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Abstract: The local convergence analysis of the multi-step seventh order method to solve nonlinear
equations is presented in this paper. The point of this paper is that our proposed study requires a weak
hypothesis where the Fréchet derivative of the nonlinear operator satisfies the ψ-continuity condition,
which thereby extends the applicability of the method when both Lipschitz and Hölder conditions
fail. The convergence in this study is considered under the hypotheses on the first-order derivative
without involving derivatives of the higher-order. To find a subset of the original convergence
domain, a strategy is devised here. As a result, the new Lipschitz constants are at least as tight as
the old ones, allowing for a more precise convergence analysis in the local convergence case. Some
concrete numerical examples showing the performance of the method over some existing schemes
are presented in this article.
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convergence
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1. Introduction

One of the wide-ranging subjects that has close connections with mathematics, com-
puter science, engineering, and the applied sciences is numerical analysis. Additionally, one
of the most elemental and primal problems in numerical analysis, when mathematically
modeled, leads to integral equations, boundary value problems, and differential problems,
concerning conversion to nonlinear equations that have the following form:

T(x) = 0, (1)

where T is defined on a convex open subset D of a Banach space X with values in a Banach
space Y. Many problems in different fields of computational science and of engineering,
such as radiative transfer theory, as well as optimization, can be solved in a form such
as (1) using mathematical modelings . Analytical methods of solving problems are very
scarce or almost non existent. Therefore, many researchers only rely on iterative methods,
and they have proposed a plethora of iterative methods. In various articles, many authors
have studied the local convergence analysis using Taylor’s series, but they did not obtain
the radii of the convergence ball for the solution that can be seen in the refs. [1,2]. This
approach has been extended to the iterative methods in the Banach spaces for obtaining
better theoretical results without following Taylor’s series approach. In this way, there is
no need to use the higher-order derivatives to show the convergence of the scheme. These
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types of techniques are discussed by many authors; for a better understanding, one can go
through refs. [3–6]. The practice of numerical functional analysis for finding such solutions
is widely and substantially connected to the Newton-like methods, which are defined as
follows:

xn+1 = xn − [T′(xn)]
−1T(xn), n ≥ 0, (2)

they are frequently used by various researchers as they have quadratic convergence (as can
be seen in reference [6]) and only one evaluation of the Jacobian of T is needed at each
step . The other properties of Newton’s method are established in the reference book [7].
Moreover, in some applications involving stiff systems, high-order methods are useful.
Therefore, it is important to study high-order methods.

Obtaining the radius of the convergence ball, as well as devising a theory to extend the
convergence region, are both important issues. The convergence domain is critical for the
steady behaviour of an iterative method from a numerical stand point. The convergence
analysis of iterative procedures, particularly the local analysis, is based on the information
around a solution, to find estimates of the radii of the convergence balls. Plenty of studies
have been conducted on the local and semilocal convergence analysis of the Newton-like
techniques. Many iterative methods of an increasing order of convergence, such as third
order [8,9], fourth order [10], and fifth order [11,12], etc., have been developed in recent
decades and have demonstrated their efficiency in numerical terms. In particular, Sharma
and Gupta [13] constructed the three-step method of order five, mentioned as follows:

yn = xn −
1
2

ΓnT(xn),

zn = xn − [T′(yn)]
−1T(xn),

xn+1 = zn − [2[T′(yn)]
−1 − Γn]T(zn), (3)

where, Γn = [T′(xn)]−1. The local convergence of the above multi-step Homeier’s-like
method has been studied by Panday and Jaiswal [14] with the help of Lipschitz and Hölder
continuity conditions. Let us consider the scheme given by Xiao and Yin [15]

yn = xn −
1
2

ΓnT(xn),

z(1)n = xn − [T′(yn)]
−1T(xn),

z(2)n = z(1)n − [2[T′(yn)]
−1 − Γn]T(z

(1)
n ),

xn+1 = z(2)n − [2[T′(yn)]
−1 − Γn]T(z

(2)
n ). (4)

This method requires the evaluation of three functions, two first-order derivatives,
and two matrix inversions per iteration. In this article, we have weakened the continuity
condition and then analyzed its local convergence. The motivation for writing this paper
is the extension of the applicability of method (4) by using the novelty that includes the
extension of the convergence domain, which can be illustrated by creating a subset D that
includes the iterates. Nevertheless, because the Lipschitz-like parameters (or functions) in
this set D are at least as tight as the originals, the convergence is finer.

The local convergence of the scheme (4) has been recently analyzed under the assump-
tions of both the Lipschitz and Hölder conditions in the article [16], but numerous problems
exists for which the Lipschitz as well as the Hölder condition fail. As an motivational
illustration, consider the nonlinear integral equation of the mixed Hammerstein type given
by [12]

F[x(s)] = x(s)− 5
∫ 1

0
stx(t)3dt,

with x(s) in C[0, 1]. The first derivative of F is



Fractal Fract. 2022, 6, 713 3 of 11

F′[x(s)]v(s) = v(s)− 15
∫ 1

0
stx(t)2v(t)dt.

It is clear that neither the Lipschitz nor the Hölder condition hold for this problem.
Thereby, we expand the applicability of method (4) by using the hypothesis only on the
first-order derivative of the function T and generalized Lipschitz continuity conditions. In
this manuscript, we address many concerns by providing the radius of the convergence
ball, the computable error bounds, and the uniqueness of the solution of the result on using
the weaker continuity condition.

The outline of this paper is as follows: Section 2 deals with the local convergence
results for method (4), obtaining a ball of convergence followed by its uniqueness. The
numerical examples appear before the concluding Section. At last, we discuss the obtained
results and validate them.

2. Local Convergence Analysis

In this section, the local convergence of the multi-step method (4) is investigated. This
local convergence analysis is centered on some parameters and scalar functions. Let ψ0 be a
non-decreasing continuous function defined on the interval [0,+∞) with values in [0,+∞)
satisfying ψ0(0) = 0. Define parameter ρ0 by

ρ0 = sup{t ≥ 0 : ψ0(t) < 1}. (5)

Let also ψ : [0, ρ0) → [0,+∞) be a continuous and non-decreasing function so that
ψ(0) = 0. Define the functions η1, η2, η3, η4, p, H1, H2, H3, and H4 on interval [0, ρ0) by

η4(a) =

[∫ 1
0 ψ((1− t)η3(a)a)dt

1− ψ0(η3(a)a)
η3(a)

+
[ψ(η1(a)a) + ψ(η3(a)a)]

1− ψ0(η3(a)a)
×
∫ 1

0 (ψ0(tη3(a)a) + 1)dt
1− p(a)

η3(a)

+

∫ 1
0 (ψ0(tη3(a)a) + 1)

1− ψ0(a)
× [ψ(η1(a)a) + ψ(a)]

1− p(a)

]
η3(a), (6)

where

η1(a) =
1

1− ψ0(a)

[
1
2

∫ 1

0
(ψ0(ta) + 1)dt +

∫ 1

0
ψ((1− t)a)dt

]
, (7)

η2(a) =
1

1− ψ0(a)

[ ∫ 1

0
ψ((1− t)a)dt +

[ψ(η1(a)a) + ψ(a)][
∫ 1

0 (ψ0(ta) + 1)dt]
1− p(a)

]
, (8)

η3(a) =

[∫ 1
0 ψ((1− t)η2(a)a)dt

1− ψ0(η2(a)a)
η2(a)

+
[ψ(η1(a)a) + ψ(η2(a)a)]

1− ψ0(η2(a)a)
×
∫ 1

0 (ψ0(tη2(a)a) + 1)dt
1− p(a)

η2(a)

+

∫ 1
0 (ψ0(tη2(a)a) + 1)dt

1− ψ0(a)
× [ψ(η1(a)a) + ψ(a)]

1− p(a)

]
η2(a), (9)

and

p(a) = ψ0(η1(a)a). (10)
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Let

H1(a) = η1(a)− 1, H2(a) = η2(a)− 1, (11)

H3(a) = η3(a)− 1, H4(a) = η4(a)− 1. (12)

We have that H1(0) = H2(0) = H3(0) = H4(0) < 0.
Suppose that H1(a) → +∞ or a positive constant and H2(a) → +∞ or a positive

constant as t→ ρ−0 . Similarly, H3(a)→ +∞ or a positive constant and H4(a)→ +∞ or a
positive constant as t→ ρ−0 , where

ρ0 = max{a ∈ [0, ρ0] : ψ0(η1(a).a) < 1}. (13)

It then follows from the intermediate value theorem that functions Hi, i = 1, 2, 3, 4
have zeros in the interval (0, ρ0). Define the radius of convergence ρ by

ρ = min{ρi}, i = 1, 2, 3, 4; (14)

where ρ′is denote the smallest solution of functions H′i s. Then, we have that for each
a ∈ [0, ρ)

0 ≤ ηi(a) < 1, (15)

0 ≤ ψ0(a) < 1, (16)

0 ≤ ψ0(η1(a)a) < 1. (17)

Let B(x∗, ρ), B(x∗, ρ) stand, respectively, for the open and closed ball in X such that
x∗ ∈ X and of radius ρ > 0. Next, we present the local convergence analysis of method (4)
using the preceding notations and generalized Lipschitz-Hölder type conditions.

Theorem 1. Let T : D ⊂ X → Y be a continuously first order Fréchet differentiable operator.
Suppose that x∗ ∈ D and function ψ0 : [0,+∞) → [0,+∞) with ψ0(0) = 0, continuous and
non-decreasing such that for each x ∈ D

T(x∗) = 0, [T′(x∗)]−1 ∈ L(Y, X), (18)

where L(X, Y) is the set of bounded linear operators from X to Y,

‖[T′(x∗)]−1(T′(x)− T′(x∗))‖ ≤ ψ0(‖x− x∗‖). (19)

Moreover, suppose that there exists function ψ : [0,+∞) → [0,+∞) with ψ(0) = 0,
continuous and non-decreasing such that for each x, y in D0 = D ∩ B(x∗, ρ0)

‖[T′(x∗)]−1(T′(x)− T′(y))‖ ≤ ψ(‖x− y‖), (20)

B(x∗, ρ) ⊆ D, (21)

where ρ0 and ρ are defined by Equations (5) and (14), respectively. Then, the sequence {xn}
generated by method (4) for x0 ∈ B(x∗, ρ)\{x∗} that is well defined in B(x∗, ρ) remains in
B(x∗, ρ) for each n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates holds:

‖yn − x∗‖ ≤ η1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (22)

‖z(1)n − x∗‖ ≤ η2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (23)

‖z(2)n − x∗‖ ≤ η3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (24)

and

‖xn+1 − x∗‖ ≤ η4(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (25)
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where the functions ηi, i = 1, 2, 3, 4 are defined by the expressions (6)–(9). Furthermore, if $ ≥ ρ
exists such that ∫ 1

0
ψ0(θ$)dθ < 1, (26)

then the point x∗ is the only solution of equation T(x) = 0 in D1 = D ∩ B(x∗, $).

Proof. We shall show by mathematical induction that sequence {xn} is well defined and
converges to x∗. Using the hypotheses, x0 ∈ B(x∗, ρ)\{x∗}, Equation (5) and inequal-
ity (19), we have that

‖[T′(x∗)]−1(T′(x0)− T′(x∗))‖ ≤ ψ0(‖x0 − x∗‖) ≤ ψ0(ρ) < 1. (27)

It follows from the above and the Banach lemma on invertible operator [17] that
[T′(x0)]

−1 ∈ L(Y, X) or T′(x0) is invertible and

‖[T′(x0)]
−1T′(x∗)‖ ≤ 1

1− ψ0(‖x0 − x∗‖) . (28)

Now, y0 is well defined by the first sub-step of the scheme (4) and for n = 0,

y0 − x∗ = x0 − x∗ − 1
2
[[T′(x0)]

−1T(x0)]

=
1
2
[[T′(x0)]

−1T(x0)] + [T′(x0)]
−1[T′(x0)(x0 − x∗)− T(x0) + T(x∗)]||.(29)

Expanding T(x0) along x∗ and taking the norm of the Equation (29), we obtain

‖y0 − x∗‖ ≤
∥∥∥∥1

2
[T′(x0)]

−1T′(x∗)
∥∥∥∥[ ∫ 1

0
‖[T′(x∗]−1[T′(x ∗+t(x0 − x∗)]dt‖‖x0 − x∗‖

]
+‖[T′(x0)]

−1T′(x∗)‖
∫ 1

0
‖[T′(x∗)]−1[T′(x0)− T′(x∗ + t(x0 − x∗))]dt‖‖x0 − x∗‖,

≤ 1
1− ψ0(‖x0 − x∗‖)

[
1
2

∫ 1

0

[
ψ0(t‖x0 − x∗‖) + 1

]
dt

+
∫ 1

0
ψ((1− t)‖x0 − x∗‖)dt

]
‖x0 − x∗‖

≤ η1(‖x0 − x∗‖)‖x0 − x∗‖ < ρ. (30)

From the inequalities (19) and (30), we have

‖[T′(x∗)]−1[T′(y0)− T′(x∗)]‖ ≤ ψ0(‖y0 − x∗‖)
≤ ψ0(g1(‖x0 − x∗‖)‖x0 − x∗‖)
= p(‖x0 − x∗‖) < 1. (31)

Thus, by Banach lemma,

‖[T′(y0)]
−1T′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖) . (32)

From the second sub-step of the method (4), we have

z(1)0 − x∗ = x0 − x∗ − [T′(y0)
−1T(x0)]

= x0 − x∗ − [T′(x0)]
−1T(x0) + [T′(x0)]

−1[T′(y0)− T′(x0)]T′(y0)
−1T(x0). (33)
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On taking norm of the Equation (33), we obtain

‖z(1)0 − x∗‖ ≤ ‖x0 − x∗ − [T′(x0)]
−1T(x0)‖+ ‖[T′(x0)]

−1T′(x∗)‖.
‖[T′(x∗)]−1[T′(y0)− T′(x0)]‖‖[T′(y0)]

−1T′(x∗)‖‖[T′(x∗)]−1T(x0)‖

≤ 1
1− ψ0(‖x0 − x∗‖)

[ ∫ 1

0
ψ((1− t)‖x0 − x∗‖)dt

+

[ψ(‖y0 − x∗‖) + ψ(‖x0 − x∗‖)][
∫ 1

0

(
ψ0(t‖x0 − x∗‖)+1

)
dt]

1− p(‖x0 − x∗‖)

]
‖x0 − x∗‖. (34)

Thus, we obtain

‖z(1)0 − x∗‖ ≤ η2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ. (35)

From the next sub-step of the method (4), we have

z(2)0 − x∗ = z(1)0 − x∗ − (2[T′(y0)]
−1 − [T′(x0)]

−1)T(z(1)0 )

= (z(1)0 − x∗ − [T′(z(1)0 )]−1T′(z(1)0 )) + [T′(z(1)0 )](−1)T′(x∗)T′(x∗)−1[T′(y0)− T′(z(1)0 )] (36)

.[T′(y0)]
(−1)T′(x∗)[T′(x∗)]−1T(z(1)0 ) + [T′(x0)]

(−1)T′(x∗)[T′(x∗)]−1[T′(y0)− T′(x0)]

.[T′(y0)]
(−1)T′(x∗)[T′(x∗)]−1T(z(1)0 ).

On expanding T(z(1)0 ) along x∗ and taking norm of the Equation (36), we obtain

‖z(2)0 − x∗‖ ≤ 1

1− w0(‖z
(1)
0 − x∗‖)

∫ 1

0
ψ((1− t)‖z(1)0 − x∗‖)dt.‖z(1)0 − x∗‖+

[w(‖y0 − x∗‖) + w(‖z(1)0 − x∗‖])
1− w0(‖z

(1)
0 − x∗‖)

× ‖[T′(x∗)]−1T(z(1)0 )‖+ 1
1− w0(‖x0 − x∗‖) [w(‖y0 − x∗‖) + w(‖x0 − x∗‖)]

× ‖[T′(x∗)]−1T(z(1)0 )‖

≤ 1

1− w0(‖z
(1)
0 − x∗‖)

∫ 1

0
ψ((1− t)‖z(1)0 − x∗‖)dt.‖z(1)0 − x∗‖+

[w(‖y0 − x∗‖) + w(‖z(1)0 − x∗‖])
1− w0(‖z

(1)
0 − x∗‖)

× 1
1− p(‖x0 − x∗‖)

( ∫ 1

0

(
ψ0(t‖z

(1)
0 − x∗‖)+1

)
dt
)
‖z(1)0 − x∗‖+ [w(‖y0 − x∗‖) + w(‖x0 − x∗‖)]

1− w0(‖x0 − x∗‖)

× 1
1− p(‖x0 − x∗‖)

( ∫ 1

0

(
ψ0(t‖z

(1)
0 − x∗‖)+1

)
dt
)
‖z(1)0 − x∗‖. (37)

Thus, we have

‖z(2)0 − x∗‖ ≤ η3(‖x0 − x∗‖)‖x0 − x∗‖ < ρ. (38)

Now, from the last sub-step of the method (4), we have

x1 − x∗ = z(2)0 − x∗ − (2[T′(y0)]
−1 − [T′(x0)]

−1)T(z(2)0 )

= (z(2)0 − x∗ − [T′(z(2)0 )]−1T′(z(2)0 )) + [T′(z(2)0 )](−1)T′(x∗)T′(x∗)−1[T′(y0)− T′(z(1)0 )] (39)

.[T′(y0)]
(−1)T′(x∗)[T′(x∗)]−1T(z(2)0 ) + [T′(x0)]

(−1)T′(x∗)[T′(x∗)]−1[T′(y0)− T′(x0)]

.[T′(y0)]
(−1)T′(x∗)[T′(x∗)]−1T(z(2)0 ).

On expanding T(z(2)0 ) along x∗ and taking norm of the Equation (39), we obtain
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‖x1 − x∗‖ ≤ 1

1− w0(‖z
(2)
0 − x∗‖)

∫ 1

0
ψ((1− t)‖z(2)0 − x∗‖)dt.‖z(2)0 − x∗‖+

[w(‖y0 − x∗‖) + w(‖z(2)0 − x∗‖])
1− w0(‖z

(2)
0 − x∗‖)

× ‖[T′(x∗)]−1T(z(2)0 )‖+ 1
1− w0(‖x0 − x∗‖) [w(‖y0 − x∗‖) + w(‖x0 − x∗‖)]

× ‖[T′(x∗)]−1T(z(2)0 )‖

≤ 1

1− w0(‖z
(2)
0 − x∗‖)

∫ 1

0
ψ((1− t)‖z(2)0 − x∗‖)dt.‖z(2)0 − x∗‖+

[w(‖y0 − x∗‖) + w(‖z(2)0 − x∗‖])
1− w0(‖z

(2)
0 − x∗‖)

× 1
1− p(‖x0 − x∗‖)

( ∫ 1

0

(
ψ0(t‖z

(2)
0 − x∗‖)+1

)
dt
)
‖z(2)0 − x∗‖+ [w(‖y0 − x∗‖) + w(‖x0 − x∗‖)]

1− w0(‖x0 − x∗‖)

× 1
1− p(‖x0 − x∗‖)

( ∫ 1

0

(
ψ0(t‖z

(2)
0 − x∗‖)+1

)
dt
)
‖z(2)0 − x∗‖. (40)

Thus, we have

‖x1 − x∗‖ ≤ η4(‖x0 − x∗‖)‖x0 − x∗‖ < ρ, (41)

which shows that for n = 0, x1 ∈ B(x∗, ρ). By simply replacing x0, y0, z(1)0 , z(2)0 , x1 with

xn, yn, z(1)n , z(2)n , xn+1 in the preceding estimates, we arrive at inequalities (22)–(25). By the
estimate,

‖xn+1 − x∗‖ ≤ η4(‖x0 − x∗‖)‖xn − x∗‖ < ρ. (42)

We conclude that limn→∞ xn = x∗ and xn+1 ∈ B(x∗, r). Finally, to prove the unique-
ness, let y∗ ∈ B(x∗, r) where y∗ 6= x∗ with T(y∗) = 0. Define F =

∫ 1
0 T′(x∗ + t(y∗ − x∗))dt.

On expanding T(y∗) along x∗ and using inequalities (19) and (26), we obtain

‖[T′(x∗)]−1
∫ 1

0
[T′(x∗ + t(y∗ − x∗)− T′(x∗)]dt‖

≤
∫ 1

0
ψ0(t‖y∗ − x∗‖)dt ≤

∫ 1

0
ψ0(t$)dt < 1. (43)

So, by Banach lemma,
∫ 1

0 [T
′(x∗)]−1[T′(x∗+ t(y∗− x∗))]dt exists and invertible leading

to the conclusion x∗ = y∗, which completes the uniqueness part of the proof.

3. Numerical Example

To show the performance of the method presented in this paper, some numerical
examples are considered in this section.

Example 1 ([18]). Returning back to the motivational example given in the introduction of this
study. Let us now consider a nonlinear integral equation of Hammerstein type. These equations
have strong physical background and arise in electro-magnetic fluid dynamics [19]. This equation
has the following form:

x(s) = u(s) +
∫ b

a
G(s, t)H(x(t))dt, a ≤ x ≤ b,

for x(s), u(s) ∈ C[a, b] with −∞ < a < b < ∞; G is the Green function and H is a polynomial
function. The standard procedure to solve these type of equations contains in rewriting it as a
nonlinear operator in a Banach space, i.e., F(x) = 0, F : ψ ⊆ C[a, b]→ C[a, b] with a non-empty
open convex subset and
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F[x(s)] = x(s)− u(s)−
∫ b

a
G(s, t)H(x(t))dt.

considering the uniform norm ‖v‖ = max
s∈[a,b]

|v(s)|. It was observed that in some cases boundedness

conditions may not be satisfied since F′′(x) or F′′′(x) can be unbounded in a general domain. Thus,
an alternative is looking at a domain that contains the solution . However, it is more convenient to
apply the local convergence results obtained in our study in order to give the radius of convergence
ball. Let x∗ = 0; then, on using assumptions (18)–(20) we have that, w0(t) = 7.5t < w(t) =
15t. Additionally, with the help of Mathematica 9 software for numerical computation, it is
straightforward to say on the basis of the Table 1 and graph (Figure 1) that the method (4) has a
larger domain of convergence in contrast to method (MMB) whose local convergence is analyzed by
Behl et al. [18].

Table 1. Comparison of convergence radius (Example 1).

Radius ρ1 ρ2 ρ3 ρ4 ρ

Method (4) 0.0296296 0.0205601 0.0175449 0.0166341 0.0166341

MMB 0.0666667 0.0292298 0.0118907 0.00440901 0.00440901

Figure 1. Graphical representation of convergence radius.

Example 2 ([20]). Suppose that the motion of an object in three dimensions is governed by system
of differential equations

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y− 1 = 0,

f ′3(z)− 1 = 0,

with x, y, z ∈ D = U(0, 1) for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the system is
given for v = (x, y, z)T by function F := ( f1, f2, f3) : D → R3 defined by

F(v) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the first Fréchet derivative is given by

F′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

. (44)

Notice that x∗ = (0, 0, 0), F′(x∗) = F′(x∗)−1 = diag{1, 1, 1}. Then, on using assump-

tions (18)–(20) and on assuming ψ0(t) = ψ0t, ψ(t) = ψt, we have that ψ0 = e− 1 < ψ = e
1

ψ0 .
Additionally, with the help of Mathematica 9 software for numerical computation, the radius ρ of
convergence is computed in Table 2 and graph (Figure 2). Since method (4) has a larger radius of
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convergence than method (MMB), this means that method (4) has a wider domain for the choice of
the starting points. As a result, the strategy under consideration is more efficient.

Table 2. Comparison of convergence radius (Example 2).

Radius ρ1 ρ2 ρ3 ρ4 ρ

Method (4) 0.164331 0.135757 0.119283 0.114151 0.114151

MMB 0.382692 0.198328 0.0949498 0.040525 0.040525

Figure 2. Graphical representation of convergence radius.

Example 3 ([4]). Let X = Y = ψ = R. Define F(x) = sin x. Using our assumptions, we
obtain F′(x) = cos x. Moreover, for x∗ = 0, on using assumptions (18)–(20) and on assum-
ing ψ0(t) = ψ0t, ψ(t) = ψt, it is derived that ψ0 = ψ = 1. Additionally, with the help of
Mathematica 9 software for numerical computation, it is clear to say on the basis of the Table 3
and graph (Figure 3) that the method (4) has a larger radius of convergence than the method (MMR)
mentioned in the reference [4]. So, we can conclude that the presented method enlarges the radius of
the convergence ball.

Figure 3. Graphical representation of convergence radius.

Table 3. Comparison of convergence radius (Example 3).

Radius ρ1 ρ2 ρ3 ρ4 ρ

Method (4) 0.285714 0.238655 0.210099 0.201186 0.201186

MMR 0.44444 0.277466 0.15771 - 0.15771

Example 4 ([4]). Consider the function f defined on D = [− 1
2 , 5

2 ] by

f (x) =

{
x3 log(x2) + x5 − x4, if x 6= 0
0, if x = 0.
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The consecutive derivatives of f are

f ′(x) = 3x2 log(x2) + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x log(x2) + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 log(x2) + 60x2 − 24x + 22.

It can be easily seen that f ′′′ is unbounded on D. Nevertheless, all of the assumptions of the
Theorem (1) for the iterative method (4) are satisfied, and hence applying the convergence results
with x∗ = 1, we obtain ψ0(t) = ψ0t, ψ(t) = ψt; it can be calculated that ψ0 = ψ = 96.6628.
Additionally, with the help of Mathematica 9 software for numerical computation, Table 4 and
graph (Figure 4) display the radius ρ of convergence by the discussed method (4) along with the
existing multi-step scheme (MMB). We discovered that when compared, the method discussed here
enlarges the radius of the convergence ball as compared to the existing one.

Figure 4. Graphical representation of convergence radius.

Table 4. Comparison of convergence radius (Example 4).

Radius ρ1 ρ2 ρ3 ρ4 ρ

Method (4) 0.00295578 0.00246894 0.00217353 0.00208131 0.00208131

MMB 0.00689682 0.00344841 0.0015606 0.000621105 0.000621105

4. Conclusions

The major issues in the study of the convergence of the iterative methods are the
radius of convergence, the selection of the initial point, and the uniqueness of the solution.
In this paper, we have addressed these issues using the efficient seventh order method by
considering the sufficient convergence conditions that are weaker than the Lipschitz and
Hölder ones. This means that our analysis is applicable to solve such nonlinear problems
when both Lipschitz and Hölder continuity conditions fail without applying higher-order
derivatives. Further, a convergence theorem for the existence and uniqueness of the
solution has been established followed by its error bounds. Moroever, the comparision of
the domain of convergence has also been done with the help of numerical examples where
Method (4) is discovered to have larger convergence domain than existing method. As a
result, solver (4) outperforms the existing method in terms of practical application. As a
matter of fact, we have extended the applicability of the method by solving some nonlinear
equations employing our analytical results.
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