensional
velocity and temperature. Results are discussed in detail and demonstrated graphically via
Mathcad-15 software.
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2. Mathematical Model

Consider the unsteady laminar slip flow of an Oldroyd-B fluid together with heat
transfer near an infinite vertical plate subjected to Newtonian heating. It is assumed that
fluid is electrically conducted and an external magnetic field is imposed in normal direction
to the flow. The thermal radiation influence parallel to the plate is considered insignificant
in contrast to that in the horizontal direction. Initially, it is assumed that system is in the
state of rest. After a short time duration, due to mixed convection, fluid starts its motion
along the plate, as configured in the Figure 1.

Figure 1. Geometrical formation of the flow model.

The constitutive flow equations for an Oldroyd-B fluid are given as [46,47]

∇ ·V = 0, (1)

∇ · T + ρg + J = ρ

[
(∇ ·V)V+

∂V
∂t

]
, J = J ×M, (2)

where V, ρ, J, ρg, t, T, and M are represented by velocity distribution, fluid density, electric
density, body force, time, cauchy stress tensor, and total magnetic field (imposed and
induced), respectively. The basic equations for Oldroyd-B fluid in which cauchy stress and
extra stress tensor are represented by T and S, respectively, is described as

T = −pI + S, (3)(
S+ λ1

∂S
∂t

)
= µ

(
1 + λ2

∂

∂t

)
A, (4)

A = (∇V)T + (∇V). (5)

In the above equations, λ1, p, µ, I, λ2, −pI, and A are denoted by relaxation time,
pressure, dynamic viscosity, identity tensor, retardation time, tensor’s indeterminate part,
and Rivlin–Ericksen tensor, respectively. Additionally, the term D

Dt is the convective time
derivative. Furthermore, from Equation (1) we get the expression for classical viscous
Newtonian fluid when λ1 = λ2 = 0. Additionally, Maxwell Equations for magnetic and
electric field are defined in the following way

∆.M = 0, ∆×M = µm J, ∆× E = −∂M
∂t

, J ×M = −σM2
0V, (6)

where J, M, σ and µm are denoted by electric field, magnetic field, fluid electrical conduc-
tivity, and magnetic permeability, respectively. Furthermore, M = M0 + M1 in which M0
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is denoted by imposed magnetic field and M1 is induced magnetic field which is not con-
sidered in this situation. Assume that the fluid flow is one dimensional and unidirectional,
V and S are velocity and shear stress in the shape of

V = w(y, t)î and S = S(y, t), (7)

where w is denoted by x-component of the velocity V. After substituting Equations (3)–(7)
in Equation (1) and using the Boussinesq’s approximation and Rosseland approximation.
The principal governing equation of the considered problem for MHD oldroyd-B fluid
with expropriate initial or boundary conditions are given as [48,49]:(

1 + λ1
∂

∂t

)
∂w(y, t)

∂t
= υ

(
1 + λ2

∂

∂t

)
∂2w(y, t)

∂y2 + gβ

(
1 + λ1

∂

∂t

)
(T(y, t)− T∞)

−
(

1 + λ1
∂

∂t

)
σβ2

0
ρ

w(y, t), (8)

∂T(y, t)
∂t

=
k

ρCp

∂2T(y, t)
∂y2 , (9)

(
1 + λ1

∂

∂t

)
S = µ

∂w(y, t)
∂y

, (10)

with corresponding conditions

w(y, π0) = 0, T(y, π0) = T∞,
∂w(y, π0)

∂y
= 0,

∂w(y, π0)

∂t
= 0, y ≥ 0, (11)

w(π0, t)− γ
∂w(π0, t)

∂y
= u0 f (t),

∂T(π0, t)
∂y

= −h
k

T(π0, t), (12)

t ≥ 0 : π0 = 0, w(y, t)→ 0, T(y, t)→ ∞ as y→ ∞. (13)

To non-dimentionalize the following new variables are introduced:

y∗ =
h
k

y, t∗ =
υh2

k2 t, w∗ =
w
u0

, θ =
T − T∞

T∞
, u2

0 =
υ2h2

k2 , Gr =
gβυT∞

u3
0

,

M =
k2σβ2

0
h2µ

, λ∗1 =
υh2

k2 λ1, λ∗2 =
υh2

k2 λ2, Pr =
υCp

k
, γ∗ =

h
k

γ, S∗ =
k
h

S
u0µ

. (14)

After employing the dimensionless quantities, ignore the asterisk ∗ notation, the fol-
lowing partial differential equations in dimensionless form are derived as:(

1 + λ1
∂

∂t

)
∂w(y, t)

∂t
=

(
1 + λ2

∂

∂t

)
∂2w(y, t)

∂y2 +

(
1 + λ1

∂

∂t

)
Grθ

−
(

1 + λ1
∂

∂t

)
Mw(y, t), (15)

∂θ(y, t)
∂t

=
1

Pr
∂2θ(y, t)

∂y2 , (16)

(
1 + λ1

∂

∂t

)
S =

∂w(y, t)
∂y

, (17)
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for above equations the set of conditions initially and boundary are stated as:

w(y, π0) = 0, θ(y, π0) = 0, wt(y, π0) = 0, wy(y, π0) = 0, (18)

w(π0, t)− γ
∂w(π0, t)

∂y
= f (t),

∂θ(π0, t)
∂y

= −(1 + θ(π0, t)), (19)

w(y, t)→ 0, θ(y, t)→ 0, as y→ ∞, π0 = 0 and t ≥ 0. (20)

3. Preliminaries

CF fractional operator having non-singularized and local kernel is described as:

CFD℘
η f (z, η) =

1
1− ℘

∫ η

0
exp
(
−℘(η − ℘)

1− ℘

)
∂ f (z, τ)

∂τ
dτ, 0 < ℘ < 1. (21)

and Laplace transformation of Equation (21) is obtained as:

L
(

CFD℘
η f (z, η)

)
=

sL( f (z, η))− f (z, 0)
(1− ℘)s + ℘

, (22)

where ℘ is named as fractional parameter.

4. Solution of the Problem
4.1. Exact Solution of Heat Profile

Employing the CF operator, provided in Equation (21) on Equation (16) and substitut-
ing Equations (18)–(20) yield.

CFDα
τθ(y, t) =

1
Pr

∂2θ(y, t)
∂y2 . (23)

Applying Laplace transformation, above equation has the form

∂2θ̄(y, s)
∂y2 − Pr θ̄(y, s)

(
s

α + (1− α)s

)
= 0, (24)

with

∂θ̄(π0, s)
∂y

+ θ̄(π0, s) +
1
s
= 0, θ̄(y, s)→ 0 as y→ ∞ and π0 = 0. (25)

The required solution of Equation (24) by using Equation (25) is written as:

θ̄(y, s) = − e−y
√

bPrs
s+c

s(1−
√

bPrs
s+c )

,

= −θ̄1(y, s).

[
1
a
+ (

√
bPr
a

)θ̄3(y, s) +
c
a
(a− 1)θ̄2(y, s)

]
, (26)

To get the required solution of Equation (26), using Laplace inverse transformation,
written as:

θ(y, t) = −1
a

θ1(y, t) + (
c− ac

a
)(θ1 ∗ θ2)(t)− (

√
bPr
a

)(θ1 ∗ θ3)(t), (27)
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where

L−1{θ̄1(y, s)
}
=θ1(y, t) = L−1

 e
−y
√

Prs
(1−α)s+α

s

,

=1− 2Pr

π

∫ ∞

0

sin
(

y√
1−α

χ
)

χ(Pr + χ2)
e(
−α

1−α tχ2)dχ,

L−1{θ̄2(y, s)
}
=θ2(y, t) = L−1

{
1

s + c
a

}
= e−

c
a t,

L−1{θ̄3(y, s)
}
=θ3(y, t) = (θ4 ∗ θ5)(t),

L−1{θ̄4(y, s)
}
=θ4(y, t) = L−1{√s

}
= − 1

2
√

πt3
,

L−1{θ̄5(y, s)
}
=θ5(y, t) = L−1

{√
s + c

s + c
a

}
=

e−ct
√

πt
+

√
(c− c

a
)e−

c
a ter f

(√
(c− c

a
)t
)

,

b =
1

1− α
, c = bα and a = 1− bPr.

Nusselt Number

To estimate heat transfer rate, Nusselt number is used, which is calculated as:

Nu = −∂θ(y, t)
∂y

|y=0 (28)

4.2. Exact Solution of Velocity Profile

Employing the CF derivative operator, mentioned in Equation (21) on Equation (15)
and substituting Equations (18)–(20) yield:

sw̄(y, s)
(

1 + λ1
s

α + (1− α)s

)
=

(
1 + λ2

s
(1− β)s + β

)
∂2w̄(y, s)

∂y2 +

(
1 + λ1

s
α + (1− α)s

)
Gr θ̄(y, s)

−
(

1 + λ1
s

(1− α)s + α

)
Mw̄(y, s),(

1 +
λ1bs
s + c

)
(s + M)w̄(y, s) =

(
1 +

λ2b1s
s + c1

)
∂2w̄(y, s)

∂y2 +

(
1 +

λ1bs
s + c

)
Gr θ̄(y, s),(

b2s + c
s + c

)
(s + M)w̄(y, s) =

(
b3s + c1

s + c1

)
∂2w̄(y, s)

∂y2 +

(
b2s + c
s + c

)
Gr θ̄(y, s), (29)

from Equation (26) substituting the value of θ̄(y, s) , the obtained solution of Equation (29)
is written as

w̄(y, s) =Ae
y
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c) + Be

−y
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c)

+
Gr(b2s + c)(s + c1)e

−y
√

bPrs
s+c

s(1−
√

bPrs
s+c )[(b3s + c1)bPrs− (b2s + c)(s + M)(s + c1)]

. (30)

To determine the involving constants A and B in Equation (30), boundary conditions
for velocity are applied, we have



Fractal Fract. 2021, 5, 124 7 of 20

w̄(y, s) =
F(s)e

−y
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c)

1 + γ
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c)

−

Gr(b2s + c)(s + c1)

e−y
√

bPrs
s+c −

 1+γ
√

bPrs
s+c

1+γ

√
(b2s+c)(s+M)(s+c1)

(s+c)(b3s+c)

e
−y
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c)


s(1−

√
bPrs
s+c )[(b3s + c1)bPrs− (b2s + c)(s + M)(s + c1)]

. (31)

Equation (31) having complex combinations of multi-valued Laplace parameter s,
in the equation of velocity field and it is difficult to derive solution analytically, the inverse
Laplace transformation. Therefore, it is more adequate to find the exact solution of the
present problem in series representation, for this, write the Equation (31) in series form,
simplify it in more efficient way, then to get the exact velocity expression, applying inverse
Laplace integral transformation.

Equation (31) can be written as in more suitable form:

w̄(y, s) = F(s)Ψ̄(y, s)− GrΦ̄(y, s)
[
θ̄(y, s)− Π̄(y, s)Ψ̄(y, s)

]
,

= F(s)Ψ̄(y, s)− GrΦ̄(y, s)
[
θ̄(y, s)− Ω̄(y, s)

]
,

= F(s)Ψ̄(y, s)− GrΦ̄(y, s)θ̄(y, s) + GrΦ̄(y, s)Ω̄(y, s). (32)

After employing Laplace inverse transformation with the application of convolution
product on Equation (32), we get the solution in the final form as:

w(y, t) = ( f ∗Ψ)(t) + Gr[(Φ ∗Ω)(t)− (Φ ∗ θ)(t)], (33)

where

Ψ̄(y, s) =e
−y
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c) .

1

1 + γ
√

(b2s+c)(s+M)(s+c1)
(s+c)(b3s+c)

(34)

=

 ∞

∑
µ=0

(−y)µ

µ!

(
b2s3 + b4s2 + b5s + c2

b3s2 + b6s + c3

) µ
2

 ∞

∑
η=0

(−1)η(γ)η

(
b2s3 + b4s2 + b5s + c2

b3s2 + b6s + c3

) η
2

. (35)

Implementation of Cauchy product, discrete convolution, with two truncated series,
both having m terms yields:
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Ψ̄(y, s) =
m

∑
µ=0

m

∑
η=0

(−y)µ(−1)m−η(γ)m−η

µ!

(
b2s3 + b4s2 + b5s + c2

b3s2 + b6s + c3

)m+
µ
2−

η
2

,

=
m

∑
µ=0

m

∑
η=0

∞

∑
d=0

∞

∑
l=0

∞

∑
p=0

∞

∑
q=0

∞

∑
k=0

(−y)µ(−1)m+p+k−η(γ)m−η(c5)
m+

µ
2−

η
2 (b11)d−l(c6)

l(c12)
qΓ(l + p)

(c10)l+p−q(c7)q+k(µ!)(l!)(q!)Γ(l)Γ(η − l + 1)
.

Γ(q + k)Γ(m + µ
2 −

η
2 + 1)

Γ(m + µ
2 −

η
2 − d + 1)Γ(l)Γ(q)

.
1

sl+q−d−p−k ,

Ψ(y, t) =
m

∑
µ=0

m

∑
η=0

∞

∑
d=0

∞

∑
l=0

∞

∑
p=0

∞

∑
q=0

∞

∑
k=0

(−y)µ(−1)m+p+k−η(γ)m−η(c5)
m+

µ
2−

η
2 (b11)d−l(c6)

l(c12)
qΓ(l + p)

(c10)l+p−q(c7)q+k(µ!)(l!)(q!)Γ(l)Γ(η − l + 1)
.

Γ(q + k)Γ(m + µ
2 −

η
2 + 1)

Γ(m + µ
2 −

η
2 − d + 1)Γ(l)Γ(q)

.
tl+q−d−p−k−1

Γ(l + q− d− p− k)
, (36)

Φ̄(y, s) =
s2 + b14s + c14

s3 + b12s2 + b13s + c13
,

=
∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
1

sl1+d1−3η1−2 +

∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1 b14

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
1

sl1+d1−3η1−1 +

∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1 c14

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
1

sl1+d1−3η1
,

Φ(y, t) =
∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
tl1+d1−3η1−3

Γ(l1 + d1 − 3η1 − 2)
+

∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1 b14

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
tl1+d1−3η1−2

Γ(l1 + d1 − 3η1 − 1)
+

∞

∑
η1=0

∞

∑
l1=0

∞

∑
d1=0

(−1)η1(η1)!(b13)
d1(b12)

l1 c14

(d1)!(η1 − l1)!(l1 − d1)!(b12)d1(c13)η1+1 .
tl1+d1−3η1−1

Γ(l1 + d1 − 3η1)
,

Π̄(y, s) =
1
s

(
1 + γ

√
bPrs
s + c

)
1

1−
√

bPrs
s+c

,

=
∞

∑
ε=0

∞

∑
δ=0

(bPr)
ε
2 (−1)δ(c)δ Γ( ε

2 + δ)

Γ( ε
2 )

1
sδ+1 + γ

∞

∑
ε=0

∞

∑
n=0

(bPr)
ε+1

2 (−1)
ε+1

2 (c)n Γ( ε+1
2 + n)

Γ( ε+1
2 )

1
sn+1

Π(y, t) =
∞

∑
ε=0

∞

∑
δ=0

(bPr)
ε
2 (−1)δ(c)δ Γ( ε

2 + δ)

Γ( ε
2 )

tδ

Γ(δ + 1)
+ γ

∞

∑
ε=0

∞

∑
n=0

(bPr)
ε+1

2 (−1)
ε+1

2 (c)n Γ( ε+1
2 + n)

Γ( ε+1
2 )

tn

Γ(n + 1)

Ω(y, t) =L−1{Ω̄(y, s)
}
= L−1{Π̄(y, s)Ψ̄(y, s)} = (Π ∗Ψ)(t),

b =
1

1− α
, b1 =

1
1− beta

, c = bα, c1 = b1β, b2 = 1 + λ1b, b3 = 1 + λ2b1,

b4 = b2(M + c1) + c, b5 = b2Mc1 + c(M + c1), c2 = Mcc1, c3 = c2, b6 = (b3 + 1)c,

c4 = c2 −
b7c3

b3
, c5 =

b7

b3
, b7 = b4 −

b2b6

b3
, b8 = b5 −

b2c3

b3
, b9 = b8 −

b6b7

b3
, b10 =

b2

b3
,

b11 =
b10

c5
, c6 =

b9

b3c5
, c7 =

c4

b9
, c8 =

b6

b3
, c9 =

c3

b3
, c10 = c8 − c7, c11 = c9 − c7c10,

c12 =
c11

c10
, c13 =

c2

b2
, c14 =

cc1

b2
, b12 =

b4 − b3bPr
b2

, b13 =
b5 − c1bPr

b2
, b14 =

b2c1 + c
b2

.
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5. Limiting Cases

We recover the same expression for fractionalize velocity equation of Maxwell model
by considering λ2 = 0 as obtained by M M Ghalib et al. [49]. The velocity field in this case
is written as:

ū(y, s) =
F(s)
√

C√
C + γ(

√
(s + bα + λbs)(s + M))

e−y
√

C+λbs
C (s+M)

+
Gr
√

C(C + λbs)
s(sbPr − (C + λbs)(s + M))(

√
sbPr −

√
C)

×
( √

C√
C + γ(

√
(C + λbs)(s + M))

e−y
√

C+λbs
C (s+M) − e−y

√
sbPr

C

)

+
γ
√

sbPr

s(sbPr − (C + λbs)(s + M))(
√

sbPr −
√

C)

×
(

Gr
√

C(C + λbs)√
C + γ(

√
(C + λbs)(s + M))

e−y
√

C+λbs
C (s+M)

)

where b = 1
1−α and C = s + bα.

The velocity distribution for Maxwell fluid can be deduced by implementing λ2 → 0
and assigning the value of F(s) = 1

s−a in Equation (31) the same expression for velocity
field is recovered as derived by Imran et al. [29].

Furthermore, for α, β → 1, the temperature and momentum distributions are ob-
tained as

θ(y, t) = −
[

e−ckec2ter f c
(

c
√

t +
k

2
√

t

)
+ er f c

(
k

2
√

t

)]
, (37)

where c = − 1√
Pr

and k = y
√

Pr.

w̄(y, s) =
F(s)e

−y

√
λ1s2+as+M

1+λ2s

1 + γ
√

λ1s2+as+M
1+λ2s

−
(

Gr(1 + λ1s)e−y
√

Prs

s(
√

Prs− 1)(Prs(1 + λ2s)− (λ1s2 + as + M))

)

×

 (1 + γ
√

Prs)e
−y

√
λ1s2+as+M

1+λ2s

1 + γ
√

λ1s2+as+M
1+λ2s

− e−y
√

Prs

, (38)

where a = 1 + λ1M.
Finally, we get the same solution for velocity and temperature expressions as investi-

gated by Talha et al. [45], when f (t) = 0.
This shows the validity of our current results with the publications.

6. Results and Discussion

This section is determined to present the physical clarification of the obtained exact
results via Laplace transformation and assayed the impacts of pertinent parameters on
temperature and velocity expressions of oldroyd-B fluid. These exact solutions are very
helpful for researchers to compare the results which are explored by different numerical
techniques, and have great importance in different fields of engineering and scientific
applied. Graphs demonstrate the velocity and thermal profiles to examined the behavior of
these solutions. The influence of the relevant dimensionless several connected parameters
λ1, Pr, λ2, Gr, M, α, and β are examined, and portrayed graphically, also deliberated
their physical aspects. The relevant graphical representations to analyzed the impacts of
concerned parameters will be included here to avoid recurrence.
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Figure 2 portrays the impact of Pr, Prandtl number, over the thermal profile for
dissimilar values of Pr. It is depicted that decay in the thermal outline layer due to increase
in Pr. Generally, thermal outline layer thickness decreases rapidly, corresponding to high
values of Pr. So that, increasing the values of Pr improves the boundary thickness, which
causes energy profile slowdown linearly.

Figure 2. Temperature profile for varied values of Pr for two different time levels t = 0.9 and t = 1.5.

In Figures 3–10, velocity is plotted for the function f (t) = eat with and without slip
effect γ for several values of dimensionless parameters M, Pr, Gr, λ1 and λ2, by considering
t = 1.5 and a = 0.25.

Figure 3. Velocity profile for varied values of Pr with and without slip effect γ when f (t) = eat, a = 0.25, t = 1.5, α = 0.5,
β = 0.3, Gr = 3.5, λ1 = 0.6, λ2 = 0.2, M = 2.
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Figure 4. Velocity for varied values of Gr with and without slip effect γ when f (t) = eat, a = 0.25, t = 1.5, α = 0.5, β = 0.3,
Pr = 0.71, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 5. Velocity for varied values of M with and without slip effect γ when f (t) = eat, a = 0.25, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, λ2 = 0.2, Pr = 0.71.

Figure 6. Velocity for varied values of λ1 with and without slip effect γ when f (t) = eat, a = 0.25, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, Pr = 0.71, λ2 = 0.2, M = 2.



Fractal Fract. 2021, 5, 124 12 of 20

Figure 7. Velocity for varied values of λ2 with and without slip effect γ when f (t) = eat, a = 0.25, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, Pr = 0.71, M = 2.

Figure 8. Velocity for varied values of α with and without slip effect γ when f (t) = eat, t = 1.5, β = 0.3, Gr = 3.5, M = 2,
λ1 = 0.6, λ2 = 0.2, Pr = 0.71.

Figure 9. Velocity for varied values of β with and without slip effect γ when f (t) = eat, t = 1.5, Gr = 3.5, α = 0.5, λ1 = 0.6,
Pr = 0.71, λ2 = 0.2, M = 2.
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Figure 10. Velocity comparison for varied values of α with and without slip effect γ when f (t) = eat, t = 1.5, β = 0.6,
Gr = 3.5, λ1 = 0.6, Pr = 0.71, λ2 = 0.2, M = 2.

Figure 3 represent the influence of Pr on momentum equation. It is noted that advances
in Prandtl number declines the velocity of the moving fluid. The outline layer of velocity
profile gets thicker due to the fact that the small rate of thermal diffusion, Pr dominance
the relative thickness of boundary layers of momentum in heat transfer problems.

Figure 4, exemplify the momentum field to analyzed the effect of Gr. A rise in velocity
profile have appeared for boosting the value of grashof number. Physically, the result of the
increase in Gr which is the result of more induced fluid flows is due to a rise in buoyancy
effects. Therefore, these forces can impact on enhancing the velocity.

Figure 5 discuss the control of magnetic number M. It is eminent that the velocity
decline for boosting the values of magnetic parameter. Physically, the Lorentz force is the
reason behind this because it is highly effected by the electromagnetic force, which opposes
the movement of the fluid.

Figures 6 and 7 portray the influence of λ1, time relaxation parameter, and λ2, time
retardation parameter, over the velocity contour. It is clear that the rise in velocity for
increasing the values of the time relaxation parameter λ1 but reduction in velocity have
appeared for boosting the values of the time retardation parameter λ2. Physically, increase
in λ1, reduced the fluid viscosity, so that it will accelerate the fluid flow and hence velocity
rises. Further, the increase the values of λ2 which leads to boosted the outline layer
thickness and decreased the fluid velocity. It is depicted that the effect of λ1 and λ2 on
velocity profile are quite opposite.

It is depicted that for several values, of fractional parameters α and β, the behavior of
fluid velocity in Figures 8–10 are discussed, also compare the fractional and non-fractional
model. Decay in velocity profile is noticed corresponding to large values of fractional
parameter α but velocity profile enhanced by increasing the value of β.

Moreover, Figures 11–18 illustrated the behavior of velocity for the function f (t) = sint
with and without slip effect γ for different values of parameters M, Pr, Gr, λ1, λ2, α, and β
for dimensionless time t = 1.5.
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Figure 11. Velocity profile for varied values of Pr with and without slip effect γ when f (t) = sint, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 12. Velocity for varied values of Gr with and without slip effect γ when f (t) = sint, t = 1.5, α = 0.5, β = 0.3,
Pr = 0.71, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 13. Velocity for varied values of M with and without slip effect γ when f (t) = sint, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, λ2 = 0.2, Pr = 0.71.
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Figure 14. Velocity for varied values of λ1 with and without slip effect γ when f (t) = sint, t = 1.5, Gr = 3.5, α = 0.5,
β = 0.3, Pr = 0.71, λ2 = 0.2, M = 2.

Figure 15. Velocity for varied values of λ2 with and without slip effect γ when f (t) = sint, t = 1.5, α = 0.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, Pr = 0.71, M = 2.

Figure 16. Velocity for varied values of α with and without slip effect γ when f (t) = sint, t = 1.5, β = 0.3, Gr = 3.5,
λ1 = 0.6, λ2 = 0.2, M = 2, Pr = 0.71.
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Figure 17. Velocity for varied values of β with and without slip effect γ when f (t) = sint, t = 1.5, α = 0.5, λ2 = 0.2,
Gr = 3.5, Pr = 0.71, λ2 = 0.2, M = 2.

Figure 18. Velocity comparison for varied values of α with and without slip effect γ when f (t) = sint, t = 1.5, β = 0.3,
Gr = 3.5, λ1 = 0.6, Pr = 0.71, λ2 = 0.2, M = 2.

Figure 11 represent the influence of Pr on momentum equation. It is noted that
advances in Prandtl number declines the velocity of the moving fluid. The outline layer
of velocity profile gets thicker due to the fact that the small rate of thermal diffusion,
Pr dominance the relative thickness of boundary layers of momentum in heat transfer
problems. For both functions f (t) = eat and f (t) = sint velocity behavior is nearly same.

Figure 12, exemplify the momentum field to analyzed the effect of Gr. A rise in velocity
profile have appeared for boosting the value of grashof number. Physically, the result of the
increase in Gr which is the result of more induced fluid flows is due to a rise in buoyancy
effects. Therefore, these forces can impact on enhancing the velocity.

Figure 13 discuss the control of magnetic number M. It is eminent that the velocity
decline for boosting the values of magnetic parameter. Physically, the Lorentz force is the
reason behind this because it is highly effected by the electromagnetic force, which opposes
the movement of the fluid.

Figures 14 and 15 portray the influence of λ1, time relaxation parameter, and λ2,
time retardation parameter, over the velocity contour. It is clear that the rise in velocity
for increasing the values of the time relaxation parameter λ1 but reduction in velocity
have appeared for boosting the values of the time retardation parameter λ2. Physically,



Fractal Fract. 2021, 5, 124 17 of 20

increase in λ1, reduced the fluid viscosity, so that it will accelerate the fluid flow and, hence,
velocity rises. Further, the increase the values of λ2 which leads to boosted the outline
layer thickness and decreased the fluid velocity. It is depicted that the effect of λ1 and λ2
on velocity profile are quite opposite.

It is analyzed that velocity profile shows same behavior for both functions f (t) = eat

and f (t) = sint. It is depicted that for several values, of fractional parameters α and β,
the behavior of fluid velocity in Figures 16–18 are discussed, also compare the fractional
and non-fractional model. Decay in velocity profile is noticed corresponding to large
values of fractional parameter α but velocity profile enhanced by increasing the value of
β. Additionally, it is seen that when α, β → 1, then CF non-integer model turns into a
classical model.

7. Conclusions

A thorough investigation of MHD convective flow of Oldroyd-B model has been
analyzed in this research under the effects of different non-dimensional parameters. The
model is generalized, in view of Caputo–Fabrizio fractional derivative, and exact solutions
for dimensionless momentum and energy equations are evaluated by the technique of
Laplace integral transformation. Graphs illustrate the velocity and thermal profiles for
considering both zero and non-zero slip conditions to examined the pertinent feature of
these solutions. The influence of the relevant dimensionless several involving system
parameters time relaxation parameter λ1, Prandtl number Pr, time retardation parameter
λ2, grashof number Gr, fractional parameters α, β and magnetic parameter M are examined
and portrayed graphically, also deliberated their physical aspects. The obtained outcomes
are pointed out as:

• The temperature field decline with the larger values of Pr;
• It is examined that the impacts of λ1 and λ2 on velocity profile are quite opposite;
• The accumulative values of the parameters M and Pr decrease in the velocity distribu-

tion noticed;
• The increasing values of the grashof number Gr stimulates the velocity distribution;
• It is analyzed that the effect of fractional parameters α and β on velocity contour are

quite converse;
• Caputo Fabrizio fractional model approaches to classical model when α, β→ 1;
• It is noted that for two different functions f (t) = eat and f (t) = sint, velocity profile

shows same behavior.
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Nomenclature

Symbol Quantity Units
α, β Fractional parameters (−)
µ Dynamic viscosity (Kgm−1s−1)
υ Kinematic coefficient of viscosity (m2s−1)
g Acceleration due to gravity (ms−2)
βT Thermal expansion coefficient (K−1)
ρ Fluid density (Kgm−3)
σ Electrical conductivity (sm−1)
Cp Specific heat at constant pressure (jKg−1K−1)
s Laplace parameter (−)
Q Heat generation/absorption (JK−1m−3s−1)
ω Non-dimensional velocity (−)
θ Dimensionless temperature (−)
Gr Thermal Grashof number (−)
Tw Temperature of the plate (K)
T∞ Temperature of fluid far away from the plat (K)
λ1 Relaxation time (−)
λ2 Retardation time (−)
Pr Prandtl number (−)
M0 Imposed Magnetic field (Wm−2)
M Total Magnetic field (−)
k Thermal conductivity of the fluid (Wm−2K−1)
t Time (s)
P Pressure (N m−2)
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