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Abstract: Fractional-order neuronal models that include memory effects can describe the rich dynam-
ics of the firing of the neurons. This paper studies synchronization problems in a multiple network of
Caputo–Fabrizio type fractional order neurons in which the orders of the derivatives in the layers are
different. It is observed that the intralayer synchronization state occurs in weaker intralayer couplings
when using nonidentical fractional-order derivatives rather than integer-order or identical fractional
orders. Furthermore, the needed interlayer coupling strength for interlayer near synchronization
decreases for lower fractional orders. The dynamics of the neurons in nonidentical layers are also
considered. It is shown that in lower fractional orders, the neurons’ dynamics change to periodic
when the near synchronization state occurs. Moreover, decreasing the derivative order leads to
incrementing the frequency of the bursts in the synchronization manifold, which is in contrast to the
behavior of the single neuron.

Keywords: synchronization; Caputo–Fabrizio fractional-order neuron model; multiplex network;
nonidentical layers

1. Introduction

Fractional calculus has attracted considerable attention due to its wide applications in
different fields such as physics and engineering [1–3]. Many dynamical systems such as
viscoelastic materials can be well expressed by fractional-order differential equations [4].
In the integer-order calculations, the variables are calculated based only on the last value of
variables and are therefore memoryless. In contrast, memory is incorporated in fractional
calculus by considering a weighted temporal window during integration [5]. This is the
most important property of fractional-order equations providing closer models to real
systems [6]. This property has led the fractional-order equations to become a proper tool
for modeling many dynamical systems, including biological processes [7–10]. It also can
help in understanding the rich dynamics of the neurons’ activities [11]. Many researchers
have attempted to propose and analyze fractional-order neuron models [11–14]. These
studies have shown that the neuron model can exhibit various periodic and chaotic firing
patterns by varying the fractional order. In addition, the advantages of the Caputo–Fabrizio-
type fractional derivatives [15,16] make them very appropriate in modeling real-world
problems. The kernel of Caputo–Fabrizio fractional derivative has important features
such as nonsingularity, nonlocality and an exponential form. Hence, the newly-defined
Caputo–Fabrizio fractional derivative is applied in numerous recent studies [17–20].
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On the other hand, in addition to the pattern of neuronal firing, the study of their
collective dynamics is of a great importance [21]. Studies have shown that the interac-
tions among neurons may cause the formation of different collective behaviors such as
synchronization, chimera state, spiral waves, etc. [22–24]. In fact, the synchronization is
an important phenomenon observed in various dynamical systems [25]. For example,
the brain’s information processing is accompanied by synchronized activities of the neu-
rons [26]. Fractional-order derivatives can also affect the synchronization behavior of the
neurons. Hence, extensive research has been devoted to the investigation of the synchro-
nization problems in neuronal networks [27–29], including fractional-order models [30–34].
These studies have revealed many factors affecting the synchronous behavior of neurons.
For example, the authors in [35] studied the synchronization of a clustered network model
consisting of small-world subnetworks with small heterogeneities. They showed that the
global burst synchronization is enhanced by decreasing the heterogeneity. The authors
in [36] found that the synchronization between chemically coupled neurons depends on
the neurons’ receiving signals rather than the network topology, which is crucial in linearly
coupled networks. The paper [37] investigated a neuronal hypernetwork with small-world
and random topologies with time-varying links. The investigation for different rewiring
frequencies revealed that faster switching causes an enhanced synchronization.

Recent advances in networks theory have led to the utilization of more complex
structures [38]. A multilayer framework, which is more suitable for describing many
real networks, has achieved a great deal of interest in the last years [39]. This structure
allows considering different connections, couplings, or topologies for the nodes in the
layers [40]. Hence, it is a proper framework for investigating the behavior of the neurons
from different viewpoints. An ability of a multilayer structure is providing a network
with nonidentical layers that are closer to real networks. In these networks, two forms of
synchronous behavior can be observed. First, the synchronization may occur between the
nodes in each layer, while the layers are not necessarily synchronized, which is termed the
intralayer synchronization [41]. In contrast, interlayer synchronization occurs when the
layers are synchronous [42,43]. However, there exists a gap for corresponding studies on
fractional-order models [44].

Motivated by the above considerations, here, we study the interlayer and intralayer
synchronizations in a two-layer network of neurons with fractional-order derivatives of
Caputo–Fabrizio type. It is assumed that the layers are nonidentical through different
derivative orders. We investigate the effect of different derivative orders on the syn-
chronization of neurons. It is shown that the intralayer synchronization is enhanced by
considering fractional-order derivatives. The links between the layers with different deriva-
tive orders lead to an interlayer near synchronization which is attained in weaker couplings
by decreasing the fractional order. Moreover, the interlayer near synchronization manifold
is periodic in lower fractional orders. The fractional order Hindmarsh–Rose model and the
considered multiplex network are described in Section 2. The synchronous behavior of the
network is investigated in Section 3 in detail. The conclusions are given in Section 4.

2. The Fractional-Order Hindmarsh–Rose Model

To introduce the fractional-order Hindmarsh-Rose model that we will investigate, first,
some basic fractional calculus definitions and properties will be stated.

Let q > 0 and t ≥ 0. An integral of fractional order q for a continuous function f is
defined as [2,3]:

Iq f (t) =
1

Γ(q)

∫ t

0

f (τ)
(t− τ)1−q dτ,

where Γ is the Gamma function defined by:

Γ(q) =
∫ ∞

0
e−ttq−1dt.
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For n− 1 < q < n, n ∈ N, the fractional derivative of order q of Caputo type with a
lower limit 0 for an absolutely continuous function f ∈ Cn+1[[0, ∞),R] is given by:

C
0 D

q
t f (t) =

1
Γ(n− q)

∫ t

0

f (n)(τ)
(t− τ)q−n+1 dτ.

For q ∈ (0, 1), we have:

C
0 D

q
t f (t) =

1
Γ(1− q)

∫ t

0

f ′(τ)
(t− τ)q dτ.

Note that, for the above fractional-order operators we have [1–3]:

Iq
(

C
0 D

q
t f (t)

)
= f (t)− f (0), t ≥ 0, q ∈ (0, 1).

The physical meaning of the above property is one of the main reasons for the intensive
use of the Caputo-type of fractional-order derivatives in the applied problems.

In 2014, the authors in [12] introduced a fractional-order generalization of an integer-
order Hindmarsh–Rose model to qualitatively depict the firing behavior of neurons using a
group of simple differential equations. The model has been represented by the following
fractional-order equations: 

Dq
t x = y− ax3 + bx2 − z + I,

Dq
t y = c− dx2 − y,

Dq
t z = r[s(x− 1.56)− z],

(1)

where q ∈ (0, 1), the variables x, y, z represent the membrane action potential, a recovery
variable and the slow adaption current, respectively. I represents the external current
intensity, and the values of the system parameters are considered as a = 1, b = 3, c = 1,
d = 5, s = 4 and r = 0.006.

However, the Caputo fractional derivative is not always suitable to accurately describe
the memory effect in a real system [1–3] because of the singularity of its kernel at the
endpoint of an interval of definition. To overcome this difficulty, a new fractional derivative
without any singularity in its kernel has been proposed in [15,16]. The Caputo–Fabrizio
fractional operator with a kernel in the form of an exponential function for a function
f ∈ H1(0, ∞), where H1(0, ∞) is the space of all twice integrable functions with first
derivatives that belong to the same space, can be defined as:

CF
0 D

q
t f (t) =

M(q)
1− q

∫ t

0
f ′(τ) exp

(
−q

t− τ

1− q

)
dτ, q ∈ (0, 1), (2)

where M(q) is a normalization function with M(0) = M(1) = 1.
The derivative (2) has been applied by numerous authors in modeling real-world

problems to overcome the limitations of real calculus [17–20,45]. In fact, this definition
allows for the description of mechanical properties related to damage, fatigue and material
heterogeneities [45].
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In our paper, we will generalize the model (1) to consider a two-layer network of
Caputo–Fabrizio fractional-order neurons with different fractional-order derivatives in
each layer as follows:

CF
0 D

q1
t x1,i = y1,i − x3

1,i + 3x2
1,i − z1,i + Iext + σ

N

∑
j=1

G1
ij(x1,j − x1,i) + ε(x2,i − x1,i),

CF
0 D

q1
t y1,i = 1− 5x2

1,i − y1,i,
CF
0 D

q1
t z1,i = r[s(x1,i + 1.6)− z1,i],

CF
0 D

q2
t x2,i = y2,i − x3

2,i + 3x2
2,i − z2,i + Iext + σ

N

∑
j=1

G2
ij(x2,j − x2,i) + ε(x1,i − x2,i),

CF
0 D

q2
t y2,i = 1− 5x2

2,i − y2,i,
CF
0 D

q2
t z2,i = r[s(x2,i + 1.6)− z2,i],

(3)

where the layers consist of N = 100 neurons with small-world connections where each
neuron is coupled to its 20 nearest neighbors, and the probability of random links is 0.1, σ
and ε denote the strength of the intralayer and interlayer links, respectively, x1,i, y1,i and
z1,i are the variables in the first layer, while x2,i, y2,i and z2,i are the variables in the second
one, the system parameters are fixed at s = 4, r = 0.006, the external current intensity is
Iext = 3.2. The connection between i-th and j-th nodes is determined by G1

ij and G2
ij in the

first and second layers, respectively, such that G1
ij = 1 if there is a link between i-th and j-th

nodes, and, G1
ij = 0, otherwise. The schematic diagram of the proposed two-layer network

is shown in Figure 1.

Figure 1. The schematic diagram of the two-layer network (3). Each layer is a small-work network
with 20 nearest neighbors connections and additional random links. The coupling strength within
and between the layers is σ and ε, respectively.

Remark 1. The two-layer network model (3) is an extension of the integer-order models of the
Hindmarsh–Rose type (when q = 1) proposed in [23,24] and some others. It also generalizes the
fractional-order model introduced in [12] considering two layers and different Caputo–Fabrizio
fractional-order derivatives in each layer.

The modified Adam—Bashforth method is used for the Caputo-Fabrizio fractional
operator to solve fractional-order Equation (3). By this method, a fractional-order system
of Caputo–Fabrizio typ:

CF
0 D

q
t X(t) = F(t, X(t))

X(0) = X0,

can be numerically approached as:
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X(n + 1)− X(n) =
1− q

M(q)Γ(q)
F(tn, Xn)− F(tn−1, Xn−1) +

q
1− q

∫ tn+1

tn
F(τ, X(τ))dτ (4)

with a solution given by:

X(n + 1)− X(n) =
(

1− q
M(q)Γ(q)

+
3q∆t

2M(q)

)
F(tn, Xn)−

(
1− q

M(q)Γ(q)
+

q∆t
2M(q)

)
F(tn−1, Xn−1), (5)

where ∆t is the step size of time integration.
The Hindmarsh–Rose model (3) represents a variety of dynamics by changing the

order of derivatives. The time series of the single Hindmarsh–Rose model for q = 1, 0.9, 0.8
and 0.7 are shown in Figure 2, for fixed parameters r = 0.006, s = 4, Iext = 3.2. It can
be observed that for q = 1, the behaviors of the states are chaotic square-wave bursting.
By decreasing the derivative order from 1 to q = 0.9, the waveform is changed from square-
wave bursting to triangular-wave bursting. Furthermore, the maximum value of the spikes
decreases for the fractional-order derivatives. When the order decreases to 0.8, the number
of spikes in bursts increases, while the frequency of the bursts decreases. For q = 0.7,
the waveform changes to a pseudo-plateau bursting.

Figure 2. Dynamics of the Hindmarsh-;Rose neuron model states with different fractional-order
derivatives. The first row shows the time series of the membrane potential, and the second row shows
its corresponding attractor in the (x, y, z) space: (a) q = 1, (b) q = 0.9; (c) q = 0.8; (d) q = 0.7.

3. Behavior of Network

In this section, the behavior of the states of the fractional two-layer network model (3)
is investigated for different derivative orders, and the synchronization of the network is
studied. To this aim, a numerical solution is established, and the interlayer synchronization
and the intralayer synchronization errors are computed as follows:

E1 = lim
T→∞

1
T

∫ T

0

N

∑
j=2

||X1,j(t)− X1,1(t)||
N − 1

dt,

E2 = lim
T→∞

1
T

∫ T

0

N

∑
j=2

||X2,j(t)− X2,1(t)||
N − 1

dt,

E = lim
T→∞

1
T

∫ T

0

N

∑
j=1

||X1,j(t)− X2,j(t)||
N

dt,

(6)

where X = (x, y, z) is the state vector of variables for each layer, E1 and E2 are the intralayer
synchronization errors for the first and second layers, respectively, and E is the interlayer
synchronization error.

The intralayer and interlayer synchronization errors for different derivatives are
represented in Figures 3 and 4, respectively. Since the connections within layers are ap-
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proximately similar, there is a negligible difference between the intralayer synchronization
errors (E1 ≡ E2). Thus, only the error for the first layer (E1) is represented. Figure 3 shows
that intralayer synchronization is generally achieved in lower intralayer coupling strengths
by increasing the strength of links between layers. Moreover, as the derivative orders
decrease, the intralayer synchronization is mainly obtained for weaker intralayer couplings.
However, an unexpected change occurs around ε = 1. In almost all cases, the intralayer
synchronization error in the area around ε = 1 is less than the error in its surrounding areas.

Figure 3. A 2D representation of the intralayer synchronization error (E1) in the (σ, ε) plane by
considering different fractional-order derivatives for the layers: (a) q1 = q2 = 1; (b) q1 = 1, q2 = 0.9;
(c) q1 = 1, q2 = 0.8; (d) q1 = 1, q2 = 0.7; (e) q1 = 0.9, q2 = 0.8; (f) q1 = 0.8; q2 = 0.7.

Figure 4. A 2D representation of the interlayer synchronization error (E) in the (σ, ε) plane by
considering different fractional-order derivatives for the layers: (a) q1 = q2 = 1; (b) q1 = 1, q2 = 0.9;
(c) q1 = 1, q2 = 0.8; (d) q1 = 1, q2 = 0.7; (e) q1 = 0.9; q2 = 0.8, (f) q1 = 0.8, q2 = 0.7.



Fractal Fract. 2022, 6, 169 7 of 11

The intralayer synchronization error for ε = 1 according to intralayer coupling strength
is shown in Figure 5a. This figure shows that for identical integer-order derivatives,
the synchronization is obtained for σ = 0.3. By changing the order of derivatives to
identical fractional orders, the threshold of coupling strength for synchronization is slightly
decreased. Interestingly, when the fractional orders of layers are different, this threshold is
considerably varied. When q1 decreases to 0.9, the threshold decreases to σ = 0.18, and for
q1 = 0.8, it is equal to σ = 0.9. With more decreasing of q1, this threshold increases again
such that for q1 = 0.7, the synchronization is obtained for σ = 0.11. For q1 = 0.8, q2 = 0.9
and q1 = 0.7, q1 = 0.8, the threshold changes to σ = 0.18 again. Therefore, the intralayer
synchronization in nonidentical fractional orders is obtained in weaker couplings than the
identical orders. The one-dimensional interlayer error is shown in Figure 5b and represents
the difference between the results of different derivative orders.

Figure 5. (a) The intralayer synchronization error (E1) according to the intralayer coupling strength
(σ) for ε = 1. (b) The interlayer synchronization error (E) according to the interlayer coupling
strength (ε) for σ = 0.1.

When the order of the derivatives in both layers is the same, the neurons are identical
and can reach a complete synchronization state with zero interlayer synchronization error.
However, when the order of the derivatives is different, the neurons are nonidentical.
Therefore, complete interlayer synchronization cannot be achieved. Instead, the neurons
can reach a near synchronization state with a minimum interlayer synchronization error.
Figure 4a shows that in the integer-order network, complete synchronization occurs in
about ε > 0.5. For fractional-order derivatives, the minimum error for near synchronization
is obtained in significantly larger interlayer coupling strengths (Figure 4b–f). A comparison
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analysis of these figures leads to the conclusion that settings q1 = 0.8, q2 = 0.9 and
q1 = 0.7, q2 = 0.8 imply near synchronization in weaker interlayer couplings than others.
Moreover for q1 = 0.7, q2 = 0.8, the neurons become unstable for special coupling strengths,
the region of which is shown in black.

As shown in Figure 2, different fractional orders lead to different firing patterns and
attractors for the neuron model. When nonidentical neurons are coupled, the coupling
strength between them brings their manifolds closer together to eventually reach a near
synchronization. We represent the effect of coupling strength on the attractor of the neurons
in bifurcation diagrams in Figure 6. In these figures, the maximum values of voltages of
the first neuron of each layer are plotted with different colors.

Figure 6. Bifurcation diagrams of the neurons of both layers according to the interlayer coupling
strength: (ε) for σ = 0.1; (a) q1 = 1, q2 = 0.9; (b) q1 = 1, q2 = 0.8; (c) q1 = 1, q2 = 0.7;
(d) q1 = 0.9, q2 = 0.8; (e) q1 = 0.8, q2 = 0.7.

It is observed that only for q1 = 1, q2 = 0.9 and q1 = 0.9, q2 = 0.8, the chaotic firing
is preserved by increasing the coupling strength, and the neurons have a chaotic near
synchronization state. In other cases, however, strengthening the coupling leads to the
bifurcation of the neurons to periodic behavior, and the greater the difference between the
two derivative orders, the lower the coupling strength for this bifurcation. In other words,
when the two derivative orders have more differences, the chaotic region becomes smaller.
On the other hand, the dynamics of the neuron with lower derivative order have more of a
tendency to change to periodic. Moreover, it is observed that although the coupling tries to
synchronize the neurons, the trajectories do not precisely overlap, and there is a minimal
error that does not disappear with increasing coupling coefficient.

The time series and attractors of the first neurons of each layer are represented in
Figure 7 in the synchronous manifold. It can be observed that although having a near
synchronization state, the attractors of the neurons of each layer are different. Furthermore,
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as the derivative orders decrease, the frequency of the bursts increases. The highest burst
frequency value is in q1 = 0.8, q2 = 0.7 (Figure 7e) case, and the lowest frequency is
obtained for q1 = 1, q2 = 0.9 case (Figure 7a). Comparing Figures 2 and 7 we conclude
that this result contrasts the dynamics of the single neuron wherein the frequency of burst
decreases by decreasing the fractional order.

Figure 7. Time series of membrane potential and attractors of the neurons in each layer in the near
synchronization manifold (ε = 12 and σ = 0.1): (a) q1 = 1, q2 = 0.9; (b) q1 = 1, q2 = 0.8;
(c) q1 = 1, q2 = 0.7; (d) q1 = 0.9, q2 = 0.8; (e) q1 = 0.8, q2 = 0.7.

4. Conclusions

In this paper, we proposed a two-layer multiplex network of neurons considering
different Caputo–Fabrizio-type fractional derivative orders in each layer. The synchroniza-
tion of the neurons within and between the layers was studied by computing the average
synchronization error for different derivative orders. It was observed that the nonidentical
fractional-order derivative leads to the enhancement of the intralayer synchronization
(i.e., the synchronization is achieved in lower intralayer coupling strengths). Moreover,
as the derivative order decreases, the needed intralayer coupling strength is decreased.
Since the neurons of different layers are nonidentical through different derivative orders,
complete interlayer synchronization cannot be obtained. Instead, a near interlayer synchro-
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nization can be achieved in which the interlayer synchronization error does not decrease
to a certain extent by increasing the coupling coefficient. The results showed that near
interlayer synchronization occurred in weaker strengths for lower fractional orders. The dy-
namics of both layers’ neurons were also considered by varying the interlayer coupling
strength. It was observed that when the derivative orders are different, increasing the
coupling strength leads to bifurcation in neurons dynamics. Furthermore, the neurons
have a periodic near synchronization manifold for lower derivative orders. In addition,
the frequency of the bursts increases by decreasing the derivative order, while in the single
neuron, the frequency of the bursts in lower derivatives is decreased. An interesting and
important future direction of our research is related to the study of the presented model
with the help of fractal-fractional derivatives. The established experimental data support
as well as molecular level explanations will be very helpful in such direction.
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27. Drauschke, F.; Sawicki, J.; Berner, R.; Omelchenko, I.; Schöll, E. Effect of topology upon relay synchronization in triplex neuronal
networks. Chaos 2020, 30, 051104. [CrossRef]

28. Shafiei, M.; Jafari, S.; Parastesh, F.; Ozer, M.; Kapitaniak, T.; Perc, M. Time delayed chemical synapses and synchronization
in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105175.
[CrossRef]

29. Sun, X.; Perc, M.; Kurths, J. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal
networks. Chaos 2017, 27, 053113. [CrossRef]

30. Kandasamy, U.; Li, X.; Rakkiyappan, R. Quasi-synchronization and bifurcation results on fractional-order quaternion-valued
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4063–4072. [CrossRef] [PubMed]

31. Saleem, M.U.; Farman, M.; Ahmad, A.; Ul Haque, E.; Ahmad, M.O. A Caputo-Fabrizio fractional order model for control of
glucose in insulin therapies for diabetes. Ain Shams Eng. J. 2020, 11, 1309–1316. [CrossRef]

32. Stamova, I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying
delays. Nonlinear Dynam. 2014, 77, 1251–1260. [CrossRef]

33. Stamova, I.; Stamov, G. Mittag–Leffler synchronization of fractional neural networks with time-varying delays and reaction-
diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22–32. [CrossRef]

34. Wang, H.; Jahanshahi, H.; Wang, M.-K.; Bekiros, S.; Liu, J.; Aly, A.A. A Caputo–Fabrizio fractional-order model of HIV/AIDS
with a treatment compartment: Sensitivity analysis and optimal control strategies. Entropy 2021, 23, 610. [CrossRef]

35. Batista, C.; Lameu, E.; Batista, A.; Lopes, S.; Pereira, T.; Zamora-López, G.; Kurths, J.; Viana, R.L. Phase synchronization of
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multiplex networks of coupled Rössler oscillators. Phys. Rev. E 2019, 99, 012304. [CrossRef]

44. Ling, J.; Yuan, X.; Mo, L. Distributed containment control of fractional-order multi-agent systems with unknown persistent
disturbances on multilayer networks. IEEE Access 2019, 8, 5589–5600. [CrossRef]
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