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Abstract: Burgers’ equation is used to describe wave phenomena in hydrodynamics and acoustics.
It was derived originally as a prototype to provide analytic insight into the nature of turbulence
and its modeling, and has found applications in the study of shock waves and wave transmission.
Burgers’ equation is not globally controllable, and under certain conditions it can be neutrally stable.
In this study, we explore the adaptive backstepping boundary control (BBC) methodology on a
modified Burgers’ equation with unknown parameters, but constant, for the reactive and convective
(nonlinear) terms, with Robin and Neumann boundary conditions (BCs) , where this latter BC is
actuated by the control signal. The nominal controller is designed from a linear partial differential
equation (PDE), and under the assumption that this nominal controller also achieves stabilization for
the modified Burgers’ equation, then its adaptive version is proposed for the control of such nonlinear
PDE systems. Simulation results show convergence near the ideal values for the parametric estimates
while the estimation error converges to zero.

Keywords: adaptive control; backstepping control; boundary control; infinite dimensional systems;
modified Burgers’ equation; partial differential equations

1. Introduction

Partial differential equations (PDEs) are employed to describe the behavior from
heat transfer, fluid flows, electrostatic fields, vibrations or wave phenomena [1] and also
have been objects of study in novel areas concerned with traffic flow control, gas and
oil extraction, neural networks, machine learning, neuroscience, information science and
quantum systems [2–5]. Moreover, the modeling of soft robots by means of PDEs to the
design of feedback controllers is still an open research topic [6]. In accordance with its
properties, the PDEs are classified into parabolic, elliptic and hyperbolic types. Due to
the temporal and spatial interaction between their parameters and variables, such PDEs
systems are also referred as distributed parameter systems (DPSs). A PDE in a domain
together with a set of initial and/or boundary conditions (BCs) that retains the existence,
uniqueness, and stability properties is said to be a well-posed problem [7].

Burgers’ equation is used to describe wave phenomena in hydrodynamics and acous-
tics. Burgers was interested in the equation as a one-dimensional model of viscous com-
pressible flow. It was derived originally as a prototype to provide analytic insight into
the nature of turbulence and its modeling, and has found applications in the study of
shock waves and wave transmission. Also, it is considered analogous to the Navier–Stokes
equation. Moreover, it has been shown that Burgers’ equation with an external forcing
term can be reduced to an one-dimensional heat equation plus a potential term via the
Hopf–Cole transformation. It should be noted that in the case of radiation or Neumann
BCs, this latter transformation is not of great help since these conditions are transformed
into quadratically nonlinear conditions. So, this fact does not allow us to treat the above
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mentioned linear heat equation by standard methods. Besides, the Burgers’ equation can
be linked with the linear heat equation via Bäcklund transformation. Furthermore, it is
well-known that the uncontrolled problem for the Burgers’ equation with homogeneous
Neumann BCs is not asymptotically stable. Additionally, Burgers’ equation is not globally
controllable, and under certain conditions it can be neutrally stable [8–13].

Generally, finding exact solutions for nonlinear PDEs and the practical problem may
be hard. Due to such a reason, many numerical methods are frequently applied to achieve
this goal [14–17]. The solution of the general Burgers equation is quite complex, and few
researchers study the theoretical solution of this equation. Instead, many other researchers
have considered various numerical discretization methods to solve it. In [14], a robust
implicit difference scheme was proposed in order to compensate the singular behavior of
the exact solution at the initial time introducing graded meshes. The Galerkin method,
based on piece-wise linear test functions, was used to handle the nonlinear convection term,
whereas the Taylor expansion, with an integral remainder, was used to deal with fourth-
and second-order terms. Existence, stability, convergence and uniqueness properties of
the numerical solutions were proved. Also, two nonlinear iterative methods, namely the
linearized iterative algorithm and the Newton iterative method, were introduced to solve
the nonlinear system. Most of the existing approximate methods for solving fourth-order
partial integro-differential equations (PIDEs) with a weakly singular kernel (WSK) are
unbalanced, i.e., a low order scheme, such as finite difference methods; for integrating
the temporal variable and a high-order numerical structure, such as the spectral-like
method, the discretization of space variables are used. The Sinc-collocation method is an
effective technique against the singularities of the equations. In [15], a fully space–time Sinc-
collocation method was developed for a fourth-order heat model arising in viscoelasticity,
which is a family of fourth-order PIDEs involving weak singularity. The Sinc method for
the Volterra integral term was constructed. Exponential convergence simultaneously in
space and time for the proposed method was proved. As a general form of PIDEs, the
nonlocal evolution equations with a WSK are recognized as an efficient tool to describe the
properties of complex dynamical processes more accurately than the integer derivatives
and integrals. The application of the nonlocal evolution equations encompasses a wide
spectrum of topics. The three-dimensional nonlocal evolution equation with the WSK is in
a preliminary stage of development, and its potential remains to be fully explored. In [16],
a backward Euler alternating direction implicit (ADI) finite difference method for the three-
dimensional nonlocal evolution equation with the WSK was devised, which significantly
reduces the computational cost. The ADI method is an effective numerical method for high
dimensional PIDEs, which reduce the high dimensional problem to sets of independent one-
dimensional problems. Stability and convergence analysis were proven when introducing
two new inner products and norms. A first-order fractional convolution quadrature scheme
and the backward Euler ADI method were proposed to approximate a Riemann–Liouville
fractional integral term and to discretize the temporal derivative, respectively. In [17],
an orthogonal spline collocation (OSC) method for approximating a multi-term fourth-
order subdiffusion equation with non-smooth solutions was developed. The multi-term
fourth-order subdiffusion equation is an effective tool for modeling anomalous phenomena
and complex systems in engineering and natural science, having some advantages over
integer-order PDEs in describing real processes or phenomena with memory. The graded
meshes method to handle the initial weak singularity of the unknown solution at the initial
time was employed in the temporal direction, whereas the OSC method was used in the
spatial direction.

Under a nonlinear feedback linearizing transformation approach and using the back-
stepping boundary control (BBC) method for PDEs [18,19], a full state feedback law was
designed in order to stabilize shock profiles from the viscous Burgers’ equation actuated at
its boundaries. Then, the design of a nonlinear observer, output feedback stabilization and
trajectory tracking for the viscous Burgers’ equation were addressed in [20–22].
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Although not in a direct way, the adaptive control approach for ordinary differential
equations (ODEs) from finite dimension has been spread to the control of PDEs of infinite
dimension, successfully contributing to the parametric estimation of its ideal parameters.
The adaptive control technique has been studied in some classes of DPSs. A review can
be found in [10,23]. In [10], the problem of global asymptotic stability, when considering
Neumann and Dirichlet boundary control, was solved for the viscous and inviscid Burg-
ers’ equations through the design of nonlinear boundary control laws under the control
Lyapunov function approach. In this latter work, the viscosity parameter was considered
as uncertain, and the control of their respective stochastic versions was also addressed.
Moreover, an observer-based version was developed for the Dirichlet boundary control
of the viscous Burgers’ equation for which measurement in the interior of the domain
is required, but it may be impossible to obtain [24]. In [23], an adaptive regulator for a
viscous Burgers’ equation was designed under a high-gain nonlinear output feedback
approach ensuring global asymptotic stability. Also, it was shown that his proposal can
be generalized to higher-order nonlinear PDEs systems. In [25], the trajectory tracking
problem and disturbance attenuation to the viscous Burgers’ equation was addressed under
the geometric regulation theory approach.

In [26–28], early studies on estimation error convergence in DPSs were conducted.
In such works, the model reference adaptive control (MRAC) approach for PDEs was
examined. Designs of robust adaptive controllers for the Burgers’ equation, regarding
unknown viscosity, under Lyapunov’s direct method were reported in [10,29]. An adaptive
version for a boundary controller of a parabolic PDE, this latter including an unknown
parameter that destabilizes the system, was proposed in [30]. In [31,32], under the output
feedback approach, adaptive boundary controllers for unstable infinite relative degree
parabolic type PDEs were developed. In [33], adaptive controllers for parabolic type
PDEs with spatially-varying parameters as well as with actuation in the boundary were
introduced. Convergence of the estimation and parametric errors was guaranteed under
Lyapunov’s framework. Adaptive boundary controllers designed for unstable parabolic
PDEs under the backstepping control framework were reported in [34–36]. Moreover, the
adaptive control problem for hyperbolic PDEs, namely one-dimensional systems of coupled
linear hyperbolic PDEs, relying on the backstepping approach was treated in [4].

Adaptive BBC approach for PDEs has become a useful constructive design method
for both state and unknown parameter estimation with control signal actuation in the
boundary, offering the advantage of neglecting the placement of actuators and sensors in
the domain [37]. In [19], adaptive BBC design schemes for PDEs based on Lyapunov’s
method, swapping and passive identifiers, the latter being inspired on the basis of the
certainty equivalence principle, were addressed.

The backstepping design method has shown to have great potential in the control of
nonlinear PDEs. In some PDEs, the nonlinearity appears in a manner that does not affect
the stability; thus, as for the Burgers’ equation in [29,38–40], the selection of a Lyapunov
function is very simple. In fact, the experience has shown that the addition of viscosity
yields smooth solutions for a nonlinear equation, and that the addition of a nonlinearity
can stabilize a linear equation.

In our work, we try with the control of a one-dimensional parabolic type modified
Burgers’ equation via adaptive BBC methodology under the criteria of parametric uncer-
tainties to the reactive and viscosity terms, BCs of Robin and Neumann, and actuation of
the control signal on this latter BC.

This paper is arranged as follows. Function space properties are summarized in
Section 2. In Section 3, the design of a BBC for a Reaction–Advection–Diffusion (RAD)
equation is shown. The modified Burgers’ system is described in Section 4. The identifier PDE
is given in Section 5. In Section 6, the estimation error PDE is given. Section 7 summarizes
the design of the parametric update (adaptive) laws. Dynamics from the boundary control
are exhibited in Section 8. In Section 9, interpretation of the results and research directions
are given. Conclusions are drawn at the end.
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2. Function Spaces

Let Ω be an open set of Rn with boundary Γ. Consider that either Ω is Cr, for r ≥ 1, or
Ω is Lipschitz. Let x = {x1, . . . , xn} be the generic point of Rn; so, dx = dx1 . . . dxn denotes
the Lebesgue measure on Rn. C(Ω) denotes the space of real continuous functions on Ω,
C(Ω) denotes the space of real continuous functions on Ω. Ck(Ω), k ∈ N or k = ∞ denotes
the space for functions k times continuously differentiable on Ω, Ck(Ω) denotes the space
for functions k times continuously differentiable on Ω. C∞

0 denotes the spaces of real C∞

functions on Ω with compact support in Ω.
Let us consider L2(Ω) a Hilbert space for the scalar product

(u, v) =
∫

Ω
u(x)v(x)dx (1)

with norm given by
| u |= ‖u‖L2(Ω) = {(u, u)}1/2. (2)

The space of bounded and measurable real functions on Ω is represented by L∞(Ω), a
Banach space for the norm

‖u‖L∞(Ω) = ess supx∈Ω|u(x)|. (3)

The space of real functions on Ω, which are Lp for the Lebesgue measure, is repre-
sented by Lp(Ω), for p ∈ [1, ∞), a Banach space for the norm

‖u‖Lp(Ω) =

( ∫
Ω
|u(x)|pdx

)1/p

. (4)

The Sobolev space of functions u in Lp(Ω) is denoted byW s,p(Ω), s ∈ N, p ∈ [1, ∞],
whose derivatives of order equal to or less than s are in Lp(Ω), a Banach space for the norm

‖u‖W s,p(Ω) = ∑
[α]≤s
‖Dαu‖Lp(Ω) (5)

with Diu = ∂u/∂xi, i ∈ [1, n], denoting partial differential derivatives of u, Dαu = Dα1
1 . . . Dαn

n u
= (∂α1+···+αn u)/(∂xα1

1 . . . ∂xαn
n ), [α] = α1 + · · ·+ αn and α = {α1, . . . , αn} ∈ Nn.

For the scalar product

((u, v))Hs(Ω) = ∑
[α]≤s

(Dαu, Dαv), (6)

W s,2(Ω) = Hs(Ω) is a Hilbert space.
Consider the Sobolev spaces Hs(Ω) comprising C∞(Ω) and Cs(Ω). The closure of

C∞
0 (Ω) in Hs(Ω) is denoted by Hs

0(Ω). The closure of C∞
0 (Ω) inW s,p(Ω) is denoted by

W s,p
0 (Ω).

For the scalar product

((u, v))H1(Ω) = (u, v) +
n

∑
i=1

(Diu, Div), (7)

H1(Ω) = {u ∈ L2(Ω), Diu ∈ L2(Ω), 1 ≤ i ≤ n} (8)

and
H1

0(Ω) = The closure of C∞
0 (Ω) inH1(Ω) (9)

are Hilbert spaces.
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The Poincaré inequality

|u| ≤ c0(Ω)

{ n

∑
i=1
|Diu|2

}1/2

, (10)

for all u ∈ H1
0(Ω), for a bounded Ω, implies that for the scalar product

((u, v)) =
n

∑
i=1

(Diu, Div) (11)

with norm given by
‖u‖ = {((u, u))}1/2, (12)

H1
0(Ω) is a Hilbert space equivalent toH1(Ω) [41].

3. BBC Design Methodology for PDEs

The BBC design methodology for PDEs consists of introducing a Volterra integral
transformation with a integration kernel along with a control law that maps the PDE system
into a stable objective system. So, the PDE system is stabilized due to the invertibility of the
transformation since the equivalence of norms between both PDE and objective systems
holds. In this section, we show the design procedure of a BBC for a RAD equation [42].

In our analysis, all functions are dependant on the spatial variable x and time t. For
easy of notation, only those functions for which the argument is highlighted are those for
which its BC is particularly referred to x = 0 or x = 1.

Consider the RAD system

ut = uxx + bux + λu, (13)

ux(0) = −
b
2

u(0), (14)

ux(1) = U (t), (15)

with u a function with domain x ∈ [0, 1] and t ∈ [0, ∞) in the spatial variable and time,
respectively, with b, λ as constant parameters, Neumann BCs and actuation (Neumann
actuation) signal U (t), diffusion term uxx, advection term bux and reaction term λu. Let
us define

v = e(b/2)xu (16)

as a change of variables. From (16), the temporal derivative results

ut = e−(b/2)xvt (17)

while its spatial derivatives as

ux = e−(b/2)xvx − b
2 e−(b/2)xv (18)

and

uxx = e−(b/2)xvxx − be−(b/2)xvx +
b2

4 e−(b/2)xv. (19)

So, under the change of variables (16), the term ux is removed from the linear PDE (13)
which becomes

vt = vxx + λ0v (20)
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with λ0 = λ− b2

4 . The BCs are inferred by deriving (16), i.e.,

vx = e(b/2)xux +
b
2 e(b/2)xu, (21)

which, for x = 0 results

vx(0) = ux(0) +
b
2

u(0).

Thus, from (14),

vx(0) = 0. (22)

Now, evaluating (21) for x = 1 results

vx(1) = eb/2ux(1) +
b
2

eb/2u(1). (23)

Later, Equation (20) has the form of a Reaction–Diffusion (RD) equation, i.e., it is a
reduced model from (13), with BCs (22)–(23).

3.1. Stable Objective System

The desirable behavior to be performed by (20) should be defined through a stable
objective system. So, let us take the heat equation

wt = wxx, (24)

wx(0) = 0, (25)

wx(1) = −
1
2

w(1), (26)

as objective system, with Neumann BCs to the function w with domain x ∈ [0, 1] and
t ∈ [0, ∞). Next, we must demonstrate exponential stability of the system (24)–(26) in the
L2-norm, namely,

‖w‖ =
(∫ 1

0
w2dx

)1/2

. (27)

Let us consider the Lyapunov function

V =
1
2

∫ 1

0
w2dx (28)

with time derivative

V̇ =
∫ 1

0
wwtdx (29)

which, from (24), can be written as

V̇ =
∫ 1

0
wwxxdx. (30)

By applying integration by parts we have

V̇ = w(1)wx(1)− w(0)wx(0)−
∫ 1

0
w2

xdx,
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which, from BCs (25)–(26), is reduced to

V̇ = −1
2

w2(1)−
∫ 1

0
w2

xdx. (31)

The linkage between L2-norms of w and wx is established in the following lemma.

Lemma 1 (Poincaré Inequality [43]). For any w ∈ H1(0, 1) (Sobolev space) the following
relations hold ∫ 1

0
w2dx ≤ 2w2(1) + 4

∫ 1

0
w2

xdx,∫ 1

0
w2dx ≤ 2w2(0) + 4

∫ 1

0
w2

xdx.
(32)

Proof See [43].
So, multiplying (31) by a constant we have

4V̇ = −2w2(1)− 4
∫ 1

0
w2

xdx. (33)

From Lemma 1, Equation (33) is simplified to

V̇ ≤ −1
4

∫ 1

0
w2dx. (34)

Thus, considering (28), this latter inequality can be rewritten as

V̇ ≤ −1
2

V. (35)

Solving this last relation by integration we arrive at

ln(V) ≤ −1
2

t + c. (36)

Later, from the property for logarithms

eln(V) ≤ e−(1/2)tec,

which is equivalent to

V ≤ e−(1/2)tec. (37)

Then, evaluating (37) for t = 0 results

V(x, 0) ≤ ec. (38)

Next, it should be proved that V ≤ V(x, 0). So, from the desirable property

V̇ ≤ 0, (39)

integrating and evaluating limits it yields

V −V(x, 0) ≤ 0.

Then,

V ≤ V(x, 0).
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Also, from (37) and (38),

V ≤ e−(1/2)tV(x, 0). (40)

Moreover, from (28) and (27),

1
2

∫ 1

0
w2dx ≤ 1

2
e−(1/2)t

∫ 1

0
w2(x, 0)dx. (41)

At last,

‖w‖ ≤ e−(1/4)t‖w0‖ (42)

where w0 is for w(x, 0). In the manner given above, exponential stability of the PDE
system (24)–(26) has been proved.

3.2. Backstepping Transformation

Following the BBC methodology for PDEs [18], the coordinate (Volterra integral)
transformation

w = v−
∫ x

0
k(x, y)v(y)dy (43)

is exploited to convert the reduced model (20), with BCs (22) and (23), into the stable objec-
tive system (24)–(26). From the invertibility property of the Volterra integral transformation,
the smoothness of the kernel (kernel gain) k(x, y) of the direct and inverse transformation
sets the equality between norms from L2 and H1 spaces. So, a kernel gain should be
found to achieve that the RAD system behaves like the objective system. Also, from the
stability property of the heat Equations (24)–(26) can be inferred exponential stability for
the closed-loop system in L2 andH1.

Let us assume k(x, t) as a continuous function whose partial derivative is also continu-
ous in x ∈ [0, 1] for t ∈ [0, ∞). By invoking the Leibniz rule [44],

d
dx

∫ x

0
k(x, y)dy = k(x, x) +

∫ x

0
kx(x, y)dy (44)

with

kx(x, x) =
∂

∂x
k(x, y)

∣∣∣
y=x

, (45)

ky(x, x) =
∂

∂y
k(x, y)

∣∣∣
y=x

, (46)

and

d
dx

k(x, x) = kx(x, x) + ky(x, x). (47)

From (43), its temporal derivative results

wt = vt −
∫ x

0
k(x, y)vt(y)dy. (48)

Recalling (20), the temporal derivative (48) is rewritten as

wt = vxx + λ0v−
∫ x

0
k(x, y)(vyy(y) + λ0v(y))dy. (49)
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From the left term inside the integral, using integration by parts twice yields∫ x

0
k(x, y)vyy(y)dy = k(x, x)vx − ky(x, x)v + ky(x, 0)v(0, t) +

∫ x

0
kyy(x, y)v(y)dy. (50)

From (43), the spatial derivatives invoking (44) are given as

wx = vx − k(x, x)v−
∫ x

0
kx(x, y)v(y)dy, (51)

and

wxx = vxx − k(x, x)vx − kx(x, x)v− d
dx k(x, x)v−

∫ x

0
kxx(x, y)v(y)dy. (52)

Subtracting (49) and (50) from (52), when considering (24), results

wt − wxx =
(
λ0 + ky(x, x) + d

dx k(x, x) + kx(x, x)
)
v− ky(x, 0)v(0)

+
∫ x

0

(
kxx(x, y)− kyy(x, y)− λ0k(x, y)

)
v(y)dy. (53)

From the term inside the integral in (53),

kxx(x, y)− kyy(x, y) = λ0k(x, y). (54)

Also, from (53), by fixing
−ky(x, 0)v(0, t) = 0 (55)

then
ky(x, 0) = 0. (56)

Moreover, from (53), by fixing the left term

λ0 + ky(x, x) +
d

dx
k(x, x) + kx(x, x) = 0, (57)

taking into account (47), thus

λ0 + 2
d

dx
k(x, x) = 0. (58)

Subtracting λ0 and integrating it yields

k(x, x) = −λ0

2
x. (59)

Consequently, to zeroing (53), for all v in x, y ∈ [0, 1], the identities (54), (56) and (59)
must be satisfied.

By inspecting (54) and (56), the kernel gain k(x, y) will be the solution of such a
hyperbolic PDE system. The kernel can be met by the conversion of (54) and (56) into an
integral equation. So, consider the change in variables

ζ = x + y, $ = x− y, (60)

and let us denote

G(ζ, $) = k(x, y). (61)

From (61), its derivatives with regard to the x and y variables are given in the form
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kx(x, y) = Gζ(ζ, $) + G$(ζ, $), (62)

ky(x, y) = Gζ(ζ, $)− G$(ζ, $), (63)

kxx(x, y) = Gζζ(ζ, $) + 2Gζ$(ζ, $) + G$(ζ, $), (64)

kyy(x, y) = Gζζ(ζ, $)− 2Gζ$(ζ, $) + G$(ζ, $). (65)

Substituting (62)–(65) into (54) it yields

4Gζ$(ζ, $) = λ0G(ζ, $). (66)

By applying the change of variables (60) to (56) it results

G(ζ, 0) = −λ0

4
ζ. (67)

Then, by applying (67) into (59) it results

Gζ($, $) = G$($, $). (68)

In this manner, we get the PDE (66) with BCs (67) and (68).
By integrating (66) with regard to $, from limits 0 to $, thus∫ $

0
G$s(ζ, s)ds =

λ0

4

∫ $

0
G(ζ, s)ds. (69)

By evaluating the integral from the left side of (69) it yields

Gζ(ζ, $)− Gζ(ζ, 0) =
λ0

4

∫ $

0
G(ζ, s)ds. (70)

From (67), calculating the derivative with regard to ζ and replacing it in (70) yields

Gζ(ζ, $) = −λ0

4
+

λ0

4

∫ $

0
G(ζ, s)ds. (71)

Then, by integrating (71) with regard to ζ, from limits $ to ζ, we have∫ ζ

$
Gϕ(ϕ, $)dϕ = −λ0

4

∫ ζ

$
dϕ +

λ0

4

∫ ζ

$

∫ $

0
G(ϕ, s)dsdϕ. (72)

From both simple integrals in (72), evaluating limits it yields

G(ζ, $) = G($, $)− λ0

4
(ζ − $) +

λ0

4

∫ ζ

$

∫ $

0
G(ϕ, s)dsdϕ. (73)

Now, we need to write G($, $) in terms of an integral function.
From the identity (68),

d
d$

G($, $) = G$($, $) + Gζ($, $). (74)

From the relation (47), Equation (74) becomes

d
d$

G($, $) = Gζ($, $) + Gζ($, $) (75)

= 2Gζ($, $). (76)
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By integrating (76) with regard to $, from limits 0 to $, we get∫ $

0
Gs(s, s)ds = 2

∫ $

0
Gζ(s, s)ds. (77)

By evaluating the integral on the left side from (77) we get

G($, $) = G(0, 0) + 2
∫ $

0
Gζ(s, s)ds. (78)

From (67), for ζ = 0 then G(0, 0) = 0. By the identity (68), for ζ = $ we can assure that
both map into the same domain. So, we write (78) as

G($, $) = 2
∫ $

0
Gζ(ϕ, ϕ)dϕ. (79)

From (71), the integral term is given as

Gζ(ϕ, ϕ) = −λ0

4
+

λ0

4

∫ ϕ

0
G(ϕ, s)ds. (80)

So , substituting (80) in (79) and expanding,

G($, $) = −λ0

2

∫ $

0
dϕ +

λ0

2

∫ $

0

∫ ϕ

0
G(ϕ, s)dsdϕ. (81)

Also, evaluating limits for the integral on the left yields

G($, $) = −λ0

2
$ +

λ0

2

∫ $

0

∫ ϕ

0
G(ϕ, s)dsdϕ. (82)

Moreover, by substituting (82) into (73) it yields

G(ζ, $) = −λ0

2
$ +

λ0

2

∫ $

0

∫ ϕ

0
G(ϕ, s)dsdϕ− λ0

4
(ζ − $) +

λ0

4

∫ ζ

$

∫ $

0
G(ϕ, s)dsdϕ (83)

which, adding similar terms, is rewritten as

G(ζ, $) = −λ0

4
(ζ + $) +

λ0

2

∫ $

0

∫ ϕ

0
G(ϕ, s)dsdϕ +

λ0

4

∫ ζ

$

∫ $

0
G(ϕ, s)dsdϕ. (84)

At last, we arrived at (84) which is equivalent to the PDE (54) with BCs (56) and (59).

3.3. Integral Equation Solution

Let us find the solution for the integral Equation (84). So, from the initial guess

G0(ζ, $) = 0, 0 ≤ $ ≤ ζ ≤ 2, (85)

and by using the successive approximations approach, a recursive formula is established to
approximate the step ahead solution Gn+1(ζ, $). This formula is set up as

Gn+1(ζ, $) = −λ0

4
(ζ + $) +

λ0

2

∫ $

0

∫ ϕ

0
Gn(ϕ, s)dsdϕ +

λ0

4

∫ ζ

$

∫ $

0
Gn(ϕ, s)dsdϕ. (86)

Let us denote the difference between two consecutive terms as

∆Gn(ζ, $) = Gn+1(ζ, $)− Gn(ζ, $), (87)
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so,

∆Gn+1(ζ, $) =
λ0

2

∫ $

0

∫ ϕ

0
∆Gn(ϕ, s)dsdϕ +

λ0

4

∫ ζ

$

∫ $

0
∆Gn(ϕ, s)dsdϕ. (88)

Assuming that (86) tends to a limit, the solution G(ζ, $) can be written as

G(ζ, $) = lim
n→∞

Gn(ζ, $) (89)

or, by using (87), in the form

G(ζ, $) =
∞

∑
n=0

∆Gn(ζ, $). (90)

From considering (85)–(88) and setting n = 0 we get

G1(ζ, $) = −λ0

4
(ζ + $),

∆G0(ζ, $) = −λ0

4
(ζ + $), (91)

∆G1(ζ, $) = −
λ2

0
2(4)

∫ $

0

∫ ϕ

0
(ζ + $)dsdϕ−

λ2
0

42

∫ ζ

$

∫ $

0
(ζ + $)dsdϕ,

= −
λ2

0
2(42)

((ζ + $)ζ$). (92)

Thus, using (88) we arrive at

∆G2(ζ, $) = −
λ3

0
(22)(42)

∫ $

0

∫ ϕ

0
((ζ + $)ζ$)dsdϕ−

λ3
0

2(43)

∫ ζ

$

∫ $

0
((ζ + $)ζ$)dsdϕ,

= −
λ3

0
3(22)(43)

(
(ζ + $)ζ2$2

)
. (93)

At this stage, we are obtaining (88) for every new n value. For n = 2 then we need
∆G3(ζ, $) since ∆G2(ζ, $) is calculated for n = 1. So,

∆G3(ζ, $) = −
λ4

0
3(23)(43)

∫ $

0

∫ ϕ

0
((ζ + $)ζ2$2)dsdϕ−

λ4
0

3(22)(44)

∫ ζ

$

∫ $

0
((ζ + $)ζ2$2)dsdϕ,

= −
λ4

0
(22)(32)(45)

(
(ζ + $)ζ3$3

)
. (94)

Then, for n = 3 it results

∆G4(ζ, $) = −
λ5

0
(23)(32)(45)

∫ $

0

∫ ϕ

0
((ζ + $)ζ3$3)dsdϕ

−
λ5

0
(22)(32)(46)

∫ ζ

$

∫ $

0
((ζ + $)ζ3$3)dsdϕ, (95)

= −
λ5

0
5(22)(32)(45)

(
(ζ + $)ζ4$4

)
. (96)

Accordingly, from (91)–(96), for any n the pattern to follow is formulated as

∆Gn(ζ, $) = −
λn+1

0 (ζ + $)ζn$n

4n+1(n + 1)!n!
. (97)
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Then, the solution (90) can be defined by

G(ζ, $) = −
∞

∑
n=0

λn+1
0 (ζ + $)ζn$n

4n+1(n + 1)!n!
. (98)

Let us consider the use of a first-order modified Bessel function, namely,

Im(x) =
∞

∑
n=0

( x
2
)m+2n

n!(n + m)!
, (99)

in order to simplify (98) for software implementation. By setting m = 1, from (99) we get

I1(x) =
∞

∑
n=0

( x
2
)2n+1

n!(n + 1)!
. (100)

To express (100) in the form (98), rearranging terms in (98) it can be written as

G(ζ, $) = −
∞

∑
n=0

λ0

4
(ζ + $)

(
λ0ζ$

4

)n( 1
n!(n + 1)!

)
. (101)

Moreover, separating terms in (100) it is rewritten as

I1(x) =
∞

∑
n=0

x
2

(
x2

4

)n( 1
n!(n + 1)!

)
. (102)

From (101) and (102), matching the terms(
x2

4

)n

=

(
λ0ζ$

4

)n

we get

x =
√

λ0ζ$. (103)

By the knowledge of (103), the Bessel function is rewritten as

I1

(√
λ0ζ$

)
=

∞

∑
n=0

√
λ0ζ$

2

(
λ0ζ$

4

)n( 1
n!(n + 1)!

)
. (104)

Now, all the terms appearing in (104) must appear in (98). Then, by describing (100)
in the form (98),

G(ζ, $) = −λ0

4
(ζ + $)

∞

∑
n=0

 √λ0ζ$

2√
λ0ζ$

2

(√λ0ζ$

2

)n(
1

n!(n + 1)!

)
(105)

= −λ0

2
(ζ + $)

I1(
√

λ0ζ$)√
λ0ζ$

. (106)

Taking into account (60) we get

ζ + $ = 2x, (107)√
λ0ζ$ =

√
λ0(x2 − y2), (108)
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so, substituting (107) and (108) into (106) yields the kernel gain

k(x, y) = −λ0x
I1(
√

λ0(x2 − y2))√
λ0(x2 − y2)

. (109)

3.4. Neumann Controller

From the coordinate transformation (43) and the spatial derivative (51), setting x = 1
we have

wx(1) = vx(1)− k(1, 1)v(1)−
∫ 1

0
kx(1, y)v(y)dy. (110)

Separating vx(1), taking into account (26) and (43), from (110) we get

vx(1) = −
1
2

(
v(1)−

∫ 1

0
k(1, y)v(y)dy

)
+ k(1, 1)v(1) +

∫ 1

0
kx(1, y)v(y)dy. (111)

From considering (59) and from knowing k(1, 1), simplifying (111) it results as

vx(1) = −
(

λ0 + 1
2

)
v(1) +

∫ 1

0

(
k(1, y)

2
+ kx(1, y)

)
v(y)dy. (112)

For this last equation, we can get k(1, y) from (109). As it can be seen from the kernel
gain (109), the Bessel function depends from two variables. Then, we need to represent the
Bessel function in terms of one variable to get kx(1, y). Consider the change of variables

q(x, y) =
√

λ0

√
x2 − y2. (113)

So, Equation (109) can be rewritten as

k(q(x, y)) = −λ0xQ, (114)

with Q = q−1 I1(q). For a Bessel function its derivative is given by

d
dx

(x−n In(x)) = xn In+1(x). (115)

Thus, the derivative of (114) results

kx(q(x, y)) = −λ0

(
Q

d(x)
dx

+ x
d(Q)

dx

)
.

By using the chain rule,

kx(q(x, y)) = −λ0

(
Q

d(x)
dx

+ x
d(Q)

dq
dq
dx

)
, (116)

where

Q
d(x)
dx

= q−1 I1(q)(1) (117)

and

x
d(Q)

dx
d(q)
dx

= x
(

q−1 I2(q)
)( √

λ0x√
x2 − y2

)
. (118)
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Substituting (117) and (118) into (116) results

kx(q(x, y)) = −λ0

[
I1(q)

q
+

x2√λ0 I2(q)
q
√

x2 − y2

]

and going back to the original variables x, y we get

kx(x, y) = −λ0
I1(
√

λ0(x2 − y2))√
λ0(x2 − y2)

− λ0x2 I2(
√

λ0(x2 − y2))

(x2 − y2)
. (119)

Setting x = 1 in (109) and (119), and replacing them in (112) we arrive at

vx(1) = −
(

λ0 + 1
2

)
v(1)

− 3λ0

2

∫ 1

0

(
I1(
√

λ0(1− y2))√
λ0(1− y2)

)
v(y)dy

− λ0

∫ 1

0

(
I2(
√

λ0(1− y2))

(1− y2)

)
v(y)dy. (120)

For x = 1, from the change of variables (16) and spatial derivative (18)

v(1) = e(b/2)u(1), (121)

ux(1) = e−(b/2)vx(1)−
b
2

e−(b/2)v(1), (122)

respectively. Substituting (120) and (121) into (122) we get the Neumann controller

ux(1) = −
(

λ0 + b + 1
2

)
u(1)

− 3λ0

2

∫ 1

0

I1(
√

λ0(1− y2))√
λ0(1− y2)

e
b
2 (y−1)u(y)dy

− λ0

∫ 1

0

I2(
√

λ0(1− y2))

(1− y2)
e

b
2 (y−1)u(y)dy. (123)

4. Modified Burgers’ Equation

Let us consider the modified Burgers’ equation

ut = εuxx + buux + λu, (124)

ux(0) =
1
2

bu(0), (125)

ux(1) = U (t), (126)

with u being a function defined inside the domain x ∈ [0, 1] for all t ∈ [0, ∞), and constant
parameters b and λ. This is a nonlinear PDE containing a convective term buux, and the
term εuxx could describe a viscosity correction [11]. Equations with convective terms appear
in applied mathematics and theoretical physics, e.g., traffic flow and gas dynamics [45].
As it can be seen, the system (124)–(126) has a Robin BC (125), also called a Steklov BC,
in addition to an actuated Neumann BC (126). The term λu is an instability term to the
system for λ > 0. Otherwise, the system will behaves as a stable one. It should be noted
that the Burgers’ equation is not globally controllable and that it can be neutrally stable
under certain conditions. Boundary value problems try with finding solutions that match
given surfaces, curves, or points. Typically, solutions are wanted to satisfy certain imposed
BCs. BCs required to specify a unique solution will depend on the equation class. For
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Poisson’s equation with a closed surface, Dirichlet conditions lead to a unique stable
solution. Neumann conditions, independent of the Dirichlet conditions, also lead to a
unique stable solution independent of the Dirichlet solution. So, a combination of BCs
could lead to an inconsistency, or nontrivial solutions can exist [11,46].

Also, consider the Neumann controller (123) designed for the RAD (linear PDE)
system (13)–(15), and whose structure from this latter is similar to that from (124)–(126),
when considering the linear heat Equations (24)–(26) as an objective system and λ0 =
λ− 1

4 b2 a given parameter, and I1(·), I2(·) modified Bessel functions of the first and second
kind, respectively.

In this work, as in the MRAC strategy for finite-dimensional systems, under the
assumption that the (nominal) controller (123) applied in (126) assures the stabilization of the
system for large enough values of λ, our goal is to design an adaptive BBC from the structure
of such nominal controllers (123) to be applied on the modified Burgers’ system. This last
assumption arises from considering that the structure for the RAD Equations (13)–(15) is, in
a certain sense, similar to that for the modified Burgers’ Equations (124)–(126), differing from
the convective and advection terms, with the same disposal for the BCs. It must be taken
into account that the adaptive control strategy for finite-dimensional systems cannot be
extended in a straightforward way to the adaptive control of infinite-dimensional systems.

5. Identifier PDE

From (124)–(126), consider now that b and λ are unknown constant parameters. Let us
introduce the auxiliary system

ût = εûxx + λ̂u + b̂uux + γ2(u− û)
∫ 1

0
u2

xdx, (127)

ûx(0) =
1
2

b̂u(0), (128)

ûx(1) = U (t), (129)

also called identifier PDE. It should be noticed that (127)–(129) is a mimic of the modified
Burgers’ equation plus one additional nonlinear term γ2[u − û]

∫ 1
0 u2

xdx, with constant
γ > 0, as well as its respective BCs, where (ˆ) denotes the parametric estimate or the
estimate of a function, u− û is the estimation error, and

∫ 1
0 u2

xdx is the squared norm L2
of ux. So, assuming that the control law for the system (127)–(129) is given by (123), then,
as is usual in MRAC designs for finite-dimensional systems [47], replacing its unknown
constant parameters b and λ with their respective parametric estimates b̂, λ̂ yields

ux(1) = −1
2

(
b̂ + λ̂0 + 1

)
û(1)

−3
2

λ̂0

∫ 1

0

I1(
√

λ̂0(1− y2))√
λ̂0(1− y2)

exp

(
b̂
2
(y− 1)

)
û(y)dy

−λ̂0

∫ 1

0

I2(
√

λ̂0(1− y2))

(1− y2)
exp

(
b̂
2
(y− 1)

)
û(y)dy, (130)

with λ̂0 = λ̂− 1
4 b̂2.

6. Estimation Error PDE

Now, let us consider the estimation error given by

e = u− û. (131)

with error dynamics
et = ut − ût. (132)
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From (131), the first derivative w.r.t. x yields to

ex = ux − ûx, (133)

while its second derivative is given by

exx = uxx − ûxx. (134)

From (124) and (127), the error dynamics (132) can be written as

et = εuxx + λu+buux − εûxx − λ̂u−b̂uux − γ2(u− û)
∫ 1

0
u2

xdx. (135)

Rearranging terms from (135), it can be rewritten as

et = εuxx − εûxx + λu− λ̂u+buux − b̂uux − γ2(u− û)
∫ 1

0
u2

xdx (136)

or, equivalently,

et = ε(uxx − ûxx) + (λ− λ̂)u+(b− b̂)uux − γ2(u− û)
∫ 1

0
u2

xdx. (137)

Let us define the parametric estimation errors

λ̃ = λ− λ̂, (138)

b̃ = b− b̂. (139)

So, the error dynamics can be expressed as

et = ε(uxx − ûxx) + λ̃u+b̃uux − γ2(u− û)
∫ 1

0
u2

xdx. (140)

Also, from considering (131) and (134) we get

et = εexx + λ̃u+b̃uux − γ2e
∫ 1

0
u2

xdx. (141)

Moreover, from (4),

et = εexx + λ̃u + b̃uux − γ2e‖ux‖2. (142)

Besides, from considering (133) along with (125) and (128), and evaluating them at
x = 0, we arrive to the BC

ex(0) =
1
2

b̃u(0). (143)

Furthermore, now considering (126) and (129), but evaluated at x = 1, we arrive to
the BC

ex(1) = 0. (144)

In this way, the BCs (143)–(144) for the estimation error PDE (142) have been established.

7. Adaptive Control Laws

Once that the identifier PDE has been defined and the tracking dynamics has been
formulated, the next step is to design the adaptive laws via Lyapunov’s method.
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Consider the Lyapunov function candidate

V =
1
2

∫ 1

0
e2dx +

1
2

λ̃2

γ1
+

1
2

b̃2

γ2
(145)

with time derivative

V̇ =
∫ 1

0
eetdx− 1

γ1
λ̃ ˙̂λ− 1

γ2
b̃ ˙̂b, (146)

where γ1, γ2 > 0.
From (142), (146) becomes

V̇ =
∫ 1

0
eexxdx + λ̃

∫ 1

0
eudx + b̃

∫ 1

0
euuxdx− γ2‖ux‖2

∫ 1

0
e2dx− 1

γ1
λ̃ ˙̂λ− 1

γ2
b̃ ˙̂b. (147)

As can be seen, adaptive control laws cannot be designed in a straightforward way
from this last equation due to the existence of cross-terms in the third term of (147). So, as-
suming the control law (123) as that for which the modified Burgers’ Equations (124)–(126)
is stabilized, since the modified Burgers’ equation is, in a certain sense, similar in structure
to that for the RAD Equations (13)–(15), we adopt the adaptive laws

˙̂λ = γ1

∫ 1

0
eudx, (148)

˙̂b = γ2

(∫ 1

0
euxdx +

1
2

e(0)u(0)
)

, (149)

taken from [48].
Consequently, our proposed adaptive control scheme comprises the PDE system (124)–(126),

the identifier PDE (127)–(129), adaptive laws (148)–(149) and adaptive control input (130)
in the search that the dynamics (127)–(129) will converge with that from (124)–(126).

The adaptive BBC scheme for the modified Burgers’ system (124)–(126) is shown in
Figure 1.

Figure 1. Adaptive BBC scheme for the modified Burgers’ system (124)–(126).

8. Simulation Results

The response of the adaptive BBC is verified via numerical solution. The parameters
and gains are set to b = 2, λ = 12, γ = 1, γ1 = 25, γ2 = 5 and u0(x) = 10 sin(πx). Al-
though ε can be set to different values from the unity, results from studying the stabilization
of the unstable shock equilibrium profiles from the Burgers’ equation are not dependent
from ε in a crucial form. Instead, ε just affects the actual size of the estimate for the region
of attraction of the closed-loop system. Most of the works on control of PDEs consider ε as
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unity values for numerical simplicity. So, from all of the above, in our study ε is settled
also as having a unity value. Figure 2 shows the solution in the open-loop of the modified
Burgers’ equation when considering the instability term. The solution in open-loop of the
modified Burgers’ equation without considering the instability term is depicted in Figure 3.
Figure 4 shows the closed-loop dynamics of the system, while Figure 5 shows the dynamics
for the identifier PDE. Convergence to zero from the estimation error is shown in Figure 6.
The effort of the control signal is depicted in Figure 7. Dynamics of the closed-loop system
at the boundaries is depicted in Figures 8 and 9. Figures 10 and 11 show the evolution
along time for the parametric estimates, which are bounded and converge near to their
ideal values.

Figure 2. Solution of the modified Burgers’ system when including the instability term.

Figure 3. Solution of the modified Burgers’ system in absence of the instability term.
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Figure 4. Performance of the adaptive controller.

Figure 5. Response from the identifier PDE.

Figure 6. Estimation error.
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Figure 7. Control effort of the adaptive controller.

Figure 8. Dynamics of the closed-loop system at the boundary x = 1.
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Figure 9. Dynamics of the closed-loop system at the boundary x = 0.
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Figure 10. Evolution of the parametric estimate λ̂.
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Figure 11. Evolution of the parametric estimate b̂.

9. Discussion

From our study, we realize that the parametric estimates are bounded and converge
near their (unknown) ideal values in spite of the fact that the adaptive laws were not
designed for invoking the Lyapunov’s method under the tracking dynamics formulated
here, and furthermore, the adaptive control law is not based on the structure for that
nominal controller, which may be designed directly from the modified Burgers’ system
following the BBC methodology. Also, the estimation error converges to zero; meanwhile,
the PDE system is stabilized at the boundaries, and the latter are near zero. Clearly,
there is no guarantee that the estimated parameters and the estimation error be bounded
under our proposal. So, the design of a BBC law based on the model for the modified
Burgers’ system is an open problem as well as, consequently, the design of its corresponding
adaptive version.

10. Conclusions

In our work, an adaptive BBC is proposed to control a modified Burgers’ system,
namely, a nonlinear PDE system, with BCs of the Robin and Neumann types and under
the criteria of parametric uncertainties of the convective (nonlinear) and reaction terms.
Although the nominal controller is designed from a RAD system, under the assumption
that this nominal controller also achieves stabilization for the modified Burgers’ equation,
then its adaptive version is proposed for the control of such nonlinear PDE system. This last
assumption arises from the comparison of the structure for the modified Burgers’ equation
with that from the RAD equation which, in certain sense, looks very similar, in addition
to the fact that some controllers designed from the linearization of a finite-dimensional
nonlinear system work well for the same nonlinear system, although around an operation
point, and that some controllers designed from lower-order systems also work well with
higher-order systems. Simulation results show convergence for the parametric estimates
near the (unknown) ideal values aside from the convergence of the estimation error to zero.
So, we concluded that our proposal performs well with this class of nonlinear PDE system,
and further, it can be used in high-dimension and real problems.



Fractal Fract. 2023, 7, 834 24 of 25

Author Contributions: Conceptualization, F.J. and O.F.M.-G.; investigation, F.J. and O.F.M.-G.;
methodology, F.J. and O.F.M.-G.; formal analysis, O.F.M.-G.; validation, F.J. and O.F.M.-G.; soft-
ware, O.F.M.-G.; data curation, O.F.M.-G.; visualization, F.J. and O.F.M.-G.; writing—original draft
preparation, F.J. and O.F.M.-G.; writing—review and editing, F.J.; supervision, F.J.; funding acquisi-
tion, F.J.; resources, F.J.; project administration, F.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financed by Tecnológico Nacional de México (TecNM) projects and,
partially, under a grant 39873 from the EDD 2022 program. This work was developed under the
framework of the Red Internacional de Control y Cómputo Aplicados (RICCA).

Data Availability Statement: The data presented in this study are not available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are employed in this manuscript:

ADI Alternating Direction Implicit
BBC Backstepping Boundary Control
BC Boundary Condition
DPSs Distributed Parameters Systems
MRAC Model Reference Adaptive Control
ODEs Ordinary Differential Equations
OSC Orthogonal Spline Collocation
PIDE Partial Integro-Differential Equations
PDEs Partial Differential Equations
RAD Reaction-Advection-Diffusion
RD Reaction-Diffusion
WSK Weakly Singular Kernel

References
1. Evans, L.C. Partial Differential Equations, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2010.
2. Koga, S.; Krstić, M. Materials Phase Change PDE Control & Estimation: From Additive Manufacturing to Polar Ice; Springer Birkhäuser:

Cham, Switzerland, 2020.
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