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1. Introduction

As is known, commensurate and non-commensurate Fractional Order (FO) continuous
systems in the sense of Caputo, Riemann–Liouville, or Grundwald–Letnikov definitions,
and also other types of fractional differences, cannot generate exactly periodic signals with
all arising implications (see, e.g., [1–12]).

Fractional models can describe complex physics problems clearly and concisely, espe-
cially the non-linear model. Fractional order equations offer better possibilities to describe
complex physics compared to the traditional integer order equations (see e.g., [13]). One
of the most prominent features of the fractional order differential and discrete equations
is its memory [14]. On the other side, there are very few results on the Mandelbrot set
or Julia sets of fractional order. The Mandelbrot set generated by a fractional difference
quadratic map involving Caputo-like fractional h-difference operators represents the sub-
ject in [15]. Problems of discrete systems of FO, such as hidden attractors and chaos control,
are analyzed in, e.g., [16–18].

Fractional Mandelbrot sets have rarely been mentioned to date. Therefore, the appli-
cation of fractional calculus to deterministic non-linear fractals such as Mandelbrot and
also Julia sets generated by fractional maps leads to a very attractive and new theory with
applications, e.g., to image and data compression or computer graphics.

In this paper, we focus on the class of complex maps defined below. Let q ∈ (0, 1),
and N1−q = {1− q, 2− q, 3− q, · · · }. The fractional difference equations studied in this
paper are

4qu(k) = f (u(k− 1 + q)), k ∈ N1−q, (1)

in which one considers the initial condition u(0) = u0. 4q is the Caputo delta fractional
difference (see [19–22]).

As is known, in a convenient numerical form, the equivalent discrete integral form of
(1) is (see, e.g., [19–22])

u(n) = u(0) +
1

Γ(q)

n

∑
j=1

Γ(n− j + q)
Γ(n− j + 1)

f (u(j− 1)), n = 1, 2, . . . (2)

Remark 1. Since the integral is equivalent to (1), all properties of (1) can be analyzed on (2).
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Some of results in this paper are particularized for the complex Mandelbrot map
f ∈ C(C,C)

f (u) = u2 + c, c ∈ C. (3)

The recurrence (1) with f given by (3) defines the Mandelbrot map of FO, denoted
hereafter as the FOM map.

Representative FOM sets for some values of q obtained with the matlab code in
Appendix A (see Figure A1) (see also [23], where the time-escape algorithm for FOM and
Julia sets of FO are introduced) are presented in Figure 1. As can be seen, the FOM set
for q = 1 is not, as expected, identical to the known integer order (IO) variant (Figure 1d).
This characteristic suggests that FO systems should be considered only with caution as
“generalizations” of IO systems. On the other side, a strong resemblance between IO
and FO sets (Figure 1a) appears in the case q ↓ 0, considered here q = 1 × 10−15 for
computational reasons (Γ(z) in (2) is not defined for z = 0). Many other interesting
properties, resemblances and especially differences between the Mandelbrot set of IO and
its FO counterparts can be found in [23].

Figure 1. Four Mandelbrot sets of FO: (a) q = 1× 10−15; (b) q = 0.25; (c) q = 0.75; (d) q = 1.

2. Properties of the FOM Map

In this section, the stability of the FOM map and properties related to asymptotical
periodicity are analyzed.

2.1. Stability of Fixed Points

Theorem 1. The fixed points of the FOM map are

u± = ±ı
√

c. (4)
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Proof. Fixed points are given by the equation u(n) = u(0) for any n ∈ N in (2), which
holds if and only if f (u) = 0 is satisfied, and recalling (3), wherefrom u = ±ı

√
c, and the

proof is finished.

The stability domain of the fixed points u± is stated by the following result.

Theorem 2. The fixed points u± are asymptotically stable if and only if c ∈ Sq

Sq =

{
c ∈ C : |c| < 4q−1

(
cos
| arg c± π| − 2π

2(2− q)

)2q
, | arg c± π| > qπ

}
.

Moreover, the fixed point u− = −ı
√

c is stable if (see Figure 2)

|u| < 4q−1
(

cos
π − arg c
2(2− q)

)2q
, arg c > (q− 1)π, (5)

and the fixed point u+ = ı
√

c is stable if (see Figure 2)

|c| < 4q−1
(

cos
π + arg c
2(2− q)

)2q
, arg c < (1− q)π. (6)

-0.4 -0.2 0.0 0.2

-0.4

-0.2

0.0

0.2

0.4

Figure 2. Local asymptotic stable regions of u±, upper for u+, lower for u− (see (5) and (6)).

Proof. The derivative of f is

D f (u)v = f ′(u)v = 2uv,

and the spectrum of eigenvalues is σ(D f (u)) = {2u, 2ū}.
Consider c = |c|eı arg c. Then,

u± =
√
|c|eı arg c±π

2 .

Since arg c ∈ [−π, π], we have

arg c + π

2
∈ [0, π],

arg c− π

2
∈ [−π, 0],

hence
arg u± =

arg c± π

2
, |u±| =

√
|c|,

and

σ(D f (u±)) =
{

2
√
|c|eı arg c±π

2 , 2
√
|c|eı arg c∓π

2

}
.
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By [20], u± are locally stable whenever

2
√
|c| <

(
2 cos

| arg c±π|
2 − π

2− q

)q

,
| arg c± π|

2
>

qπ

2
.

This is equivalent to

|c| < 4q−1
(

cos
| arg c± π| − 2π

2(2− q)

)2q
, | arg c± π| > qπ.

Using | arg c + π| = arg c + π and | arg c− π| = π − arg c, the proof is finished.

Four representative cases of Sq are considered in Figure 3. The two colors (red and
blue) correspond to the signs ±, respectively.

Figure 3. Local asymptotic stable regions Sq of fixed points (4) and of the fixed point of the Mandelbrot
map of IO (1−

√
1− 4c)/2: (a) S1×10−15

; (b) S0.25; (c) S0.75 (d) Overplotted S1 (for q = 1) and the
asymptotic stable region of the Mandelbrot map of integer order SIO.

Next, the following inverse result is presented.

Theorem 3. If λ ∈ σ(D f (u±)) are the eigenvalues corresponding to the fixed points u±, then

c ∈
{
−λ2

4
,− λ̄2

4

}
.

Proof. We know that σ(D f (u±)) = {2u±, 2ū±}. So if λ = 2u±, then

λ2 = 4u2
± = −4c,
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which implies

c = −λ2

4
.

Similarly, λ = 2ū± gives
λ2 = 4ū2

± = −4c̄,

which implies

c = − λ̄2

4
.

The proof is finished.

2.2. Periodic Boundary Problem of (1)

As mentioned in the Introduction, FO systems cannot have non-constant periodic
solutions. However, we may instead study the n-periodic boundary problem of (2)

u(0) = u(n), (7)

for a fixed n ∈ N. So, for n = 2, we get the 2-periodic boundary problem.
We denote by “nonfixed point” a point that is not a fixed point of (1).

Theorem 4. Nonfixed point solutions of

u(0) = u(2) (8)

are given by
u2,±(0) = −1±

√
−c− q. (9)

Proof. Solving (8), we have

u(0) = u(2) = u(0) +
1

Γ(q)

(
Γ(2− 1 + q)
Γ(2− 1 + 1)

f (u(0)) +
Γ(2− 2 + q)
Γ(2− 2 + 1)

f (u(1))
)

= u(0) +
1

Γ(q)

(
Γ(1 + q)

Γ(2)
f (u(0)) +

Γ(q)
Γ(1)

f (u(1))
)

= u(0) +
1

Γ(q)
(qΓ(q) f (u(0)) + Γ(q) f (u(1)))

= u(0) + q f (u(0)) + f (u(1)).

Thus, (8) is equivalent to

0 = q f (u(0)) + f (u(1)) = q(u(0)2 + c) + u(1)2 + c

= q(u(0)2 + c) + (u(0) + u(0)2 + c)2 + c =
(

c + u(0)2
)(

c + q + (u(0) + 1)2
)

,
(10)

since

u(1) = u(0) +
1

Γ(q)
Γ(1− 1 + q)
Γ(1− 1 + 1)

f (u(0))

= u(0) +
1

Γ(q)
Γ(q)
Γ(1)

f (u(0)) = u(0) + f (u(0)) = u(0) + u(0)2 + c.

Solving (10), i.e., (
c + u(0)2

)(
c + q + (u(0) + 1)2

)
= 0,

we obtain either fixed points (4) or nonfixed point solutions (9), i.e, here we see that
solutions verify also c + u(0)2 = 0, but these are fixed points, so we do not consider them
in the statement of Theorem 4. The proof is completed.
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Remark 2. 1. From the above formulas, we can explicitly solve

u(1) = u(2) (11)

as (
c + u(0)2

)(
c + q + (u(0) + 1)2 − 1

)
= 0

with nonfixed point solutions

u2,±(0) = −1±
√
−c− q + 1.

2. Starting with (9), so u2,+(0) = −1 +
√−c− q, we obtain

u(0) = −1 +
√
−c− q,

u(1) = −
√
−c− q− q,

u(2) = −1 +
√
−c− q = u(0),

u(3) =
1
2

q(q + 1) f (u(0)) + q f ( f (u(0)) + u(0))

+ f (q f (u(0)) + f ( f (u(0)) + u(0)) + u(0)) + u(0)

=
1
2

q
(
q
(
2
√
−c− q + q− 2

)
− 2
√
−c− q− 1

)
−
√
−c− q.

Then
u(3)− u(1) =

1
2
(q− 1)q

(
2
√
−c− q + q− 1

)
so u(3) 6= u(1).

Now, consider the formal definition of a discrete dynamical system as a triple (N,R, Φ),
with Φ : N×R→ R a function, with the following properties: for any x ∈ R: Φ(0, x) = x and
Φ(n, Φ(m, x)) = Φ(n + m, x), for n, m ∈ N, i.e., Φ(n) ◦ Φ(m) = Φ(n + m). If Φ(n, u(0))
is a solution of (1), i.e., Φ(n, u(0)) = u(n), then Φ does not verify the semigroup relation
Φ(n) ◦ Φ(m) = Φ(n + m) for any n, m ∈ N. For example, if u(0) = u(2), then
u(1) = Φ(1, u(0)) = Φ(1, u(2)) = Φ(1, Φ(2, u(0))) = Φ(3, u(0)) = u(3) which, as proved
above, does not hold for this concrete values. This justifies that (1) would be not a dynamical system,
since otherwise u(0) = u(2) would imply u(1) = u(3).

Another approach is due to the memory history of solutions of FO discrete equations. Consider
a discrete dynamical system defined by a recurrence ui = f (ui−1), for i = 0, 1, 2, . . ., where
f : R→ R is some map. Compared with this definition, the integral (2) depends not only on the
previous value, ui, but on all previous values u0, u1, . . . , ui−1, i.e., ui = F(u0, u1, . . . , un−1) and,
therefore, (1) should not define a dynamical system, which is independent of memory. Therefore, to
overcome this impediment, another approach to define discrete FO systems should be given. Note
that this situation appears in the case of FDEs as well. A possible approach would be to consider
under some conditions the integrals characterizing the system as a dynamic system (see [24]).

3. Formula (2) shows that u(n) is a polynomial function of u(0) of degree 2n with polynomial
coefficients of c. Thus, the Equation (7) has a solution but at most 2n different solutions.

2.3. Periodic Boundary Problem of FOM for Mandelbrot Case

Now, we restrict the above considerations on the FOM for the Mandelbrot case; that
is, we consider u(0) = 0, i.e., instead of (2), we deal with

u(n) =
1

Γ(q)

n

∑
j=1

Γ(n− j + q)
Γ(n− j + 1)

f (u(j− 1)), n = 1, 2, . . . (12)

Then, we obtain the following result.
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Theorem 5. The following holds:

(a) The only fixed point of (12) is u(0) = 0.
(b) Nonzero solutions of

u(0) = u(2) = 0 (13)

exist just for
c = −1− q. (14)

(c) For any q ∈ (0, 1) and n ≥ 2, equation

0 = u(0) = u(n), (15)

has a nonzero solution for c 6= 0, but there are at most 2n different solutions.

Proof. To prove (a), by using (4), we obtain 0 = ±
√

c, so c = 0. This verifies (a).
To prove (b), by using (12), we have

u(2) =
1

Γ(q)

(
Γ(2− 1 + q)
Γ(2− 1 + 1)

f (u(0)) +
Γ(2− 2 + q)
Γ(2− 2 + 1)

f (u(1))
)

=
1

Γ(q)

(
Γ(1 + q)

Γ(2)
f (0) +

Γ(q)
Γ(1)

f (u(1))
)

=
1

Γ(q)
(qΓ(q) f (0) + Γ(q) f (u(1))) = q f (0) + f (u(1)).

Thus, (13) is equivalent to

0 = q f (0) + f (u(1)) = q(02 + c) + u(1)2 + c

= qc + c2 + c = c(c + q + 1),
(16)

since

u(1) =
1

Γ(q)
Γ(1− 1 + q)
Γ(1− 1 + 1)

f (u(0))

=
1

Γ(q)
Γ(q)
Γ(1)

f (0) = f (0) = c.

We see that (16) has a nonzero solution given by (14), which verifies (b).
To prove (c), we note that f (u) = u2 + c, and thus Formula (12) shows that u(n) is

a polynomial function of c of degree 2n with nonnegative real coefficients. Thus, it has
a nonzero solution for c 6= 0, but at most 2n different ones. This verifies (c). The proof
is finished.

2.4. Asymptotic 2-Periodic Solutions of FOM

First, we derive necessary conditions for the existence of asymptotic 2-periodic solu-
tions of the general case (1).

Theorem 6. Let q ∈ (0, 1), and consider (2) for f ∈ C(C,C). Assume there exist

lim
n→∞

u(2n) = a ∈ C, lim
n→∞

u(2n + 1) = b ∈ C. (17)

Then, it holds that

0 = q f (a) + f (b)+

1
Γ(q)

∞

∑
k=1

(
Γ(2k + 1 + q)

Γ(2k + 2)
− Γ(2k− 1 + q)

Γ(2k)

)
f (a)

+
1

Γ(q)

∞

∑
k=1

(
Γ(2k + q)
Γ(2k + 1)

− Γ(2k− 2 + q)
Γ(2k− 1)

)
f (b)

(18)
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and
b− a = f (a)+

1
Γ(q)

∞

∑
k=1

(
Γ(2k + q)
Γ(2k + 1)

− Γ(2k− 1 + q)
Γ(2k)

)
f (a)

+
1

Γ(q)

∞

∑
k=1

(
Γ(2k− 1 + q)

Γ(2k)
− Γ(2k− 2 + q)

Γ(2k− 1)

)
f (b).

(19)

Proof. The relation (17) gives

lim
n→∞

f (u(2n)) = f (a), lim
n→∞

f (u(2n + 1)) = f (b). (20)

Equation (2) is equivalent to

u(n) = u(0)+
1

Γ(q)

n

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(n− j)), n = 1, 2, . . . (21)

So we have

u(2n + 2)− u(2n) =

1
Γ(q)

2n+2

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 2− j))− 1
Γ(q)

2n

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n− j)) =

1
Γ(q)

2

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 2− j))+

1
Γ(q)

2n

∑
j=1

(
Γ(j + 1 + q)

Γ(j + 2)
− Γ(j− 1 + q)

Γ(j)

)
f (u(2n− j)).

(22)

Next, we have

1
Γ(q)

2

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 2− j)) =

1
Γ(q)

(
Γ(1 + q)

Γ(2)
f (u(2n) +

Γ(q)
Γ(1)

f (u(2n + 1)
)
=

1
Γ(q)

(qΓ(q) f (u(2n)) + Γ(q) f (u(2n + 1))) = q f (u(2n) + f (u(2n + 1)).

(23)

Using Gautschi inequality, [25,26]

1
(x + 1)1−q ≤

Γ(x + q)
Γ(x + 1)

≤ 1(
x + q

2
)1−q , ∀x ≥ 0

and considering that Γ(x+q)
Γ(x+1) is decreasing [21], for any j ∈ N, we derive

1
(j + 2)1−q −

1
(j− 1 + q

2 )
1−q ≤

Γ(j + 1 + q)
Γ(j + 2)

− Γ(j− 1 + q)
Γ(j)

< 0. (24)

On the other hand, for any 0 < x < y, we have

1
x1−q −

1
y1−q =θ∈[x,y] (1− q)(y− x)

θ2−q ⇒

0 <
1

x1−q −
1

y1−q ≤
(1− q)(y− x)

x2−q ,
(25)
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where θ ∈ [x, y] follows from the mean value theorem. Applying (25) to (24), we obtain

−
(1− q)(3− q

2 )

(j− 1 + q
2 )

2−q ≤
Γ(j + 1 + q)

Γ(j + 2)
− Γ(j− 1 + q)

Γ(j)
< 0. (26)

Since
∞

∑
j=1

1
j2−q < ∞, (27)

Equation (26) implies

∞

∑
j=1

∣∣∣∣Γ(j + 1 + q)
Γ(j + 2)

− Γ(j− 1 + q)
Γ(j)

∣∣∣∣ < ∞. (28)

Using (17), (20), (23), (28) and taking n→ ∞ in (22), we arrive at (18).
We similarly have

u(2n + 1)− u(2n) =

1
Γ(q)

2n+1

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 1− j))− 1
Γ(q)

2n

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n− j)) =

1
Γ(q)

1

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 1− j))+

1
Γ(q)

2n

∑
j=1

(
Γ(j + q)
Γ(j + 1)

− Γ(j− 1 + q)
Γ(j)

)
f (u(2n− j)).

(29)

Next, we have

1
Γ(q)

1

∑
j=1

Γ(j− 1 + q)
Γ(j)

f (u(2n + 1− j)) =
1

Γ(q)
Γ(q)
Γ(1)

f (u(2n)) = f (u(2n)). (30)

For any j ∈ N, we derive

1
(j + 1)1−q −

1
(j− 1 + q

2 )
1−q ≤

Γ(j + q)
Γ(j + 1)

− Γ(j− 1 + q)
Γ(j)

< 0. (31)

Applying (25) to (31), we obtain

−
(1− q)(2− q

2 )

(j− 1 + q
2 )

2−q ≤
Γ(j + q)
Γ(j + 1)

− Γ(j− 1 + q)
Γ(j)

< 0. (32)

Again by (27), Equation (32) implies

∞

∑
j=1

∣∣∣∣Γ(j + q)
Γ(j + 1)

− Γ(j− 1 + q)
Γ(j)

∣∣∣∣ < ∞. (33)

Using (17), (20), (30), (33) and taking n→ ∞ in (29), we arrive at (19). The proof is finished.

Remark 3. (i) If (18) and (19) hold, then it does not mean that there is an orbit of (2) satisfying (17).
(ii) Asymptotic property (17) can be weakened to

lim sup
n→∞

|u(2n)− a| ∼ 0, lim sup
n→∞

|u(2n + 1)− b| ∼ 0. (34)

Thus, we consider approximative asymptoticity. Then, “=” is replaced to “∼” in (18), (19),
(38) and (39). Therefore, these equations are robust in some sense.
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(iii) When q = 1 in (2), then we have the iteration

u(n + 1) = u(n) + f (u(n)),

which is given by the map
u→ u + f (u). (35)

Equations (18) and (19) become

0 = f (a) + f (b), b− a = f (a). (36)

Notifying
u(1) = u(0) + f (u(0)), u(2) = u(1) + f (u(1)) (37)

for a = u(0) and b = u(1), the second equation of (36) is only the first of (37), while the first
equation of (36) has the form

u(0) = u(0) + f (u(0)) + f (u(1)) = u(1) + f (u(1)) = u(2).

Consequently, for q = 1, (18) and (19) are equations for 2-periodic orbits of the map (35). Thus,
(18) and (19) are extensions of possible asymptotic 2-periodic orbits of (37) for q ∈ (0, 1).

Consider now the case of the FOM map f (u) = u2 + c. From (18) and (19), one has

0 =

(
q +

1
Γ(q)

∞

∑
k=1

(
Γ(2k + 1 + q)

Γ(2k + 2)
− Γ(2k− 1 + q)

Γ(2k)

))
(a2 + c)

+

(
1 +

1
Γ(q)

∞

∑
k=1

(
Γ(2k + q)
Γ(2k + 1)

− Γ(2k− 2 + q)
Γ(2k− 1)

))
(b2 + c)

(38)

and

b− a =

(
1 +

1
Γ(q)

∞

∑
k=1

(
Γ(2k + q)
Γ(2k + 1)

− Γ(2k− 1 + q)
Γ(2k)

))
(a2 + c)

+
1

Γ(q)

∞

∑
k=1

(
Γ(2k− 1 + q)

Γ(2k)
− Γ(2k− 2 + q)

Γ(2k− 1)

)
(b2 + c).

(39)

For example, considering (38) and (39) for q = 0.75 with c = −1.15481 + 0.102204ı
chosen in the “had” of the FOM set (red point in Figure 4a), and the summations from
k = 1 to k = 80, one obtains the following system:

0.228959(a2 − 1.15481 + 0.102204ı) + 0.229315(b2 − 1.15481 + 0.102204ı) = 0,

0.709172(a2 − 1.15481 + 0.102204ı)− 0.479857(b2 − 1.15481 + 0.102204ı) = b− a

with the following solutions;

a = 1.07567− 0.0475071ı, b = 1.07567− 0.0475071ı;

a = −1.07567 + 0.0475071ı, b = −1.07567 + 0.0475071ı;

a = −0.168154− 0.075887ı, b = −1.51364 + 0.075887ı,

a = −1.51495 + 0.075887ı, b = −0.166848− 0.075887ı .

The first two solutions are fixed points

a = b = ±
√
−c = ±

√
−1.15481 + 0.102204ı = ±(1.07567− 0.0475071ı).

These fixed points are unstable since c = −1.15481 + 0.102204ı /∈ S0.75 (see red point in
Figure 4a), being outside Sq (see Section 2.1 and Figure 3c).
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Figure 4. Asymptotic 2-periodic cycle of the FOM map for q = 0.75 and c = −1.15481 + 0.102204ı
(red point): (a) Asymptotic 2-periodic cycle (green) overplotted over the FOM set; (b) Time series of
the solution u, after 100 iterations: real component (red) and imaginary component (blue).

The last two solutions present possible asymptotic 2-periodic approximate solutions
corresponding to q = 0.75 and c = −1.15481 + 0.102204ı. So, if one iterates the system
with these data (q = 0.75 and c = −1.15481 + 0.102204ı), one obtains the asymptotic
2-periodic solution with the time series presented in Figure 4b, which corresponds to the
fourth rectangle solution. As can be seen from figure, the real component of the solution
u (red plot in Figure 4b) oscillates asymptotically between the real component of a and
b, respectively, while the imaginary component of the solution oscillates asymptotically
between the imaginary components of a and b, respectively (blue plot in Figure 4b). In
the parametric plane c, over the FOM set, the asymptotic 2-periodic cycle visiting the two
points a and b is overplotted in green (transients removed). The grey plot connects the
cycle elements.

In addition, another interesting characteristic, shown here only numerically, is the
property of all points c within the “head” of the FOM set which generate asymptotic
2-periodic solutions (compare with the IO Mandelbrot set, where the points c within the
“head” generate stable 2-period cycles).

3. Conclusions

In this paper, some results on the stability of the fixed points of the complex Mandelbrot
map of fractional order are analyzed, and the non-periodicity for fractional differences of
Caputo’s sense, exemplified in the case of the Mandelbrot set of fractional order, is studied.
A possible future direction of research would be to extend this study of non-periodicity to
other types of fractional differences such as Riemann–Liouville and Grundwald–Letnikov
complex fractional differences. Another new direction would be to consider quaternion
numbers instead of complex ones, i.e., quaternion fractional differences on H instead of
complex fractional differences on C.
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function FO_mandelbrot(lat,n_max,q)

% Matlab code for Mandelbrot set of FO

% modeled by Caputo like fractional differences

% author Marius-F. Danca, November 2022

% web:http://danca.rist.ro/

% email:danca@rist.ro

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input:

% -lat: size in c points of the drawing window

% -n_max: iterations number in the nr. integral

% -q: the fractional order $q\in(0,1)$

% example:FO_mandelbrot(500,30,0.75)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cxmin=-1.75;% cxmin,cxmax,cymin,cymax: window corners

cxmax=.5;

cymin=-1;

cymax=1;

[cx,cy]=meshgrid(linspace(cxmin, cxmax, lat), ...×

linspace(cymin, cymax, lat));% window meshgrid

c=cx+1i*cy;

z = zeros(lat,lat,n_max);% memory alocation for

% iterations sequence

col = zeros(size(c));% color memory set to 0

z(:,:,1)=c;% due to the problem of matlab 0 index, the

% first term of the nr. integral is outside integral

n=2;

while n<n_max

exo=exp(gammaln(n-1+q)-gammaln(n));

s=exo*c;

j=2;

while j≤n

ee=exp(gammaln(n-j+q)-gammaln(n-j+1));

s=s+ee*(z(:,:,j-1).*z(:,:,j-1)+c);

j=j+1;

end

z(:,:,n)=s/gamma(q);

col(abs(z(:,:,n)) ≥ 2) =1;% coloring condition

n=n+1;

end

imagesc([cxmin,cxmax],[cymin,cymax],col)

map=[0,0,0;1,1,1];

colormap(map)

axis image

Figure A1. The code is set to draw the FOM set in B-W, and it can be improved such that the speed
is increased and colors are enhanced. To obtain the enlarged versions of some parts of the FOM
set, the underlying corners must be modified (see https://www.mathworks.com/matlabcentral/
fileexchange/121632-fo_mandelbrot).

https://www.mathworks.com/matlabcentral/fileexchange/121632-fo_mandelbrot
https://www.mathworks.com/matlabcentral/fileexchange/121632-fo_mandelbrot
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