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Abstract: This article mainly concentrates on the synchronization problem for a more general kind
of the master–slave memristor-based neural networks with fractional derivative. By applying a
continuous-frequency-distributed equivalent model tool, some new outcomes and sufficient con-
ditions on the robust synchronization of the master–slave neural networks with uncertainty are
proposed via linear matrix inequality (LMI). Finally, two memristive neural networks model with
fractional derivatives are presented to validate the efficiency of the theoretical results.
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1. Introduction

The mathematics theory and real application of fractional calculus have been greatly
developed in the past two decades, which have renewed its vitality and re-attracted
tremendous interest of experts and scholars from different fields, such as mathematics,
physics, engineering, and materials science [1–12]. Compared with the mathematical model
expressed by classical calculus, a fractional-order system (FOS) has great advantages when
the system has memory and hereditary properties. For example, the theory and simulation
results show that fractional-order recurrent neural networks are more beneficial in system
estimation by Lundstrom et al. in [13].

Lyapunov stability theory is a powerful tool with which to research the qualitative
theory of dynamical systems. Ten years ago, Trigeassou et al. in [14] proposed an indirect
Lyapunov method to investigate the stability issue for linear and nonlinear fractional-
order systems by utilizing a continuous-frequency-distributed equivalent model method
(CFDEMM). Subsequently, the CFDEMM was used as a vital tool to analyze the stability of
nonlinear FOSs in [15–21]. Boroujeni and Momeni considered a kind of nonlinear, Lipschitz,
continuous FOS with bounded perturbations. The non-fragile fractional-order state ob-
server (FOSO) was designed to achieve stability based on the CFDEMM in [15]. In [16,17],
two kinds of nonlinear FOS and fractional-order complex networks were considered. By
using of the technique of non-fragile observer, new sufficient conditions to realize robust
asymptotic stability were established. A special class of 3-dimensional chaotic FOSs with
parameter uncertainty and external disturbance was investigated in [18] where the adaptive
sliding mode control (SMC) scheme was designed to realize the global robust stability via
using the CFDEMM. A new incommensurate nonlinear FOS of lithium-ion batteries model
was examined in [19]. A Luenberger-type observer was presented to evaluate lithium-ion
battery state by means of the CFDEMM and the Lyapunov method. In [20], they studied
the tracking control topic of positive switched FOS. A new sufficient condition to guaran-
tee the exponential stability was derived in terms of LMI by designing an ideal observer
and a CFDEMM. In [21], Tan et al. discussed the robust control of uncertain FOS with
input saturation and measurement quantization. Aiding the Luenberger-type nonlinear
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FOSO and the CFDEMM, new sufficient criteria were derived to get the robust stability for
closed-loop systems.

In recently years, the dynamical behavior of fractional-order neural networks (FONN)
was widely studied in [22–30], especially fractional-order memristive neural networks
(FOMNNs) [31–41]. Chen et al. investigated Mittag–Leffler synchronization of a FOMNN
by using an M-matrix method and set-valued theory in [31]. FOMNN with time-delay was
discussed in [32]; some new results on the asymptotic stability and synchronization were
achieved based on a comparison theorem of delayed FOSs. FOMNNs with uncertainty
were addressed in [33]; new conditions on the synchronization were obtained by employing
linear delay feedback control and the adaptive control schemes. In [34], novel criteria to
identify the synchronization of FOMNNs with parameter uncertainty and time delay were
proposed by considering different feedback control strategies and a comparison theorem.
State estimation of delayed FOMNNs with uncertainty were studied in [35–37], and some
new conclusions were obtained when the activation functions satisfy the different continu-
ous and bound conditions. In [38], a new fractional-order memristive Wilson neuron model
with the fractal-fractional derivative was intensively developed. The rich dynamic behav-
iors with different fractional-orders were proposed, such as complete synchronization, lag
synchronization, phase synchronization, and sine-like synchronization, when the neurons
are locally and diffusively coupled in a ring topology. In [39–41], finite time stability, finite
time synchronization, and finite time Mittag–Leffler synchronization were extensively
investigated. Some new sufficient criteria in the frame of linear matrix inequalities to
assure the finite-time stability of FOMNNs were presented subject to the quantisation
phenomenon, actuator failures, and time-varying delay by sampled-data control in [39].
Some results on asymptotic stability and finite-time stability were constructed by using the
theory of fractional calculus for a general class of delayed inertial FOMNN [40]. In [41],
finite-time Mittag–Leffler synchronization of complex-valued FOMNNs with time delay
was achieved. Simultaneously, the upper bound of settling time was estimated by utilizing
fractional differential inequality.

Taking into account the above factors, this paper discusses robust synchronization
of FOMNNs by means of LMI and a CFDEMM. The major contributions are summarized
as follows:

(1) In the literature, there are usually two kinds of uncertainties. One is norm-
bounded uncertainty, and the other is bounded real uncertainty; see [42]. Differently
from reference [26,27,36,37,39], a FOMNN with norm-bounded uncertainty is studied for
the first time in this article.

(2) A novel uncertain memristive neural network model with fractional derivative is
constructed. In addition, the new model is more practical and has potential application
value in Engineering.

(3) Sufficient conditions to assure the robust synchronization of FOMNN are achieved
by utilizing a continuous-frequency-distributed equivalent model method and an indirect
Lyapunov method. The main results are expressed by LMI which can be easily realized by
the Matlab toolbox.

(4) The theoretical contributions are confirmed and validated by two examples.
The article is made of five sections. Some necessary theoretical results of fractional

calculus and differential inclusions are presented in Section 2. In addition, the problem
description is also contained in this part. In Section 3, detailed results on robust synchroniza-
tion for FOMNN are processed. In Section 4, 2-dimensional and 3-dimensional memristive
neural network models with fractional derivatives are given to illustrate the validity of the
proposed results. In the last section, main conclusions and possible interesting future work
are appended.

2. Preliminaries and Problem Formulation

Some basic theoretical results of fractional calculus and differential inclusions are
collected in this section which are useful in the following sections.
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Definition 1 ([43]). For a given function g(t), the Riemann integral with order α > 0 is defined by

a Iα
t g(t) =

1
Γ(α)

∫ t

a
(t− u)α−1g(u)du,

where Γ(x) =
∫ ∞

0 e−ττx−1dτ is the common gamma function.

Remark 1. According to the definition of convolution operator, one has a Iα
t g(t) = k(t) ∗ g(t),

where k(t) = tα−1

Γ(α) .

Definition 2 ([43]). For a given function g(t), the Riemann–Liouville derivative with order α > 0
is defined by

RL
a Dα

t g(t) =
1

Γ(n− α)

dn

dtn

∫ t

a
(t− u)n−α−1g(u)du, n− 1 < α < n, n ∈ N+.

Definition 3 ([43]). For a given function g(t), the Caputo derivative with order α > 0 is defined by

C
a Dα

t g(t) =
1

Γ(n− α)

∫ t

a
(t− u)n−α−1 dng(u)

dun du, n− 1 < α < n, n ∈ N+.

The notation Dα replaces the fractional-order Riemann–Liouville derivative RL
0 Dα

t for
the convenience in the following sections. For more details on fractional calculus, one can
refer to [43].

Definition 4 ([14]). Suppose ξ(ω) is the diffusive representation (TDR) of w(t), which is the
impulse response of a linear system; then, the following equality relation is satisfied:

w(t) =
∫ ∞

0
ξ(ω)e−ωtdω

Let k(t) = tα−1

Γ(α) and the TDR of k(t) be µ(ω); then one has: µ(ω) = sin(απ)
π ω−α.

Lemma 1 ([14]). Consider a nonlinear FOS

Dαx(t) = f (x(t))

Employing the CFDEMM of the fractional-order integrator, the above FOS has the equivalent
form: {

∂u(ω,t)
∂t = −ωu(ω, t) + f (x(t))

x(t) =
∫ ∞

0 µ(ω)u(ω, t)dω

where µ(ω) is the same as in Definition 4.

Lemma 2. Let γ > 0, X and Y be real matrices with appropriate dimensions. Then, the following
result holds:

2XTY ≤ γXTX + γ−1YTY

Lemma 3 (Boyd et al. [44]). Given real symmetric matrix X = XT < 0, the following assertions
are equivalent:

(i) X =

[
X11 X12
XT

12 X22

]
< 0;
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(ii) X11 < 0, X22 − XT
12X−1

11 X12 < 0;

(iii) X22 < 0, X11 − X12X−1
22 XT

12 < 0.

Consider the following uncertain FOMNN with a neuron n which is described by

Dαmi(t) = −(ci + ∆ci(t))mi(t) +
n

∑
j=1

bij(mj(t)) f j(mj(t)) + Ii, t ≥ 0, i = 1, 2, · · · , n. (1)

where mi(t) stands for the ith neuron state, ci > 0 is a constant, ∆ci(t) represents the
uncertainty, Ii denotes the external input constant vector, fi(·) denotes the neuron input
activation functions and bij(mj(t)) is a connection weight element, which can be given as

bij(mj(t)) =

{
b̂ij, |mj(t)| < Tj,
b̆ij, |mj(t)| > Tj,

where bij(±Tj) = {b̂ij or b̆ij}; switching times Tj > 0, b̂ij, b̆ij are constants.

Remark 2. If all bij(mj(t)) ≡ bij, ∆ci(t) = 0, where bij are constants and α = 1, then System (1)
will degenerate the classical Hopfield neural network.

Since bij(mj(t)) are discontinuous, the solution of FOMNN in this paper is understood
in the differential inclusions sense. One can refer the books of [45,46] for more theories on
set-valued maps and differential inclusions.

Definition 5 (Aubin and Cellina [45]). Let E ⊂ Rn. If for each point x ∈ E, there is a
corresponding nonempty set κ(x) ⊂ Rn, then x 7→ κ(x) is called a set-valued map defined on E.
A set-valued map κ is convex (closed)-valued if κ(x) is convex (closed) for all x ∈ E. A set-valued
map κ is called upper semi-continuous at x0 ∈ E, if the set κ(x0) is a nonempty closed subset of E,
and for each open set N of E containing κ(x0), there exists an open neighborhood N0 of x0 such that
κ(N0) ⊂ N.

According to Definition 5 and the theories of differential inclusions, the set-valued
maps mi(t) 7→ −(ci + ∆ci(t))mi(t) + ∑n

j=1 bij(mj(t)) f j(mj(t)) + Ii are nonempty convex
compact values. Thus, the FOMNN with uncertainty can be rewritten as follows:

Dαmi(t) ∈ −(ci + ∆ci(t))mi(t) +
n

∑
j=1

co[bij(mj(t))] f j(mj(t)) + Ii, t ≥ 0 (2)

where

co[bij(mj(t))] =


b̂ij, |mj(t)| < Tj,
co{b̂ij, b̆ij}, |mj(t)| = Tj,
b̆ij, |mj(t)| > Tj.

That is to say, there exist τij(mj(t)) ∈ co[bij(mj(t))] such that

Dαmi(t) = −(ci + ∆ci(t))mi(t) +
n

∑
j=1

τij(mj(t)) f j(mj(t)) + Ii, a.e. t ≥ 0 (3)

To discuss the synchronization problem of FOMNN, we regard FOS (1) as the master
system and the slave system as follows:

Dαsi(t) = −(ci + ∆ci(t))si(t) +
n

∑
j=1

bij(sj(t)) f j(sj(t)) + Ii + ui(t), i = 1, 2, · · · , n (4)
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where ui(t) denotes the control input.
The slave system (4) can be described in similar forms owing to the theories of differ-

ential inclusions:

Dαsi(t) ∈ −(ci + ∆ci(t))si(t) +
n

∑
j=1

co[bij(sj(t))] f j(sj(t)) + Ii + ui(t), t ≥ 0 (5)

where

co[bij(sj(t))] =


b̂ij, |sj(t)| < Tj,
co{b̂ij, b̆ij}, |sj(t)| = Tj,
b̆ij, |sj(t)| > Tj.

That is, one has ηij(sj(t)) ∈ co[bij(sj(t))] such that

Dαsi(t) = −(ci + ∆ci(t))si(t) +
n

∑
j=1

ηij(sj(t)) f j(sj(t)) + Ii + ui(t), a.e. t ≥ 0 (6)

The robust synchronization error of the master–slave system is given as ei(t) =
si(t)−mi(t). Thus, we have the following synchronization error system:

Dαei(t) = −(ci + ∆ci(t))ei(t) +
n

∑
j=1

[bij(sj(t)) f j(si(t))− bij(mj(t)) f j(mj(t))] + ui(t) (7)

Therefore, one has the following equivalent equation:

Dαei(t) = −(ci + ∆ci(t))ei(t) +
n

∑
j=1

[bij(ej(t) + mj(t)) f j(ej(t) + mj(t))− bij(mj(t)) f j(mj(t))] + ui(t) (8)

In order to guarantee the uniqueness and existence of the solutions of FOMNN (1)
and obtain the primary conclusions, the following basic assumptions are listed as follows.

A1. Every neuron activation function fi(i = 1, · · · , n) is a Lipschitz function and
bounded. That is, for any u, v ∈ R, there exist li ≥ 0, ni ≥ 0 such that

| fi(u)− fi(v)| ≤ li|u− v|, | fi(u))| ≤ ni

A2. The uncertainty term ∆ci(t)(i = 1, · · · , n) satisfies the norm-bounded uncertainty.
That is, for all ∆ci(t), there exist ρi ≥ 0 such that |∆ci(t)| ≤ ρi.

Remark 3. According to [34,40], the uniqueness and existence of the solutions for FOMNN (1) can
be obtained. Assumptions 1 and 2 are general assumptions for neural network activation functions;
see [40].

Remark 4. Norm-bounded uncertainty and bounded real uncertainty exist in the control system [42].
Compared with the effect of bounded real uncertainty to dynamical behavior for FOS or FONN in
[36,37,39], norm-bounded uncertainty is addressed for the first time in this article.

3. Main Results

A suitable control scheme and the main results are achieved for the robust synchro-
nization of the FOMNN in this section.

Theorem 1. Under A1− A2, FOS (8) is asymptotically stable based on the controller

ui(t) = −
n

∑
j=1

bij(ej(t) + mj(t)) f j(mj(t)) +
n

∑
j=1

bij(mj(t)) f j(mj(t)) + kiei(t) (9)



Fractal Fract. 2022, 6, 585 6 of 14

if there exist ε1 > 0, ε2 > 0, such that D + ε1
2 I + ε2

2 ÂÂT ρI LI
• −2ε1 I 0
• 0 −2ε2 I

 < 0, (10)

where D = diag(k1 − c1, · · · , kn − cn), Â = (bu
ij) = max{|b̂ij|, |b̆ij|}, ρ2 = max{ρ2

1, · · · , ρ2
n},

L2 = max{l2
1 , · · · , l2

n}.

Proof. According to error system (8) and controller (9), one can rewrite the following
error system:

Dαei(t) = (ki − ci −∆ci(t))ei(t) +
n

∑
j=1

bij(ej(t) + mj(t))( f j(ej(t) + mj(t))− f j(mj(t))) (11)

where i = 1, · · · , n.
Therefore, there exist θij(ej(t) + mj(t)) ∈ co[bij(ej(t) + mj(t))] such that

Dαei(t) = (ki − ci −∆ci(t))ei(t) +
n

∑
j=1

θij(ej(t) + mj(t))( f j(ej(t) + mj(t))− f j(mj(t))) (12)

Let e(t) = (e1(t), · · · , en(t))T , D = diag(k1 − c1, · · · , kn − cn), ∆C = diag(∆c1(t), · · · ,
∆cn(t)), A(e(t) + m(t))) = (θij(ej(t) + mj(t)))n×n, F(e(t) + m(t)) = ( f1(e1(t) + m1(t))−
f1(m1(t)), · · · , fn(en(t) + mn(t))− fn(mn(t)))T ; then, System (12) can be represented in
the following form:

Dαe(t) = (D− ∆C)e(t) + A(e(t) + m(t))F(e(t) + m(t)) (13)

By virtue of the Lemma 1, we can reformulate the new error equation (Equation (13))
as follows:{

∂u(ω,t)
∂t = −ωu(ω, t) + (D− ∆C)e(t) + A(e(t) + m(t))F(e(t) + m(t))

e(t) =
∫ ∞

0 µ(ω)u(ω, t)dω
(14)

Define the Lyapunov function as:

V(t) =
∫ ∞

0
µ(ω)ν(ω, t)dω

where ν(ω, t) = u(ω, t)Tu(ω, t) is a function on the frequency ω. It is obvious that V(t) is
a positive definite lyapunov function, and it is the sum of the ν(ω, t) with the weighted
coefficient µ(ω).

The derivative of lyapunov function V(t), which takes into account the trajectories
of (14), is given as follows:

dV(t)
dt

=
∫ ∞

0
µ(ω)

∂ν(ω, t)
∂t

dω

=
1
2

∫ ∞

0
µ(ω)[−ωuT(ω, t) + e(t)T(D− ∆C)T + FT(e(t) + m(t))AT(e(t) + m(t))]u(ω, t)dω

+
1
2

∫ ∞

0
µ(ω)uT(ω, t)[−ωu(ω, t) + (D− ∆C)e(t) + A(e(t) + m(t))F(e(t) + m(t))]dω

= −
∫ ∞

0
ωµ(ω)uT(ω, t)u(ω, t)dω + e(t)T(D− ∆C)e(t) + e(t)T A(e(t) + m(t))F(e(t) + m(t))
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By employing the Lyapunov stability theorem, System (8) is asymptotically stable if

e(t)T(D− ∆C)e(t) + e(t)T A(e(t) + m(t))F(e(t) + m(t)) < 0

Using A2 and Lemma 2 on the first term, one can derive:

e(t)T(D− ∆C)e(t) ≤ e(t)T De(t) +
ε1

2
e(t)Te(t) +

1
2ε1

e(t)T∆CT∆Ce(t)

= e(t)T(D +
ε1

2
I +

1
2ε1

ρ2 I)e(t)

where ε1 > 0, ρ2 = max{ρ2
1, · · · , ρ2

n}.
According to A1 and Lemma 2, one has the following estimation expression on the

second term:

e(t)T A(e(t) + m(t))F(e(t) + m(t)) ≤ ε2

2
e(t)T A(e(t) + m(t))AT(e(t) + m(t))e(t) +

1
2ε2

FT(e(t) + m(t))F(e(t) + m(t))

≤ ε2

2
e(t)T ÂÂTe(t) +

1
2ε2

L2e(t)Te(t)

= e(t)T(
ε2

2
ÂÂT +

1
2ε2

L2 I)e(t)

where ε2 > 0, Â = (bu
ij) = max{|b̂ij|, |b̆ij|}, L2 = max{l2

1 , · · · , l2
n}.

Therefore, System (8) is asymptotically stable if

D +
ε1

2
I +

ε2

2
ÂÂT +

ρ2

2ε1
I +

L2

2ε2
I < 0 (15)

By means of the Lemma 3, V′(t) < 0 is satisfied if LMI (10) holds.

Remark 5. The above method is also suitable for investigating other styles of synchronization of
the FOMNN, such as anti-synchronization and projective synchronization.

Remark 6. Compared to [33–36], we used a new method which is called the CFDEMM to inves-
tigate the synchronization behavior of an uncertain FOMNN. The results are expressed in LMI,
which can be easily used in a real system.

Remark 7. When the bounds of the system parameter are unknown, the adaptive control method is
under consideration.

When the parameters of the system are determined, that is to say, for all i = 1, · · · , n,
∆ci(t) = 0, then one can obtain the following result:

Corollary 1. Under A1− A2, if there exist real numbers ε > 0, such that[
D + ε

2 ÂÂT LI
• −2εI

]
< 0, (16)

where D = diag(k1 − c1, · · · , kn − cn), Â = (au
ij) = max{|âij|, |ăij|}, L2 = max{l2

1 , · · · , l2
n}.

Then, System (8) is asymptotically stable based on the controller (9).

4. Numerical Examples

Two FOMNN models are enumerated to show the practicability of our theoretical
analyses results in this section.
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Example 1. Consider the following FOMNN which is regarded as the master system:

Dαm(t) = −(C + ∆C(t))m(t) + B(m(t)) f (m(t)) + I,

where α = 0.95, m(t) = (m1(t), m2(t), m3(t))T , f (m) = ( f1(m1(t)), f2(m2(t)), f3(m3(t)))T ,
fi(mi) = 0.5(|1 + mi| − |1−mi|)(i = 1, 2, 3).

C =

 3.4 0 0
0 2.4 0
0 0 3.5

, ∆C(t) =

 −0.5sint 0 0
0 −0.5cost 0
0 0 0.5sint

, I =

 0
0
0

,

b11(m1) =

{
1.1, |m1| < 1,

1, |m1| ≥ 1,
b12(m2) =

{
0.09, |m2| < 1,

1, |m2| ≥ 1,
b13(m3) =

{
−1, |m3| < 1,
−1.5, |m3| ≥ 1,

b21(m1) =

{
0.1, |m1| < 1,
0.2, |m1| ≥ 1,

b22(m2) =

{
2, |m2| < 1,

2.1, |m2| ≥ 1,
b23(m3) =

{
−1, |m3| < 1,
−2, |m3| ≥ 1,

b31(m1) =

{
3, |m1| < 1,
−3, |m1| ≥ 1,

b32(m2) =

{
−1, |m2| < 1,
−1.8, |m2| > 1,

b33(m3) =

{
−2, |m3| < 1,
−1, |m3| > 1,

It is clear that li = 1, ρi = 0.5, i = 1, 2.
The slave system is presented by:

Dαs(t) = −(C + ∆C(t))s(t) + B(s(t)) f (s(t)) + I + u(t),

where u(t) = (u1(t), u2(t), u3(t))T .
Using the Matlab Toolbox, one has ε1 = 19.9003, ε2 = 2.1404, k1 = k2 = k3 = −57.0497.

According to Theorem 1, the master–slave robust synchronization of the FOMNNs was
synchronized, which was verified by the simulation results given by Figures 1–4. The
master–slave system trajectories are depicted with initial conditions, taken as
m(0) = (0.4, 2.1,−0.9)T , s(0) = (−2.6,−0.9, 1.8)T , in Figures 1 and 2. The evolution
of the controller and the errors trajectories are shown in Figures 3 and 4.

Example 2. Consider 3-dimensional FOMNN with the following parameters as the master system:

Dαmi(t) = −(ci + ∆ci(t))mi(t) +
3

∑
j=1

bij(mj(t)) f j(mj(t)) + Ii, i = 1, 2, 3.

where α = 0.95and

b11(m1) =

{
1.2, |m1| < 1,

1.12, |m1| ≥ 1,
b12(m2) =

{
−1.75, |m2| < 1,
−1.72, |m2| ≥ 1,

b13(m3) =

{
1.3, |m3| < 1,
1.2, |m3| ≥ 1,

b21(m1) =

{
−1.97, |m1| < 1,
−1.91, |m1| ≥ 1,

b22(m2) =

{
1.71, |m2| < 1,

1.5, |m2| ≥ 1,
b23(m3) =

{
−2.85, |m3| < 1,
−2.75, |m3| ≥ 1,

b31(m1) =

{
−1.22, |m1| < 1,
−1.25, |m1| ≥ 1,

b32(m2) =

{
2.15, |m2| < 1,
2.25, |m2| > 1,

b33(m3) =

{
2.3, |m3| < 1,

2.37, |m3| > 1,
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C =

 0.15 0 0
0 0.53 0
0 0 2.45

, ∆C(t) =

 0.1sint 0 0
0 −0.1cost 0
0 0 0.1sint

, I =

 0
0
0

,
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Figure 3. Time evolution of the controller.
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Figure 4. Time evolution of the errors trajectories.

The neuron activation function was chosen as f j(mj) = tanh(|mj|), j = 1, 2, 3. By a
standard operating procedure, one has li = 1, ρi = 0.1, i = 1, 2, 3.

The slave system is given as follows:

Dαsi(t) = −(ci + ∆ci(t))si(t) +
3

∑
j=1

bij(sj(t)) f j(sj(t)) + ui, i = 1, 2, 3.

Using the Matlab Toolbox, one has ε1 = 20.2365, ε2 = 1.3258, k1 = k2 = k3 = −56.919.
According to Theorem 1, the master–slave robust synchronization of the FOMNNs was
synchronized, which was verified by the simulation results given by Figures 5–8. The
master–slave system trajectories are depicted with initial conditions, taken as
m(0) = (1.35,−0.75, 0.43)T , s(0) = (−2.70, 1.90,−1.80)T , in Figures 5 and 6. The evo-
lution of the controller and the errors’ trajectories are shown in the Figures 7 and 8.
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Figure 5. The master system trajectories.
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Figure 6. The slave system trajectories.

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

Time(s)

u
1
(t

),
 u

2
(t

),
 u

3
(t

)

 

 

u
1
(t)

u
2
(t)

u
3
(t)

Figure 7. Time evolution of the controller.



Fractal Fract. 2022, 6, 585 12 of 14

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time(s)

e
1
(t

),
e

2
(t

),
e

3
(t

)

 

 

e
1
(t)

e
2
(t)

e
3
(t)

Figure 8. Time evolution of the errors trajectories.

5. Conclusions

In this study, a general kind of FOMNN with parameter uncertainty are studied.
Different from the traditional bounded real uncertainty, norm bounded uncertainty is
studied for the first time. Using CFDEMM and LMI, new results which ensure the master–
slave robust synchronization of FOMNN are presented in LMI forms which are easily
realized using Matlab toolbox. In the end, the efficiency of the derived criteria are validated
by two classical FOMNN examples. In real world systems, time-delay and impulsive
effects are common and inevitable phenomenon in the process of signal transmission and
reception. Meanwhile, finite-time synchronization or fixed-time synchronization behavior
of the FOMNN are more valuable than the traditional synchronization behavior. Therefore,
finite-time or fixed-time dynamical behavior of the FOMNN with delay and impulsive
effect will be further discussed in our future work.
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