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Abstract: In this work, an adaptive dynamic surface control law for a type of strict-feedback
fractional-order nonlinear system is proposed. The considered system contained input quantization
and unknown external disturbances. The virtual control law is presented by utilizing a dynamic
surface control approach at each step, where the nonlinear compensating term with the estimation
of unknown bounded parameters is introduced to overcome the influence of unknown external
disturbances and surface errors. Meanwhile, the adaptive laws of relevant parameters are also
designed. In addition, an improved fractional-order nonlinear filter is developed to deal with the
explosion of complexity raised by the recursive process. In the last step, an adaptive dynamic surface
control law is proposed to ensure the convergence of tracking error, in which the Nussbaum gain
function is applied to solve the problem of the unknown control gain generated by input quantization.
Then, the fractional Lyapunov stability theory is applied to verify the stability of the proposed control
law. Finally, simulation examples are given to illustrate the effectiveness of the proposed control law.

Keywords: strict-feedback fractional-order systems; fuzzy logic system; dynamic surface control;
input quantization

1. Introduction

In the past several decades, fractional calculus has received tremendous attention
because many complex physical phenomena can be characterized by fractional-order
systems [1–5]. Many distinguished results related to stability analysis and control schemes
have been reported [6–9]. In addition, many fractional-order control approaches, such
as fractional-order terminal sliding mode control [10], fractional-order prescribed perfor-
mance control [11], fractional-order fuzzy control [12,13], fractional-order neural network
control [14], fractional-order neuro-fuzzy control [15], have been designed and applied
through the combination of fractional-order operators and classical control methods. How-
ever, it should be emphasized that, in many cases, the control methods of integer-order
systems cannot be directly extended to fractional-order systems. Therefore, the control of
fractional-order systems is still a problem with both great potential and challenges, which
inspires this work.

It is widely known that, as an efficient control tool, backstepping control establishes a
system framework for the control design of nonlinear systems. In this method, the studied
system is decomposed into several subsystems, and a virtual control law is designed for
each step until the actual control law is obtained, which greatly reduces the design of
the control law. To date, various results have been presented for integer-order systems
with backstepping control [16–19]. Unfortunately, for the noninteger-order systems with
backstepping control, only a few research efforts have been made. For example, in [20], an
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adaptive neural network backstepping control scheme was proposed for fractional-order
nonlinear systems with actuator faults, in which the neural network was introduced
into the recursive design to approximate the unknown nonlinear dynamics. In [21], the
authors addressed an adaptive backstepping hybrid fuzzy sliding mode control method
and solved the finite-time tracking control problem of a type of uncertain fractional-order
nonlinear system. In [22], an adaptive backstepping control scheme was developed
for a type of fractional-order nonlinear system, in which the external disturbance and
uncertain parameters were considered, and an auxiliary function was designed to replace
the discontinuous function (such as the sign function) to obtain a smooth control input.
It should be pointed out that there is an obvious problem with the results mentioned
above, that is, the complexity explosion problem caused by repeated differentiation in the
recursive design of backstepping controls. How to avoid this issue to achieve the stability
of backstepping for fractional-order systems is a hot topic, which is another inspiration of
this work.

For one thing, to overcome the explosion of complexity in recursive design, some
researchers have applied the dynamic surface control approach, or the command filtered
control technique, to simplify the design process [23–26]. Based on the application
of first-order or second-order filters, the repeated differentiation in recursive design is
skillfully avoided. Up to now, many excellent results have been produced in the control of
fractional-order systems. In [27,28], a control law for uncertain fractional-order nonlinear
systems was designed by applying the backstepping dynamic control technique, where
the unknown external disturbance and the approximation error were compensated using
a designed auxiliary function. In [29], a compound learning adaptive dynamic surface
control method was proposed for fractional-order nonlinear systems, which guarantees that
the tracking error can converge. In [30,31], the neural network command filtering control of
fractional-order systems with actuator faults was addressed, in which the control problems
of finite-time control and synchronization control were solved using the proposed control
schemes. As far as we know, the adaptive dynamic surface control of fractional-order
nonlinear systems has not been fully developed in the existing literarure, especially in the
case of the strict-feedback form.

In addition, the performance of a system may degrade due to external factors (for
example, input saturation, external disturbances and limited bandwidth) or even as a
result of damage to the stability of the system. Therefore, it is worth devoting attention
to the design of a suitable controller to reduce the effects of external factors in the system.
Considering the existence of input saturation, external disturbance and input quantization,
some related results, such as the barrier function-based adaptive sliding mode control
law, the observer-based control law and the command filter-based adaptive fixed-time
control law, have been obtained by studying integer-order systems and fractional-order
systems [32–35]. However, these external factors may also lead to an unknown control
direction of the system. To solve the control problem of unknown control direction,
some researchers introduced the Nussbaum control technique [36,37]. For fractional-order
nonlinear systems, the problem of unknown control direction is a topic worthy of attention,
but there are few research results in this area.

Motivated by the above discussion, this work addresses the control problem of
adaptive dynamic surface control for strict-feedback fractional-order nonlinear systems
with input quantization and unknown external disturbances. The main contributions can
be summarized as follows:

(i) An adaptive dynamic surface control law was developed for the strict-feedback
fractional-order nonlinear systems with input quantization and external disturbances.
Different from [12,15,22], the unknown parameters, unknown external disturbances and
unknown control direction were considered simultaneously, and an improved fractional-
order nonlinear filter with an adaptive law was introduced to solve the explosion of
complexity problem created by repeatedly differentiating the virtual control law.
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(ii) To overcome the influence of unknown external disturbances and surface errors,
nonlinear auxiliary functions with the estimation of unknown bounded parameters were
introduced into the design of virtual control laws and the final actual control law. This
differed from the results of [38,39].

(iii) To solve the problem of the unknown control gain raised by input quantization, the
Nussbaum gain function technique was considered in the design of the actual control law.
Compared with references [34,35], the final control law design in this paper was simplified.

The rest of this paper is organized as follows: Preliminaries and the problem for-
mulation are provided in Section 2. In Section 3, the design of the adaptive dynamic
surface control law is shown in detail, and then the stability analysis is outlined. The
simulation environment and methods are given in Section 4 to illustrate the effectiveness of
the proposed control law, and the results and discussion are presented in Section 5. Finally,
some brief conclusions to this paper are given in Section 6.

2. Preliminaries and Problem Formulation
2.1. Preliminaries

First, some basic definitions and lemmas of fractional calculus are provided.

Definition 1 [27]. Assuming that h(t) : [t0,+∞)→ R is a continuously differentiable function,
its Caputo fractional-order derivative with order α is defined as

c
D
α
t h(t) =

1
Γ(1− α)

∫ t

t0

(t− s)−αh′(s)ds (1)

where α ∈ (0, 1) and c
D
α
t stands for the Caputo fractional-order differential operator with order α,

and Γ(4) =
∫ +∞

0 s4−1e−sds. Here, Γ(·) stands for the gamma function and satisfies Γ(1) = 1.

Definition 2 [7]. The two-parameter Mittag-Leffler function is described as

Eα,β(z) =
∞∑

j=0

z j

Γ( jα+ β)
(2)

where α, β > 0 are constants and z ∈ C is a complex number. Specifically, we have E1,1(z) = ez.

Taking the Laplace transform of (2) yields

L

{
tβ−1Eα,β(−ctα)

}
=

sα−β

sα + c
(3)

For the two-parameter Mittag-Leffler function, the following two lemmas hold.

Lemma 1 [7]. For any integer w ≥ 1, there exist real numbersα ∈ (0, 2) and v ∈ (πα/2, min{π,πα}),
and an arbitrary real number, β, such that

Eα,β(z) = −
∞∑

j=0

z j

Γ(β− jα)z j + o
(
|z|−w−1

)
(4)

where |z| → ∞ and v ≤
∣∣∣arg(z)

∣∣∣ ≤ π, and the symbol arg(·) represents the argument of a
complex number.

Lemma 2 [7]. For α ∈ (0, 2), if there exist real numbers β and v ∈ (πα/2, min{π,πα}), then
we have ∣∣∣Eα,β(z)

∣∣∣ ≤ d
1 + |z|

(5)
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where d > 0 is constant, |z| ≥ 0 and v ≤
∣∣∣arg(z)

∣∣∣ ≤ π.

Lemma 3 [10]. Let x = 0 be an equilibrium point of the fractional-order system c
D
α
t x(t) =

F(x(t), t), where α ∈ (0, 1). Assume that there exist class −K functions χ1, χ2 and χ3 and a
continuous Lyapunov function V (x(t),t), such that the following inequalities

χ1(||x(t)
∣∣∣|) ≤ V(||x(t), t

∣∣∣|) ≤ χ2(||x(t)||) (6)

and
c
D
α
t V(x(t), t) ≤ −χ3(||x(t)||) (7)

hold; then, the origin of the system c
D
α
t x(t) = F(x(t), t) is asymptotically stable.

Next, a definition and some useful lemmas for control law design are given.

Definition 3 [36]. A function N(τ) is called a Nussbaum gain function if it satisfies the
following properties:

lim
s→∞

sup 1
s

∫ s
0 N(τ)dτ = +∞

lim
s→∞

inf 1
s

∫ s
0 N(τ)dτ = −∞

(8)

Lemma 4 [30]. Let V(t) and ςi(t), i = 1, · · · , m be smooth functions defined on [0, t f ) with
V(t) ≥ 0 for ∀t ∈ [0, t f ), and let ξi(t), i = 1, · · · , m be unknown time-varying parameters that have
the same sign and satisfy ξi(t) ∈ Ii := [ξi,min, ξi,max] with 0 < Ii. If the following inequality holds:

c
D
α
t V(t) ≤ −$V +

m∑
i=1

(ξi(t)N(ςi) + 1)
.
ςi + ρ (9)

then ςi(t), V(t) and
∑m

i=1 (ξi(t)N(ςi) + 1)
.
ςi will be bounded on [0, t f ) for i = 1, · · · , n, where

$ > 0 and ρ > 0 are constants. As m = 1, the boundedness of (ξ(t)N(ς) + 1)
.
ς is held.

Lemma 5 [12]. Let x(t) ∈ R be a smooth function; then, for all t ≥ t0, the following inequality holds:

1
2

c
D
α
t

(
xT(t)x(t)

)
≤ xT(t)c

D
α
t x(t) (10)

Lemma 6 (Young’s Inequality) [40]. For ∀(x, y) ∈ R2, the following inequality holds:

xy ≤
εp

p
|x|p +

1
qεq |y|

q (11)

where ε > 0, p > 1, q > 1 and (p− 1)(q− 1) = 1.

Lemma 7 [41]. For any η > 0 and z ∈ R, the following inequality holds:

0 ≤ |z| −
z2√

z2 + η2
≤ η (12)

2.2. Problem Description

The subsequent discussion is based on the following type of strict-feedback fractional-
order nonlinear systems:
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c
D
α
t xi(t) = xi+1(t) +ψi fi(xi(t)) + di(t), i = 1, · · · , n− 1

c
D
α
t xn(t) = Q(u(t)) +ψn fn(xn(t)) + dn(t)
y = x1(t)

(13)

where xi = [x1, · · · , xi]
T
∈ Ri, i = 1, · · · , n, u(t) ∈ R and y ∈ R are the state vector, input and

output of this system, respectively; Q(u(t)) is the quantized input signal of a hysteretic
quantizer; ψi ∈ R and fi(xi) ∈ R, i = 1, · · · , n are unknown constant parameters and known
smooth functions, respectively; and di(t) ∈ R, i = 1, · · · , n represents the unknown but
bounded external disturbances.

With reference to [42,43], the quantized input Q(u(t)) can be described as the
following form:

Q(u) =


ϑ jsgn(u),

ϑ j
1+` < |u| ≤ ϑ j,

.
u < 0 orϑ j < |u| ≤

ϑ j
1−` ,

.
u > 0

ϑ j(1 + `)sgn(u), ϑ j < |u| ≤
ϑ j

1−` ,
.
u < 0 or

ϑ j
1−` < |u| ≤

ϑ j(1+`)
1−` ,

.
u > 0

0, 0 ≤ |u| < ϑmin
1+` ,

.
u < 0 or ϑmin

1+` ≤ |u| < ϑmin,
.
u > 0

Q(u(t−)), otherwise

(14)

where ϑ j = δ1− jϑmin, j = 1, 2, · · · , and ` = (1− δ)/(1 + δ) with parameters ϑmin > 0 and
0 < δ < 1; and δ is considered to be the quantization density. Moreover, Q(u(t)) can be
decomposed into the following form:

Q(u) = G(u)u(t) + P(t) (15)

where 0 < 1− δ ≤ G(u) ≤ 1 + δ and
∣∣∣P(t)∣∣∣ ≤ ϑmin.

The control objective of this paper was to propose an adaptive control law u(t) for
the strict-feedback fractional-order nonlinear systems with quantized input and external
disturbances, combining the dynamic surface control method and Nussbaum gain function
technique such that the output y could follow the desired signal yd and ensure the
boundedness of all signals in the given strict-feedback fractional-order nonlinear systems.

Assumption 1 [15,27,36]. There exists an unknown positive constant di, such that
∣∣∣di(t)

∣∣∣ ≤ di for
all t ≥ 0, i = 1, · · · , n.

Assumption 2 [12,27,30]. The given desired signal yd and its fractional-order derivatives c
D
α
t yd

and c
D
α
t

(
c
D
α
t yd

)
are smooth, available and bounded.

3. Adaptive Dynamic Surface Control Law Design and Stability Analysis
3.1. Adaptive Dynamic Surface Control Law Design

In this subsection, an adaptive dynamic surface control law is presented to deal with
the stabilization problem of the strict-feedback fractional-order nonlinear system (13), and
a stability analysis is provided as well.

For the control law design, we define the coordinate transformation as

e1 = x1 − yd
ei = xi − si−1
zi−1 = si−1 − υi−1

(16)

where i = 2, · · · , n; ei is the surface error; si−1 is the filtered output, which is yielded through
a fractional-order filter on the virtual control law υi−1; and zi−1 represents the output error
of the fractional-order filter.
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In this paper, the fractional-order filter design was inspired by the work of [43]. Let
the virtual control law υi, i = 1, · · · , n − 1 pass through the following fractional-order filter
with a time constant τi to yield the filtered output si, that is

τi
c
D
α
t si = −zi −

τiΠ̂
2
i zi√(

Π̂izi
)2
+ η2(t)

− τiei (17)

where i = 1, · · · , n − 1 and Π̂i is the estimation of Πi, which will be defined later.
Step 1 (i = 1). In view of (13) and (16), the ath-order derivative of e1 is obtained as

c
D
α
t e1 = e2 + υ1 + z1 +ψ1 f1 + d1(t) − c

D
α
t yd (18)

The design of the following Lyapunov function candidate is

V1 =
1
2

e2
1 +

1
2β1

ψ̃2
1 +

1
2γ1

∆̃
2
1 (19)

where β1 > 0 and γ1 > 0 are design parameters, ψ̃1 = ψ̂1 −ψ1, ∆̃1 = ∆̂1 − ∆1 and ψ̂1 and ∆̂1

are the estimations of ψ1 and ∆1 = d1, respectively.
Along with (18) and Lemma 5, the ath-order derivative of V1 is given as

c
D
α
t V1 ≤ e1

(
e2 + υ1 + z1 +ψ1 f1 + d1(t) − c

D
α
t yd

)
+

1
β1
ψ̃1

c
D
α
t ψ̂1 +

1
γ1

∆̃1
c
D
α
t ∆̂1 (20)

The design of the virtual control law υ1 is

υ1 = −a1e1 − ψ̂1 f1 −
∆̂1e1√

e2
1 + η2(t)

+ c
D
α
t yd (21)

where a1 > 0 is a design parameter and η = η(t) represents a positive uniform continuous
and bounded function.

With reference to [28], there exist constants o1 > 0 and o2 > 0, such that

0 < η(t) < o1 < +∞,
∣∣∣cDαt η(t)∣∣∣ < o2 < +∞ (22)

Let υ1 pass through the fractional-order filter (17) to obtain the filtered output s1, then
one has

τ1
c
D
α
t s1 = −z1 −

τ1Π̂2
1z1√(

Π̂1z1
)2
+ η2(t)

− τ1e1, s1(0) = υ1(0) (23)

Substituting (21) into (20), we obtain

c
D
α
t V1 ≤ −a1e2

1 +
1
β1
ψ̃1

(
D
α
t ψ̂1 − β1e1 f1

)
+ 1

γ1
∆̃1

c
D
α
t ∆̂1 −

γ1e2
1√

e2
1+η

2(t)

+ e1(e2 + z1) + ∆1o1 (24)

where e1d1(t) ≤ |e1|∆1 ≤ ∆1η(t) + ∆1e2
1/

√
e2

1 + η2(t) is considered using Lemma 7.

The adaptive laws c
D
α
t ψ̂1 and c

D
α
t ∆̂1 are

c
D
α
t ψ̂1 = β1e1 f1 − c1ψ̂1 (25)

c
D
α
t ∆̂1 =

γ1e2
1√

e2
1 + η2(t)

− g1∆̂1 (26)
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Substituting (25) and (26) into (24), we have

c
D
α
t V1 ≤ −a1e2

1 −
c1

β1
ψ̃1ψ̂1 −

g1

γ1
∆̃1∆̂1 + e1(e2 + z1) + ∆1o1 (27)

Step i (i = 2, · · · , n− 1). From (16), the ath-order derivative of ei is as follows:

c
D
α
t ei = ei+1 + υi + zi +ψi fi + di(t) − c

D
α
t si−1 (28)

The design of the following Lyapunov function candidate is

Vi =
1
2

e2
i +

1
2βi

ψ̃2
i +

1
2γi

∆̃
2
i (29)

where βi > 0 and γi > 0 are design parameters, ψ̃i = ψ̂i −ψi, ∆̃i = ∆̂i − ∆i and ψ̂i and ∆̂i are
the estimations of ψi and ∆i = di, respectively.

Similar to Step 1, and along with (28), the ath-order derivative of Vi is

c
D
α
t Vi ≤ ei

(
ei+1 + υi + zi +ψi fi + di(t) − c

D
α
t si−1

)
+

1
βi
ψ̃i

c
D
α
t ψ̂i +

1
γi

∆̃i
c
D
α
t ∆̂i (30)

The design of the virtual control law υi is

υi = −aiei − ψ̂i fi −
∆̂iei√

e2
i + η2(t)

−
zi−1

τi−1
−

Π̂2
i−1zi−1√(

Π̂i−1zi−1
)2
+ η2(t)

− 2ei−1 (31)

where ai > 0 is a design parameter and Π̂i−1 represents the estimation of Πi−1, which will
be defined later.

Letting υi pass through the fractional-order filter (17) to obtain the filtered output si,
one has

τi
c
D
α
t si = −zi −

τiΠ̂
2
i zi√(

Π̂izi
)2
+ η2(t)

− τiei, si(0) = υi(0) (32)

The adaptive laws c
D
α
t ψ̂i and c

D
α
t ∆̂i are

c
D
α
t ψ̂i = βiei fi − ciψ̂i (33)

c
D
α
t ∆̂i =

γie2
i√

e2
i + η2(t)

− gi∆̂i (34)

In addition, using Lemma 7, we have

eidi(t) ≤ |ei|∆i ≤ ∆iη(t) +
∆ie2

i√
e2

i + η2(t)
(35)

Substituting (31)–(35) into (30), the following can be obtained:

c
D
α
t Vi ≤ −aie2

i −
ci
βi
ψ̃iψ̂i −

gi

γi
∆̃i∆̂i + ei(ei+1 + zi − ei−1) + ∆io1 (36)

Step n (i = n). This is the last step, in which the actual control law u(t) will be
developed using the dynamic surface control technique and Nussbaum gain function
technique. Invoking (14)–(16), the ath-order derivative of en is

c
D
α
t en = G(u)u(t) +ψn fn + P(t) + dn(t) − c

D
α
t sn−1 (37)
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The design of the following Lyapunov function candidate is

Vn =
1
2

e2
n +

1
2βn

ψ̃2
n +

1
2γn

∆̃
2
n (38)

where βn > 0 and γn > 0 are design parameters, ψ̃n = ψ̂n −ψn, ∆̃n = ∆̂n − ∆n and ψ̂n and
∆̂n are the estimations of ψn and ∆n = ϑmin + dn, respectively.

Taking the ath-order derivative of Vn along with (37) yields

c
D
α
t Vn ≤ σenG(u)u(t) + en

(
ψn fn + P(t) + dn(t) − c

D
α
t sn−1

)
+ 1

βn
ψ̃n

c
D
α
t ψ̂n +

1
γn

∆̃n
c
D
α
t ∆̂n (39)

where G(u) = G(u)/σ and σ > 0 is the introduced adjustment coefficient, which is used to
adjust the control law.

Remark 1. As 0 < 1− δ ≤ G(u) ≤ 1+ δ, the explicit value of G(u) is not easy to obtain. Therefore,
the Nussbaum gain function technique is introduced to deal with the unknown control gain and
design the control law u(t).

Let υn−1 pass through the fractional-order filter (17) to obtain the filtered output sn−1,
then one has

τn−1
c
D
α
t sn−1 = −zn−1 −

τn−1Π̂2
n−1zn−1√(

Π̂n−1zn−1
)2
+ η2(t)

− τn−1en−1, sn−1(0) = υn−1(0) (40)

where Π̂n−1 represents the estimation of Πn−1, which will be defined later.
The design of the actual control law u(t) is

u(t) = N(ς)ϕ(t) (41)

whereN(ς) is a given Nussbaum gain function, and ϕ(t) and adaptive law
.
ς(t) are given,

respectively, as

ϕ(t) =
1
σ

anen + ψ̂n fn +
∆̂nen√

e2
n + η2(t)

+
zn−1

τn−1
+

Π̂2
n−1zn−1√(

Π̂n−1zn−1
)2
+ η2(t)

+ 2en−1

 (42)

.
ς(t) = σenϕ(t) (43)

where an > 0 is a design parameter.
The adaptive laws c

D
α
t ψ̂n and c

D
α
t ∆̂n are

c
D
α
t ψ̂n = βnen fn − cnψ̂n (44)

c
D
α
t ∆̂n =

γne2
n√

e2
n + η2(t)

− gn∆̂n (45)

Using Lemma 7, one has

en(P(t) + dn(t)) ≤ |en|
(
ϑmin + dn

)
= |en|∆n ≤ ∆nη(t) +

∆ne2
n√

e2
n + η2(t)

(46)

Substituting (40)–(46) into (39), we obtain

c
D
α
t Vn ≤ −ane2

n −
cn

βn
ψ̃nψ̂n −

gn

γn
∆̃n∆̂n − en−1en + ∆no1 +

(
G(u)N(ς) + 1

) .
ς(t) (47)
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Remark 2. The nonlinear terms ∆̂iei

/√
e2

i + η2(t) and i = 1, · · · , n in the virtual control law and

actual control law are used to compensate for the bound of external disturbances di(t), i = 1, · · · , n
and the unknown bounded function P(t), where the introduction of the adjusting function η(t) is
used to overcome a possible chattering problem in the virtual control laws and the actual control law.
According to [28], η(t) can be considered an exponential function, for example, η(t) = o1e−o2t (o1
and o2 are positive constants), which satisfies 0 < η(t) < o1 < +∞ and

∣∣∣cDαt η(t)∣∣∣ < o2 < +∞.

Remark 3. The nonlinear function Π̂2
i zi

/√(
Π̂izi

)2
+ η2(t) , i = 1, · · · , n − 1 with an adaptive

law for Π̂i is designed in each fractional-order nonlinear filter and is used to compensate for
the effect caused by surface error. Furthermore, the nonlinear function is introduced into the
fractional-order nonlinear filter, which can also avoid the complexity explosion problem caused by
repeatedly differentiating the virtual control law υi.

3.2. Stability Analysis

Based on the above analysis, the main results of this work can be summarized
as follows.

Theorem 1. Consider the strict-feedback fractional-order nonlinear systems (13) with input
quantization and external disturbances. Under Assumptions 1 and 2, the virtual control laws are
constructed as in (21) and (31); the adaptive laws are considered as in (25), (26), (33), (34), (44) and
(45); and the actual control law is designed as in (41) with (42) and (43). Then, the following results
are obtained: (i) the boundedness of all signals of the strict-feedback fractional-order systems (13) are
obtained and (ii) the tracking error can converge to an arbitrary small neighborhood of the origin.

Proof. From (16) and (17), the αth-order derivative of zi is

c
D
α
t zi =

c
D
α
t si −

c
D
α
t υi

= − zi
τi
−

Π̂2
i zi√

(Π̂izi)
2
+η2(t)

− ei + Hi(·), i = 1, · · · , n− 1 (48)

where Hi(·) is a continuous function with variables e1, · · · , ei+1, z1, · · · , zi, ψ̂1, · · · , ψ̂i+1,
∆̂1, · · · , ∆̂i+1, Π̂1, · · · , Π̂i, yd, c

D
α
t yd, c

D
α
t (

c
D
α
t yd), η(t) and

.
η(t).

The following Lyapunov function candidate is constructed:

V =
n∑

i=1

Vi +
n−1∑
i=1

1
2

z2
i +

n−1∑
i=1

1
2λi

Π̃
2
i (49)

where λi > 0 and i = 1, · · · , n − 1 are design parameters, and Π̃i = Π̂i −Πi and Π̂i are
estimations of Πi.

In addition, considering Assumption 2, there exists a compact set

Ω1 =
{
(yd)

2 +
(
c
D
α
t yd

)2
+

(
c
D
α
t (

c
D
α
t yd)

)2
≤ Υ0

}
(50)

where Υ0 > 0 is a known constant.
Furthermore, we define the following compact set as

Ω2 =
{
V(t) ≤ q

}
(51)

where q > 0 represents any constant.
Noting (50) and (51), it can be found that the set Ω1 ×Ω2 is also a compact set, and

that η(t) and
.
η(t) are bounded functions. Therefore, there exist positive constants Πi,
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i = 1, · · · , n − 1, such that
∣∣∣Hi(·)

∣∣∣ ≤ Πi on Ω1 ×Ω2, since the determined values of Πi are
not easy to obtain, which are estimated by Π̂i.

The ath-order derivative of V is

c
D
α
t V ≤

n∑
i=1

c
D
α
t Vi +

n−1∑
i=1

zi
c
D
α
t zi +

n−1∑
i=1

1
λi

Π̃i
c
D
α
t Π̂i (52)

Substituting (27), (36), (47) and (48) into (52), we have

c
D
α
t V ≤ −

n∑
i=1

aie2
i −

n∑
i=1

ci
βi
ψ̃iψ̂n −

n∑
i=1

gi
γi

∆̃i∆̂i −
n−1∑
i=1

z2
i
τi
+ o1

n∑
i=1

∆i +
(
G(u)N(ς) + 1

) .
ς(t)

+
n−1∑
i=1
|zi|Πi −

n−1∑
i=1

Π̂2
i z2

i√
(Π̂izi)

2
+η2(t)

+
n−1∑
i=1

1
λi

Π̃i
c
D
α
t Π̂i

(53)
Using Lemma 7, the following can be obtained

|zi|Πi = |zi|Π̂i − |zi|Π̃i ≤
Π̂2

i z2
i√(

Π̂izi
)2
+ η2(t)

+ η(t) − |zi|Π̃i (54)

Then, one has

c
D
α
t V ≤ −

n∑
i=1

aie2
i −

n∑
i=1

ci
βi
ψ̃iψ̂n −

n∑
i=1

gi
γi

∆̃i∆̂i −
n−1∑
i=1

z2
i
τi
+

n−1∑
i=1

1
λi

Π̃i
(
c
D
α
t Π̂i − λi|zi|

)
+o1

n∑
i=1

∆i + o1(n− 1) +
(
G(u)N(ς) + 1

) .
ς(t)

(55)

The adaptive law c
D
α
t Π̂i is

c
D
α
t Π̂i = λi|zi| − kiΠ̂i, i = 1, · · · , n− 1 (56)

where ki > 0 is a design parameter.
In addition, by applying Lemma 6, the following inequalities are obtained:

−
ci
βi
ψ̃iψ̂n ≤ −

ci
2βi

ψ̃2
i +

ci
2βi

ψ2
i (57)

−
gi

γi
∆̃i∆̂i ≤ −

gi

2γi
∆̃

2
i +

gi

2γi
∆2

i (58)

−
ki
λi

Π̃iΠ̂i ≤ −
ki

2λi
Π̃

2
i +

ki
2λi

Π2
i (59)

Substituting (56)–(59) into (55), we have

c
D
α
t V ≤ −φV +

(
G(u)N(ς) + 1

) .
ς(t) + D1 (60)

where φ = min
{
2ai, ci, gi, 2/τ j, k j

}
, for i = 1, · · · , n and j = 1, · · · , n− 1, and

D1 =
n∑

i=1

ci
2βi

ψ2
i +

n∑
i=1

gi

2γi
∆2

i +
n−1∑
i=1

ki
2λi

Π2
i + o1

n∑
i=1

∆i + o1(n− 1) (61)

Furthermore, considering Lemma 4 and letting m = 1, it can be easily seen that there
exists a positive constant, D2, such that max

(
G(u)N(ς) + 1

)
= D2. Let D = D1 + D2, then

we have
c
D
α
t V ≤ −φV + D (62)



Fractal Fract. 2022, 6, 698 11 of 20

From (62), there must exist a positive time-varying parameter, ζ(t), such that

c
D
α
t V(t) + ζ(t) = −φV(t) + D (63)

Taking the Laplace transform of (63) yields

V(s) =
sα−1

sα + φ
V(0) +

D
s(sα + φ)

−
Ξ(s)

sα + φ
=

sα−1

sα + φ
V(0) +

sα−(α−1)

sα + φ
D−

Ξ(s)
sα + φ

(64)

where V(s) and Ξ(s) are the Laplace transforms of V(t) and Ξ(s), respectively.
Considering Definition 2, the inverse Laplace transform of (64) is

V(t) = Ea,1(−φtα)V(0) + tαEa,α+1(−φtα)D− ζ(t) ∗ tα−1Ea,α(−φtα) (65)

where the symbol ∗ stands for the convolution operator.
As ζ(t) is a non-negative parameter, and from the definition of the two-parameter

Mittag-Leffler function (2), it can be directly obtained that tα−1Ea,α(−φtα) > 0. As a result,
from (65), we have −ζ(t) ∗ tα−1Ea,α(−φtα) ≤ 0. Thus, the equation (65) is changed is

V(t) ≤ Ea,1(−φtα)V(0) + tαEa,α+1(−φtα)D (66)

On the other hand, for all t ≥ 0, one has arg(−φtα) = −π and
∣∣∣−φtα

∣∣∣ ≥ 0. Then, from
Lemma 2, there must exist a constant, d > 0, such that the following inequality holds:∣∣∣Eα,1(−φtα)

∣∣∣ ≤ d
1 + φtα

(67)

With t→∞ , we have
lim
t→∞

Ea,1(−φtα)V(0) = 0 (68)

Observing (68), for any } > 0, there exists a time instant t1 > 0 for all t > t1, such that

Ea,1(−φtα)V(0) ≤
}
3

(69)

Furthermore, considering Lemma 1 and letting w = 1, one has

Ea,α+1(−φtα) =
1

Γ(1)φtα
+ o

 1∣∣∣φtα
∣∣∣2
 (70)

In view of the fact that Γ(1) = 1, then (70) can be rewritten as

tαEa,α+1(−φtα)D =
D
φ

+ Dtαo

 1∣∣∣φtα
∣∣∣2
 (71)

Similarly, from (71), for any } > 0, there exists a time instant t2 > 0 for all t > t2, such
that the following inequality satisfies

Dtαo

 1∣∣∣φtα
∣∣∣2
 ≤ }

3
(72)

In addition, we can select appropriate design parameters such that D/φ ≤ }/3. Thus,
invoking (66), (69) and (72), one obtains

V(t) ≤ } (73)
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Therefore, according to Lemma 3 and the definition of V(t), once (62) and (72) hold,
the boundedness of all signals of the considered strict-feedback fractional-order systems
(13) is obtained, and the tracking error can also converge to an arbitrary small neighborhood
of the origin, namely, |e1| ≤

√
2} for all t > max{t1, t2}. This completes the proof. �

The control block diagram of the system is given in Figure 1.
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Remark 4. The theoretical analysis shows that the tracking error |e1| ≤
√

2}. Actually, it can be
made arbitrarily small by increasing the design parameters ai, βi, γi and λi, or by decreasing the
value of η(t) under the fixed positive parameters ci, gi and ki. In addition, the control law u(t) can
also be adjusted by changing the value of parameter σ. However, if the correction parameters are
too small, the parameters may drift to some extent, and a smaller tracking error will cause a larger
control amplitude. Therefore, the design parameters should be appropriately selected to trade-off
between the tracking performance and magnitude of the control signal.

4. Simulation Environment and Methods

In this section, two simulation examples are provided, which were established in the
environment of MATLAB/SIMULINK (MathWorks.Inc., Natick, MA, USA) to illustrate the
effectiveness of the presented adaptive dynamic surface control law.

Example 1. Consider the strict-feedback fractional-order nonlinear systems with the following form:

c
D
α
t x1 = x2 − 0.5x2

1 + d1(t)
c
D
α
t x2 = Q(u) + 2e−x1x2 + d2(t)

(74)

where the fractional orderα is set to 0.95 and the external disturbances are d1(t) = d2(t) = 0.1 sin(t).
The values of the hysteretic quantizer as designed are ϑmin = 0.02, δ = 0.5 and ` = 1/3. The
initial states are considered to be x(0) = [0.5, 0.1]T and the other initial conditions are all given as
0.01. The desired signal is yd = 0.5 sin(1.5t) and the simulation time is t = 15 s.

We design the first virtual control law as follows:

υ1 = −70e1 − ψ̂1(x2
1) −

∆̂1e1√
e2

1 + 2.52
+ c
D
α
t yd (75)
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To overcome the explosion of complexity in the recursive design, a fractional-order
filter is designed as

c
D
α
t s1 = −100z1 −

Π̂2
1z1√(

Π̂1z1
)2
+ 2.52

− e1 (76)

Furthermore, we design the actual control law and adaptive laws as

u(t) = N(ς)ϕ(t) (77)

ϕ(t) = 2

5e2 + ψ̂2(e−x1x2) +
∆̂2e2√

e2
2 + 2.52

+ 100z1 +
Π̂2

1z1√(
Π̂1z1

)2
+ 2.52

+ 2e1

 (78)

.
ς(t) = 0.5e2ϕ(t) (79)

c
D
α
t ψ̂1 = e1(x2

1) − 3ψ̂1 (80)
c
D
α
t ψ̂2 = e2(e−x1x2) − 2ψ̂2 (81)

c
D
α
t ∆̂1 =

5.5e2
1√

e2
1 + 2.52

− 1.3∆̂1 (82)

c
D
α
t ∆̂2 =

1.5e2
2√

e2
2 + 2.52

− 4∆̂2 (83)

c
D
α
t Π̂1 = 2.5|z1| − Π̂1 (84)

where the Nussbaum gain function is given asN(ς) = ς2 cos(ς).
To further illustrate the validity of the presented control law, a third-order fractional-

order nonlinear system is given in Example 2.

Example 2. Consider the fractional-order systems with the following form:

c
D
α
t x1 = x2 − 2e−x1/20 + d1(t)

c
D
α
t x2 = x3 − 0.5x2 sin(x1) + d2(t)

c
D
α
t x3 = Q(u(t)) + 0.5 cos(x1x3) + d3(t)

(85)

Let the external disturbances d1(t) = d2(t) = d3(t) = 0.1 sin(t). The values of the
hysteretic quantizer as designed are ϑmin = 0.02, δ = 0.25 and ` = 1/3. The initial states
are considered to be x(0) = [0.5, 0.25, 0.1]T and the others are all set to 0.01. The desired
signal is yd = 1.5(sin(t) + sin(2t)) and the simulation time is t = 15 s.

In order to achieve the control goal, the design parameters in the virtual control laws
(see (21) and (32)), adaptive laws (see (25), (26), (33), (34), (44), (45) and (56)), actual control
law (see (41)–(43)) and fractional-order filter (see (23) and (32)) were set to a1 = 90, a2 = 35,
a3 = 11.5, β1 = 30, β2 = 23, β3 = 20, c1 = 2, c2 = 5, c3 = 12, γ1 = 22, γ2 = 13, γ3 = 13,
g1 = 22.5, g2 = 12, g3 = 24, τ1 = τ2 = 0.02, λ1 = 0.1, λ2 = 2, k1 = k2 = 0.2, σ = 0.2 and
η(t) = 2.5.

5. Results and Discussion

Based on the examples in Section 4, the simulation results and discussion are provided
in this section.

Considering Example 1, the simulation results are shown in Figures 2–7.
Figures 2 and 3 give the trajectories of the tracking performance and tracking error,

respectively, and demonstrate that the system (74) could be stabilized quickly under the
presented control law. In addition, it can be seen from Figures 2 and 3 that the tracking
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error could converge on the small neighborhood of the origin. In other words, although the
system was affected by external disturbances and input quantization, the designed control
law for system (74) in this paper could still achieve good control performance, which showed
the effectiveness of the proposed control law. Figure 4 shows the trajectories of the control
law and quantized control input, which firmly verified the fact mentioned in Remark 4, that
is, a compromise was achieved between a high control gain and tracking error. In addition,
the trajectories of adaptive laws ψ̂i, ∆̂i and Π̂1 are shown in Figures 5–7, respectively.
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Figure 2. Trajectories of system output x1(t) and desired signal yd.
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Figure 3. Trajectory of tracking error e1(t).



Fractal Fract. 2022, 6, 698 15 of 20

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 3. Trajectory of tracking error 1( )e t . 

 
Figure 4. Trajectories of control law ( )u t  and quantized control input ( )Q u . 

 
Figure 5. Trajectories of adaptive law ˆ iψ  ( 1,2i = ). 

0 5 10 15
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

Tr
ac

ki
ng

 e
rro

r e
1

 

 
e1

0 5 10 15
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 104

Time [s]

C
on

tro
l l

aw
 u

 a
nd

 Q
ua

nt
iz

ed
 c

on
tro

l i
np

ut
 Q

(u
)

 

 
u
Q(u)

4.94 4.96 4.98

-50

0

50

100

 

 

Figure 4. Trajectories of control law u(t) and quantized control input Q(u).
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Figure 5. Trajectories of adaptive law ψ̂i (i = 1, 2).

Fractal Fract. 2022, 6, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 6. Trajectories of adaptive law ˆ iΔ  ( 1,2i = ). 

 
Figure 7. Trajectory of adaptive law 1Π̂ . 

Figures 2 and 3 give the trajectories of the tracking performance and tracking error, 
respectively, and demonstrate that the system (74) could be stabilized quickly under the 
presented control law. In addition, it can be seen from Figures 2 and 3 that the tracking 
error could converge on the small neighborhood of the origin. In other words, although 
the system was affected by external disturbances and input quantization, the designed 
control law for system (74) in this paper could still achieve good control performance, 
which showed the effectiveness of the proposed control law. Figure 4 shows the trajecto-
ries of the control law and quantized control input, which firmly verified the fact men-
tioned in Remark 4, that is, a compromise was achieved between a high control gain and 
tracking error. In addition, the trajectories of adaptive laws ˆ iψ , ˆ

iΔ  and 1Π̂  are shown 
in Figures 5–7, respectively. 

Considering Example 2, the simulation results are given in Figures 8–13. 

Figure 6. Trajectories of adaptive law ∆̂i (i = 1, 2).



Fractal Fract. 2022, 6, 698 16 of 20

Fractal Fract. 2022, 6, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 6. Trajectories of adaptive law ˆ iΔ  ( 1,2i = ). 

 
Figure 7. Trajectory of adaptive law 1Π̂ . 

Figures 2 and 3 give the trajectories of the tracking performance and tracking error, 
respectively, and demonstrate that the system (74) could be stabilized quickly under the 
presented control law. In addition, it can be seen from Figures 2 and 3 that the tracking 
error could converge on the small neighborhood of the origin. In other words, although 
the system was affected by external disturbances and input quantization, the designed 
control law for system (74) in this paper could still achieve good control performance, 
which showed the effectiveness of the proposed control law. Figure 4 shows the trajecto-
ries of the control law and quantized control input, which firmly verified the fact men-
tioned in Remark 4, that is, a compromise was achieved between a high control gain and 
tracking error. In addition, the trajectories of adaptive laws ˆ iψ , ˆ

iΔ  and 1Π̂  are shown 
in Figures 5–7, respectively. 

Considering Example 2, the simulation results are given in Figures 8–13. 

Figure 7. Trajectory of adaptive law Π̂1.

Considering Example 2, the simulation results are given in Figures 8–13.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 8. Trajectories of system output 1 ( )x t  and desired signal dy . 

 
Figure 9. Trajectory of tracking error 1( )e t . 

 
Figure 10. Trajectories of control law ( )u t  and quantized control input ( )Q u . 

0 5 10 15
-3

-2

-1

0

1

2

3

Time [s]

Tr
ac

ki
ng

 p
er

fo
rm

an
ce

 c
ur

ve
s

 

 

yd

x1

0 5 10 15
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

Tr
ac

ki
ng

 e
rro

r e
1

 

 
e1

0 5 10 15
-4

-3

-2

-1

0

1

2
x 104

Time [s]

C
on

tro
l l

aw
 u

 a
nd

 Q
ua

nt
iz

ed
 c

on
tro

l i
np

ut
 Q

(u
)

 

 
u
Q(u)

5.2 5.3 5.4 5.5

-500

0

500

 

 

Figure 8. Trajectories of system output x1(t) and desired signal yd.
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Figure 9. Trajectory of tracking error e1(t).
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Figure 10. Trajectories of control law u(t) and quantized control input Q(u).
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The trajectories of the tracking performance and the tracking error are shown in
Figures 8 and 9, respectively. It can be seen that the designed control law could achieve
good tracking performance, and that the tracking error could converge on the small
neighborhood of the origin. This also verified the validity of the theoretical analysis from
another perspective. Figure 10 shows the trajectories of the control law and quantized
control input. Similarly, there was a trade-off between a high control gain and tracking error.
In addition, Figures 11–13 show the trajectories of adaptive laws ψ̂i, ∆̂i and Π̂i, respectively.

Remark 5. From the two examples, it can be seen that the desired tracking control could be
achieved using the designed control law. Although external disturbances and input quantization
were considered, better tracking performance was obtained in this paper. From the figures of the two
examples, it can be seen that the boundedness of all signals of the considered system were maintained
and the tracking error could converge on the small neighborhood of the origin. Meanwhile, we
should pay attention to the reasonable trade-off between a good tracking effect and control gain when
selecting appropriate design parameters.

6. Conclusions

This paper discussed the adaptive tracking control problem of a type of strict-feedback
fractional-order nonlinear system with input quantization and external disturbances. An
adaptive dynamic surface control law was successfully designed. The validity of the
designed control law was proved by theoretical analysis. Furthermore, two examples
were given to verify the effectiveness of the theoretical analysis results. Simulation results
showed that the given fractional-order systems could achieve good control performance.
Moreover, all signals of these two given systems were bounded and the tracking error could
converge on an arbitrary small neighborhood of the origin. Further research will focus on
how to extend the presented control law to strict-feedback fractional-order systems with
event-triggered inputs.
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