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Abstract: This paper studies the existence of extremal solutions for a nonlinear boundary value
problem of Bagley–Torvik differential equations involving the Caputo–Fabrizio-type fractional differ-
ential operator with a non-singular kernel. With the help of a new inequality with a Caputo–Fabrizio
fractional differential operator, the main result is obtained by applying a monotone iterative technique
coupled with upper and lower solutions. This paper concludes with an illustrative example.
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1. Introduction

Fractional calculus, which deals with fractional-order differential and integral opera-
tors, has developed into a popular branch of mathematical analysis in light of its extensive
applications in a variety of disciplines of natural and social sciences. A distinguished
feature of the fractional-order model is that it is capable of tracing the past history of the
phenomena involved in the model. For details and examples in different disciplines of
engineering and applied sciences, see [1–3] and the references cited therein. A fractional-
order model consists of fractional differential or integro-differential equations, which are
nonlinear in nature, and it is not possible to find the exact solutions of these equations
in general. Thus, many researchers focused on developing the approximate analytical
and numerical methods for solving the initial and boundary value problems of fractional
differential equations. One can find the details and examples in [4–12] and the references
cited therein.

In this paper, we formulate and solve a boundary value problem of nonlinear gen-
eralized Bagley–Torvik differential equations involving a fractional differential operator
with a non-singular kernel due to Caputo and Fabrizio as well as nonlinear boundary
conditions. One can find details about the Caputo–Fabrizio fractional operator in [13–16].
We make use of a monotone iterative technique coupled with upper and lower solutions
to obtain the extremal solutions for the problem at hand. It is imperative to note that
the monotone method deals with the existence as well as the construction of solutions
as well as the comparison of results for nonlinear differential equations (for examples,
see [17–25]). In precise terms, we study the following:{

[CFDδg(τ)]′ = G(τ, g(τ), CFDδg(τ)), I = [0, T],
g(0) = H(g(η)), η ∈ (0, T],

(1)
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where G ∈ C(I×R2,R), H ∈ C(R,R) and CFDδ denotes a Caputo–Fabrizio operator of a
fractional order 0 < δ < 1 with a non-singular kernel defined by

CFDδg(τ) =
(2− δ)ρ(δ)

2(1− δ)

∫ τ

0
exp(− δ

1− δ
(τ − s))g′(s)ds, τ ≥ 0, (2)

where ρ(δ) is a normalization constant depending on δ.
In the long history of the development of fractional derivatives, many types of frac-

tional derivatives have appeared. The more popular and mentioned fractional derivatives
are the Riemann–Liouville and Caputo fractional derivatives, which are particularly suit-
able for describing physical phenomena related to fatigue, damage and electromagnetic
hysteresis. Unfortunately, they are not applicable to describing and simulating some behav-
ior observed in materials with huge heterogeneities and structures with different scales.
In this case, Caputo and Fabrizio developed and proposed a new type of fractional order
derivatives without a singular kernel, which was named the Caputo–Fabrizio fractional
derivative by later scholars. As pointed out in [26], the Caputo–Fabrizio fractional deriva-
tive has an exponential function kernel, which is more realistic that the one with a power
function due to the fact that the singularity does not occur at the end of the interval within
which the fractional derivative of a given function is taken. In addition, the fractional
derivative with an exponential function kernel is generally considered to be better than
the one with a power kernel, since the exponent function is a better filter than the power
function. In fact, the Caputo–Fabrizio fractional derivative has been used extensively as
a filter regulator [27]. For more details on fractional derivatives without singular kernels,
see [28–32].

Motivated by the above, this paper attempts to investigate some new inequalities and
extremal solutions of a Caputo–Fabrizio fractional Bagley–Torvik differential equation,
given in Equation (1).

2. Auxiliary Material

In this section, we present the preliminary concepts related to the given problem and
comparison principles:

Definition 1. g ∈ C1(I) is called a lower solution of a Caputo–Fabrizio fractional Bagley–Torvik
differential equation (Equation (1)) if{

[CFDδg(τ)]′ ≤ G(τ, g(τ), CFDδg(τ)),
g(0) ≤ H(g(η)),

which, on reversing the inequalities, defines an upper solution for Equation (1).

Lemma 1. Suppose N ≥ 0, ρ(δ) > 0 and ν ∈ C1(I) satisfy [CFDδν(τ)]′ ≥ − δ

1− δ
CFDδν(τ)− Nν(τ),

ν(0) ≥ 0.
(3)

Then, one has ν(τ) ≥ 0, ∀τ ∈ I.

Proof. By differentiating the Caputo–Fabrizio operator CFDδν(τ) with respect to τ, we
obtain

[CFDδν(τ)]′ = βν′(τ)− δ

1− δ
CFDδν(τ), (4)

where β =
(2− δ)ρ(δ)

2(1− δ)
. Using Equation (4) in (3), we obtain

βν′(τ) + Nν(τ) ≥ 0,
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which can alternatively be expressed as

βe−
N
β τ
[e

N
β τ

ν(τ)]′ ≥ 0.

Since β ≥ 0, we have [e
N
β τ

ν(τ)]′ ≥ 0, which leads to

e
N
β τ

ν(τ) ≥ ν(0) ≥ 0, ∀τ ∈ I.

Thus, one can easily come to the conclusion that ν(τ) ≥ 0, ∀τ ∈ I.

A result analogous to Lemma 1 can be formulated as follows:

Lemma 2. With N ≥ 0 and ρ(δ) > 0, as given in Lemma 1, if a function ν ∈ C1(I) satisfies the
following problem:  [CFDδν(τ)]′ ≤ − δ

1− δ
CFDδν(τ)− Nν(τ),

ν(0) ≤ 0.
(5)

Then, one has ν(τ) ≤ 0, ∀τ ∈ I.

3. The Linear Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation

For ψ ∈ C[0, T] and N, h ∈ R, let us consider the following linear Caputo–Fabrizio
fractional Bagley–Torvik differential equation: [CFDδg(τ)]′ +

δ

1− δ
CFDδg(τ) + Ng(τ) = ψ(τ),

g(0) = h.
(6)

Definition 2. g ∈ C1(I) is said to be a lower solution of the above linear Caputo–Fabrizio
fractional Bagley–Torvik differential equation (Equation (6)) if [CFDδg(τ)]′ +

δ

1− δ
CFDδg(τ) + Ng(τ) ≤ ψ(τ),

g(0) ≤ h,
(7)

The above definition takes the form of an upper solution of the above linear Caputo–
Fabrizio fractional Bagley–Torvik differential equation (Equation (6)) if we reverse the
inequalities in it:

Theorem 1. Assume that u0 and v0, which satisfy the inequality u0(τ) ≤ v0(τ), ∀τ ∈ I, are the
lower and upper solutions of the above linear Caputo–Fabrizio fractional Bagley–Torvik differential
equation (Equation (6)), respectively. Then, there must exist a unique solution g ∈ [u0, v0] for the
linear Caputo–Fabrizio fractional Bagley–Torvik differential equation (Equation (6)), given by

g(τ) = he−
N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

ψ(s)ds, ∀τ ∈ I, (8)

where β =
(2− δ)ρ(δ)

2(1− δ)
.

Proof. Clearly, Equation (6) can be rewritten as

[CFDδg(τ)]′ +
δ

1− δ
CFDδg(τ) + Ng(τ) = βg′(τ) + Ng(τ) = βe−

N
β t
[e

N
β tg(τ)]′ = ψ(τ),
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which leads to
g(τ) = g(0)e−

N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

ψ(s)ds, ∀τ ∈ I. (9)

Using the condition g(0) = h in Equation (9), we obtain Equation (8). This shows that
the linear Caputo–Fabrizio fractional Bagley–Torvik differential equation (Equation (6)) has
a unique solution given by Equation (8).

Next, if g is a solution of Equation (6), then we can show that u0 ≤ g ≤ v0. By letting
ν = g− u0, we find  [CFDδν(τ)]′ ≥ − δ

1− δ
CFDδν(τ)− Nν(τ),

ν(0) ≥ 0.

Then, a straightforward application of Lemma 1 implies that ν(τ) ≥ 0, ∀τ ∈ I; that is,
g ≥ u0. Similarly, by taking µ = v0 − g, it can be shown that g ≤ v0. Therefore, we deduce
that g ∈ [u0, v0].

4. The Nonlinear Bagley–Torvik Differential Equation

Theorem 2. Assume the following:

(H1) u0, v0 ∈ C1(I), which satisfy the inequality u0(τ) ≤ v0(τ), ∀τ ∈ I, are the lower
and upper solutions of the nonlinear Caputo–Fabrizio fractional Bagley–Torvik differential
equation (Equation (1)), respectively;

(H2) There exists a constant N ≥ 0 such that

G(τ,=, £)− G(τ,=, £) ≥ −N(=−=)− δ

1− δ
(£− £),

for u0 ≤ = ≤ = ≤ v0, CFDδu0 ≤ £ ≤ £ ≤ CFDδv0;

(H3) The function H is nondecreasing on [u0, v0].

Then, one must be able to construct two explicit monotonic iterative sequences {un} and
{vn} without difficulty, and they converge uniformly to the extremal solutions of the nonlinear
Caputo–Fabrizio fractional Bagley–Torvik differential equaiton (Equation (1)) in [u0, v0] on I.

Proof. We consider the linear Caputo–Fabrizio fractional Bagley–Torvik differential equation: [CFDδg(τ)]′ = ψh(τ)−
δ

1− δ
CFDδg(τ)− Ng(τ),

g(0) = H(h(η)),
(10)

where ψh(τ) = G(τ, h(τ), CFDδh(τ)) +
δ

1− δ
CFDδh(τ) + Nh(τ) and h ∈ [u0, v0].

It follows from (H1) that u0, v0 ∈ C1(I) are the lower and upper solutions of the
nonlinear Caputo–Fabrizio fractional Bagley–Torvik differential equation (Equation (1)),
respectively. Furthermore, by conditions (H2) and (H3), we obtain

[ CFDδu0(τ)]
′ ≤ G(τ, u0(τ), CFDδu0(τ))

≤ G(τ, h(τ), CFDδh(τ)) +
δ

1− δ
CFDδh(τ) + Nh(τ)

− δ

1− δ
CFDδu0(τ)− Nu0(τ)

= ψh(τ)−
δ

1− δ
CFDδu0(τ)− Nu0(τ),

u0(0) ≤ H(u0(η)) ≤ H(h(η)),



Fractal Fract. 2022, 6, 488 5 of 8

and 

[ CFDδv0(τ)]
′ ≥ G(τ, v0(τ), CFDδv0(τ))

≥ G(τ, h(τ), CFDδh(τ)) +
δ

1− δ
CFDδh(τ) + Nh(τ)

− δ

1− δ
CFDδv0(τ)− Nv0(τ)

= ψh(τ)−
δ

1− δ
CFDδv0(τ)− Nv0(τ),

v0(0) ≥ H(v0(η)) ≥ H(h(η)),

The above inequalities ensure that the linear Caputo–Fabrizio fractional Bagley–Torvik
differential equation (Equation (10)) has the lower solution u0 and the upper solution
v0. Furthermore, by Theorem 1, we know that the Caputo–Fabrizio fractional Bagley–
Torvik differential equation (Equation (10)) has a unique solution w ∈ [u0, v0]. Now, we
introduce an operator Q : [u0, v0] → [u0, v0] by g = Qh and verify the operator Q is
nondecreasing. Let h1, h2 ∈ [u0, v0] be such that the relation h1 ≤ h2 holds. By letting
x = u2 − u1, u1 = Qh1 and u2 = Qh2 and using the assumptions (H2) and (H3), one can
find that

[ CFDδx(τ)]′ = G(τ, h2(τ), CFDδh2(τ)) +
δ

1− δ
CFDδh2(τ) + Nh2(τ)

− δ

1− δ
CFDδu2(τ)− Nu2(τ)− G(τ, h1(τ), CFDδh1(τ))

− δ

1− δ
CFDδh1(τ)− Nh1(τ) +

δ

1− δ
CFDδu1(τ) + Nu1(τ)

≥ −N(h2 − h1)(τ)−
δ

1− δ
CFDδ(h2 − h1)(τ) + N(h2 − h1)(τ)

+
δ

1− δ
CFDδ(h2 − h1)(τ)−

δ

1− δ
CFDδ(u2 − u1)(τ)− N(u2 − u1)(τ)

= − δ

1− δ
CFDδx(τ)− Nx(τ),

x(0) = H(h2(η))− H(h1(η)) ≥ 0.

It follows from Lemma 1 (comparison principle) that x(τ) ≥ 0 and τ ∈ [0, T], which
shows that the operator Q is nondecreasing.

On account of the fact that Q is a nondecreasing operator, we put un = Qun−1, vn =
Qvn−1, n = 1, 2, . . . . Then, the following conclusion is tenable:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, n = 1, 2, . . . . (11)

By employing the standard arguments, with the aid of the Arzela–Ascoli theorem, one
can easily show that, uniformly, we have

lim
n→∞

un = u∗, lim
n→∞

vn = v∗

In addition, u∗, v∗ ∈ [u0, v0] solve the nonlinear Caputo–Fabrizio fractional Bagley–
Torvik differential equation (Equation (1)).

In the last step of this proof, we show u∗, v∗ ∈ [u0, v0] are the extremal solutions of the
nonlinear Caputo–Fabrizio fractional Bagley–Torvik differential equation (Equation (1)).
Suppose that w ∈ [u0, v0] is any solution of the nonlinear Caputo–Fabrizio fractional
Bagley–Torvik differential equation (Equation (1)). Thus, Qw = w holds. It follows from
u0 ≤ w ≤ v0 and the nondecreasing property of operator Q that

un ≤ w ≤ vn, n = 1, 2, . . . , (12)

which, when n → +∞, yields u∗ ≤ w ≤ v∗. As a consequence, we deduce that u∗, v∗ ∈
[u0, v0] are the extremal solutions of the nonlinear Caputo–Fabrizio fractional Bagley–Torvik
differential equation (Equation (1)).
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5. An Ancillary Example

We present an example session to aid in the interpretation of the main results.
Consider the nonlinear Bagley–Torvik differential equation involving a Caputo–Fabrizio

fractional operator supplemented with the nonlocal condition given by [CFDδg(τ)]′ = −τ3

2
+

[τ − g(τ)]3

2
+ 3[τ − g(τ)]5 − δ

10(1− δ)
[CFDδg(τ)]2,

g(0) = 8g3(η),
(13)

where τ ∈ [0, 1], η ∈ (0, 1], H(g) = 8g3, (2− δ)ρ(δ) ≤ 2δ, 0 < δ < 1 and

G(τ,=, £) = −τ3

2
+

(τ −=)3

2
+ 3(τ −=)5 − δ

10(1− δ)
£2.

By letting u0(τ) = 0 and v0(τ) = τ, we can easily verify that u0, v0 ∈ C1([0, 1]) are
the lower and upper solutions of the nonlinear Caputo–Fabrizio fractional Bagley–Torvik
differential equation (Equation (13)), respectively. Thus, condition (H1) holds.

By a simple computation, for 0 ≤ = ≤ = ≤ τ, 0 ≤ £ ≤ £ ≤ (2− δ)ρ(δ)

2δ
(1− e−

δτ
1−δ ),

we have

G(τ,=, £)− G(τ,=, £)

=
1
2
[(τ −=)3 − (τ −=)3] + 3[(τ −=)5 − (τ −=)5]− δ

10(1− δ)
[£2 − £2

]

≥ −(3
2
+ 15)(=−=)− δ

5(1− δ)
(£− £)

≥ −16.5(=−=)− δ

(1− δ)
(£− £).

Therefore, condition (H2) holds true for N = 16.5. In addition, the condition (H3) is
clearly satisfied. In summation, all assumptions of Theorem 2 are satisfied. Therefore, based
on Theorem 2, one must be able to construct two explicit monotonic iterative sequences
{un} and {vn} without difficulty, and these sequences converge uniformly to the extremal
solutions of the nonlinear Caputo–Fabrizio fractional Bagley–Torvik differential equation
(Equation (13)) on [0, 1]. Here, we have

un(τ) = 8u3
n−1(η)e

− N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

[
G(s, un−1(s), CFDδun−1(s))

+
δ

1− δ
CFDδun−1(s) + Nun−1(s)

]
ds

= 8u3
n−1(η)e

− N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

[
− s3

2
+

[s− un−1(s)]3

2
+ 3[s− un−1(s)]5

− δ

10(1− δ)
[CFDδun−1(s)]2 +

δ

1− δ
CFDδun−1(s)

+ Nun−1(s)
]
ds,

(14)
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vn(τ) = 8v3
n−1(η)e

− N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

[
G(s, vn−1(s), CFDδvn−1(s))

+
δ

1− δ
CFDδvn−1(s) + Nvn−1(s)

]
ds

= 8v3
n−1(η)e

− N
β τ

+
1
β

∫ τ

0
e−

N
β (τ−s)

[
− s3

2
+

[s− vn−1(s)]3

2
+ 3[s− vn−1(s)]5

− δ

10(1− δ)
[CFDδvn−1(s)]2 +

δ

1− δ
CFDδvn−1(s)

+ Nvn−1(s)
]
ds,

(15)

where N = 16.5, β =
(2− δ)ρ(δ)

2(1− δ)
.

6. Conclusions

Fractional calculus and differential equations are a present line of research. Currently,
hundreds of mathematicians and engineers are working on this topic. As one of the new re-
search directions of fractional calculus, Caputo–Fabrizio fractional calculus and differential
equations are continuously gaining attention. In this context, this paper studied some new
inequalities and extremal solutions of a Caputo–Fabrizio fractional Bagley–Torvik differen-
tial equation. In order to achieve this goal, we developed a comparison principle involving
Caputo–Fabrizio derivatives and the monotonic iterative method combining upper and
lower solutions. We not only proved the existence of extremal solutions, but also obtained
some explicit monotone iterative sequences that converged uniformly to extremal solutions.

In the future, as a good extension of the current work, one can carry out the following
related research:

(1) Asymptotic stability of some Caputo–Fabrizio fractional-related systems;
(2) Some nonlinear problems involving new fractional operators, such as the general-

ized fractional Hilfer operator [33];
(3) Some control problems with qualitative property controllability, optimal control,

etc. See [34,35].
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