Next Article in Journal
An Advanced Fractional Order Method for Temperature Control
Previous Article in Journal
New Complex Wave Solutions and Diverse Wave Structures of the (2+1)-Dimensional Asymmetric Nizhnik–Novikov–Veselov Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings

1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
3
Department of Mathematics, College of Sciences and Arts Onaizah, Qassim University, P.O. Box 6640, Buraydah 51452, Saudi Arabia
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(2), 171; https://doi.org/10.3390/fractalfract7020171
Submission received: 12 January 2023 / Revised: 27 January 2023 / Accepted: 28 January 2023 / Published: 8 February 2023
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
In this study, we apply a recently developed idea of up and down fuzzy-ordered relations between two fuzzy numbers. Here, we consider fuzzy Riemann–Liouville fractional integrals to establish the Hermite–Hadamard-, Fejér-, and Pachpatte-type inequalities. We estimate fuzzy fractional inequalities for a newly introduced class of -preinvexity over fuzzy-number valued settings. For the first time, such inequalities involving up and down fuzzy-ordered functions are proven using the fuzzy fractional operator. The stated inequalities are supported by a few numerical examples that will be helpful to validate our main results.

1. Introduction

In the subject of inequality theory, researchers have established hundreds of inequality types, which have various applications in mathematical analysis and applied mathematics. Two inequalities that stand out among these types of inequalities in terms of their aesthetic forms, applications, and functioning will be introduced first. A specific function class with applications in statistics, convex programming, numerical analysis, and many other domains are one of the fundamental ideas employed in much of the research on the subject of inequalities. This article provides information on the Hermite–Hadamard inequality, which is produced by employing convex functions and has a very complex structure with inequalities.
In the classical approach, a real-valued mapping Ψ : K is called convex if
Ψ s μ + 1 s ȥ s Ψ μ + 1 s Ψ ȥ ,
for all μ ,   ȥ K ,   s 0 ,   1 , where K is a convex set.
The 𝐻𝐻-inequality [1,2] for convex mapping Ψ : K on an interval K = ϛ , ѵ is
Ψ ϛ + ѵ 2 1 ѵ ϛ   ϛ ѵ Ψ μ d μ Ψ ϛ + Ψ ѵ 2 ,
for all ϛ ,   ѵ     K .
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér inequality, which has been proven using a weight function and is the generic form of the inequality (2) (see [3]).
Let Ψ : K be a convex mapping on a convex set K and ϛ ,   ѵ   K with ϛ ѵ . Then,
Ψ ϛ + ѵ 2 1 ϛ ѵ μ d μ ϛ ѵ Ψ μ μ d μ Ψ ϛ + Ψ ѵ 2 ϛ ѵ μ ) d μ
If μ = 1 , then we obtain (2) from (3). With the support of inequality, a large number of inequalities can be found using the particular symmetric mapping μ for convex mappings (3). By taking into account various convex function types, various derivative and integral operators, new techniques, and other spaces, researchers working on these two well-known inequalities have generated generalizations, extensions, improvements, and iterations, see [4,5,6,7,8,9,10,11,12,13].
The Hermite–Hadamard inequality has been proposed for operator convex and generalized convex functions (see, for example, [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]). The Hermite–Hadamard inequalities for the products of two operator preinvex functions were created by Barani [29] in 2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Research has expanded because of the variety and uses of Hermite–Hadamard inequalities (see, for example, [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]).
A fundamental idea in applied sciences and mathematics is fractional calculus. Fractional calculus is actively used by researchers to address a wide range of real-world problems. In the modern era, fractional analysis and inequality theory have coevolved. Over the years, much attention has been paid to various fractional versions of inequalities of the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the aforementioned inequalities, several researchers have employed the Riemann–Liouville fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Hermite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. using fractional integral operators of the Katugampola type (see [51]). In order to illustrate alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see [52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–Hadamard inequalities have been further generalized for convex interval-valued functions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61,62,63,64,65,66,67].
Each described notion and its definitions, despite initially seeming to be comparable, are wholly different. In the context of interval-valued analysis, numerous academics have coupled a variety of convex functions with integral inequalities, leading to a number of notable findings. Román-Flores established Minkowski-type inequalities (see [68]), Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated Opial-type inequalities (see [70]). Zhao et al. (see [71]) also established a refinement of the Hermite–Hadamard inequality and suggested the interval-valued h-convex function. Zhang et al. (see [72]) and Costa et al. (see [73]) presented left–right interval-valued and fuzzy interval-valued functions, respectively, to demonstrate Jensen’s inequalities. Recently, Khan et al. introduced the novel versions of inequalities that are known as fuzzy fractional Hermite–Hadamard, Fejér-, and Pachpatte-type inequalities for U D -convex F T V M via fuzzy left and right Riemann–Liouville fractional integrals. Many more inequalities have been introduced related to real-valued, interval-valued, and fuzzy-number valued mappings, (see [74,75,76,77,78,79,80,81,82]).
The article is structured as follows: We cover the necessary prerequisites and relevant details for the accompanying integral inequalities and interval-valued analysis in Section 1. Preinvexity and fuzzy U D -order functions are concepts that are explained in Section 2. We derive the Hermite–Hadamard and any applicable inequalities for the h-preinvex functions in fuzzy-number valued settings in Section 3. We offer a brief conclusion in Section 4 and go over a number of unanswered research problems that are relevant to the results of this work.

2. Preliminaries

We recall a few definitions that can be found in the literature and will be relevant in the follow-up.
Let us consider that X o is the space of all closed and bounded intervals of , and that X o is given by
= * ,   * = w |   * w * ,   * ,   *
If * = * , then is degenerate. In the follow-up, all intervals are considered non-degenerate. If * 0 , then is positive. We denote by X o + = * ,   * : * ,   * X o   and   * 0 , the set of all positive intervals.
Let u and u · be given by
u · = u * ,   u *   if   u > 0 , 0                 if   u = 0 , u * , u *     if   u < 0 .
We consider the Minkowski sum, + ϣ , product, × ϣ , and difference, ϣ , for , ϣ X o , as
ϣ * ,   ϣ * + * ,   * = ϣ * + * ,     ϣ * + * ,
ϣ * ,   ϣ * × * ,   * = min ϣ * * ,   ϣ * * ,   ϣ * * ,   ϣ * * ,   max ϣ * * ,   ϣ * * ,   ϣ * * ,   ϣ * *
ϣ * ,   ϣ * * ,   * = ϣ * * ,     ϣ * * .
Remark 1.
(i) For the given  ϣ * ,   ϣ * ,   * ,   * I ,  the relation  I  is defined on  I  by
* ,   * I ϣ * ,   ϣ *   if   and   only   if   * ϣ * ,     ϣ * * ,
for all  ϣ * ,   ϣ * ,   * ,   * I ,  is a partial interval inclusion relation.
Moreover, * ,   * I ϣ * ,   ϣ * coincides with * ,   * ϣ * ,   ϣ * on I . The relation I is of UD order [72].
(ii) For the given ϣ * ,   ϣ * ,   * ,   * I , the relation I is defined on I by ϣ * ,   ϣ * I * ,   * if and only if ϣ * * ,   ϣ * * or ϣ * * ,   ϣ * < * , is a partial interval order relation. Plus, we have that ϣ * ,   ϣ * I * ,   * coincides with ϣ * ,   ϣ * * ,   * on I . The relation I is of left and right (LR) type [72,73].
Given the intervals ϣ * ,   ϣ * ,   * ,   * X o , their Hausdorff–Pompeiu distance is
d H ϣ * ,   ϣ * ,   * ,   * = max ϣ * * ,   ϣ * * .
We have that X o , d H is a complete metric space [77,79,82].
Definition 1.
[76] A fuzzy subset  L  of   is a mapping  ˜ : 0 , 1 , denoting membership mapping of  L . We adopt the symbol   to represent the set of all fuzzy subsets of  .
Let us consider  ˜  . If the following properties hold, then  ˜  is a fuzzy number:
  • ˜  is normal if there exists  w  and  ˜ w = 1 ;
  • ˜  is upper semi-continuous on   if for a  w  there exist  ε > 0  and  δ > 0  yielding  ˜ w ˜ y < ε  for all  y  with  w y < δ ;
  • ˜  is fuzzy convex, meaning that  ˜ 1 u w + u y m i n ˜ w ,   ˜ y ,  for all  w , y ,  and  u 0 ,   1 ;
  • ˜  is compactly supported, which means that  c l w   ˜ w 0  is compact.
The symbol  o  will be adopted to designate the set of all fuzzy numbers of  .
Definition 2.
[76,77] For  ˜ o , the  ʊ -level, or  ʊ -cut, sets of  ˜  are  ˜ ʊ = w   ˜ w ʊ  for all  ʊ 0 ,   1 , and  ˜ 0 = w   ˜ w 0 .
Proposition 1.
[78] Let  ˜ , ϣ ˜ o . The relation  F , defined on  o  by
˜ F ϣ ˜   when   and   only   when   ˜ ʊ I ϣ ˜ ʊ ,   for   every   ʊ 0 ,   1 ,
is an LR order relation.
Proposition 2.
[70] Let  ˜ , ϣ ˜ o . The relation  F , defined on  o  by
˜ F ϣ ˜   when   and   only   when   ˜ ʊ I ϣ ˜ ʊ   for   every   ʊ 0 ,   1 ,
is an UD order relation.
Proof.
The proof relies on the UD relation I on X o . If ˜ , ϣ ˜ o and ʊ , then, for every ʊ 0 ,   1 ,
˜ ϣ ˜ ʊ = ˜ ʊ + ϣ ˜ ʊ ,
˜ ϣ ˜ ʊ = ˜ ʊ ×   ϣ ˜ ʊ ,
u ˜ ʊ = u . ˜ ʊ .
result from Equations (5)–(7), respectively. □
Theorem 1.
[77] For  ˜ ,   ϣ ˜ o , the supremum metric
d ˜ ,   ϣ ˜ = sup 0 ʊ 1 d H ˜ ʊ ,   ϣ ˜ ʊ .
is a complete metric space, where  H  stands for the Hausdorff metric on a space of intervals.
Theorem 2.
[77,78] If  Ψ : ϛ , ѵ X o  is an I-V∙M satisfying  Ψ w = Ψ * w ,   Ψ * w , then  Ψ  is Aumann integrable (IA-integrable) over  ϛ , ѵ  when and only when  Ψ * w  and  Ψ * w  are integrable over  ϛ , ѵ , meaning
I A ϛ ѵ Ψ w d w = ϛ   ѵ Ψ * w d w ,   ϛ ѵ Ψ * w d w .
Definition 3.
[73] Let  Ψ ˜ : I o  be a F-N∙V∙M. The family of I-V∙Ms, for every  ʊ 0 ,   1 , is  Ψ ʊ : I X o  satisfying  Ψ ʊ w = Ψ * w , ʊ ,   Ψ * w , ʊ  for every  w I .  For every  ʊ 0 ,   1 ,  the lower and upper mappings of  Ψ ʊ  are the endpoint real-valued mappings  Ψ * · , ʊ ,   Ψ * · , ʊ : I .
Definition 4.
[73] Let  Ψ ˜ : I o  be a F-N∙V∙M. Then,  Ψ ˜ w  is continuous at  w I ,  if for every  ʊ 0 ,   1 ,   Ψ ʊ w  is continuous when and only when  Ψ * w , ʊ  and  Ψ * w , ʊ  are continuous at  w I .
Definition 5.
[77] Let  Ψ ˜ : ϛ ,   ѵ o  be a F-N∙V∙M. The fuzzy Aumann integral ( F A -integral) of  Ψ ˜  over  ϛ ,   ѵ  is
F A ϛ ѵ Ψ ˜ w d w   ʊ = I A ϛ ѵ Ψ ʊ w d w = ϛ ѵ Ψ w , ʊ d w : Ψ w , ʊ S Ψ ʊ ,
where  S Ψ ʊ = Ψ . , ʊ : Ψ . , ʊ   is   integrable ,   and   Ψ w , ʊ Ψ ʊ w ,   for every  ʊ 0 ,   1 .  Moreover,  Ψ ˜  is  F A -integrable over  ϛ ,   ѵ  if  F A ϛ ѵ Ψ ˜ w d w o .
Theorem 3.
[78] Let  Ψ ˜ : ϛ ,   ѵ o  be a F-N∙V∙M, for which the  ʊ -levels define the family of I-V∙Ms  Ψ ʊ : ϛ ,   ѵ X o  satisfying  Ψ ʊ w = Ψ * w , ʊ ,   Ψ * w , ʊ  for every  w ϛ ,   ѵ  and  ʊ 0 ,   1 .   Ψ ˜  is  F A -integrable over  Ϙ ,   ѵ  when and only when  Ψ * w , ʊ  and  Ψ * w , ʊ  are integrable over  ϛ ,   ѵ . Moreover, if  Ψ ˜  is  F A -integrable over  ϛ ,   ѵ , then we have
F A ϛ ѵ Ψ ˜ w d w   ʊ = ϛ ѵ Ψ * w , ʊ d w ,   ϛ ѵ Ψ * w , ʊ d w = I A ϛ ѵ Ψ ʊ w d w
for every  ʊ 0 ,   1 .
Definition 6.
[82] Let  β > 0  and  L ϛ , ѵ , o  be the collection of all Lebesgue measurable fuzzy-number valued mappings on  ϛ , ѵ . Then, the fuzzy left and right RL fractional integrals of order  β > 0  of  Ψ   L ϛ ,   ѵ , o  are
I ϛ + β   Ψ ˜ w = 1 Γ β ϛ w w m β 1 Ψ ˜ m d m ,         w > ϛ ,
and
I ѵ β Ψ ˜ w = 1 Γ β w ѵ m w β 1 Ψ ˜ m d m ,         ( w < ѵ )
respectively, where  Γ w = 0 m w 1 e m d m  is the Euler gamma function. The fuzzy left and right RL fractional integrals  w  based on left and right end point mappings are
I ϛ + β   Ψ ˜ w ʊ = 1 Γ β ϛ w w m β 1 Ψ ʊ m d m = 1 Γ β ϛ w w m β 1 Ψ * m ,   ʊ , Ψ * m ,   ʊ d m ,   w > ϛ
where
I ϛ + β   Ψ * w ,   ʊ = 1 Γ β ϛ w w m β 1 Ψ * m ,   ʊ d m ,       w > ϛ ,
and
I ϛ + β   Ψ * w ,   ʊ = 1 Γ β ϛ w w m β 1 Ψ * m ,   ʊ d m ,     w > ϛ .
The RL fractional integral  Ψ ˜  of  w  based on left and right end point mappings can be defined in a similar way.
Definition 7.
[75] The  F T V M   Ψ ˜ : ϛ ,   ѵ o  is named as a convex  F T V M  on  ϛ ,   ѵ  if
Ψ ˜ 𝓆 μ + 1 𝓆 ȥ   F 𝓆 Ψ ˜ μ 1 𝓆 Ψ ˜ ȥ ,
for all   μ ,   ȥ ϛ ,   ѵ ,   𝓆 0 ,   1 ,  where  Ψ ˜ ȥ F 0 ˜  for all  ȥ ϛ ,   ѵ .  If (25) is reversed, then  Ψ ˜  is named as a concave  F T V M  on  ϛ ,   ѵ . Ψ ˜  is affine if and only if it is both convex and concave  F T V M .
Remark 2.
If  Ψ * ȥ , ʊ = Ψ * ȥ , ʊ  and  ʊ = 1 , then we obtain the classical convex function.
Definition 8.
[55] The  F T V M   Ψ ˜ : ϛ ,   ѵ o  is named as a pre-invex  F T V M  on invex interval  ϛ ,   ѵ  if
Ψ ˜ μ + 1 𝓆 ϕ μ , 𝓆 F 𝓆 Ψ ˜ μ 1 𝓆 Ψ ˜ ȥ ,
for all   μ ,   ȥ ϛ ,   ѵ ,   𝓆 0 ,   1 ,  where all  Ψ ˜ μ F 0 ˜  for all  μ ϛ ,   ѵ .  If (26) is reversed, then  Ψ ˜  is named as a pre-incave  F T V M  on  ϛ ,   ѵ . Ψ ˜  is affine if and only if it is both pre-invex and pre-incave  F T V M s.
Definition 9.
[59] Let    : 0 ,   1 ϛ , ѵ +  such that      0 . Then,  F T V M   Ψ ˜ : ϛ , ѵ o  is said to be  U D - -pre-invex  F T V M  on  ϛ , ѵ  if
Ψ ˜ μ + 1 𝓆 ϕ μ , ȥ F 𝓆 Ψ ˜ μ 1 𝓆 Ψ ˜ ȥ ,  
for all    μ ,   ȥ ϛ , ѵ ,   𝓆 0 ,   1 ,  where  Ψ ˜ μ F 0 ˜ .  If  Ψ ˜  is up and ℏ-pre-incave on  ϛ , ѵ  , then inequality (27) is reversed.
Remark 3.
[59] If one attempts to take  𝓆 = 𝓆 ,  then from  U D - -pre-invex  F T V M  one achieves  U D -pre-invex  F T V M , that is
Ψ ˜ μ + 1 𝓆 ϕ μ , ȥ F 𝓆 Ψ ˜ μ 1 𝓆 Ψ ˜ ȥ ,     μ ,   ȥ ϛ , ѵ ,   𝓆 0 ,   1 .
If one attempts to take  𝓆 1 ,  then from  U D - -pre-invex  F T V M  one achieves  U D - P -pre-invex  F T V M , that is
Ψ ˜ μ + 1 𝓆 ϕ μ , ȥ F Ψ ˜ μ Ψ ˜ ȥ ,       μ ,   ȥ ϛ , ѵ ,   𝓆 0 ,   1 .
Theorem 4.
[59] Let  : 0 ,   1 ϛ , ѵ  be an anon-negative real-valued function such that      0  and let  Ψ ˜ : ϛ , ѵ o  be a  F T V M , for which the  ʊ -cuts define the family of  T V M s  Ψ ʊ : ϛ , ѵ X C + X C  and are given by
Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ ,  
for all  ȥ ϛ , ѵ  and for all  ʊ 0 ,   1 . Then,  Ψ ˜  is  U D - -pre-invex  F T V M  on  ϛ , ѵ  if and only if, for all  ʊ 0 ,   1 ,   Ψ * ȥ ,   ʊ  is a  -pre-invex function and  Ψ * ȥ ,   ʊ  is a  -pre-incave function.
Example 1.
If we attempt to take  𝓆 = 𝓆 ,    for  𝓆 0 ,   1  and the  F T V M   Ψ ˜ : 0 ,   4 o  defined by
Ψ ˜ ȥ ϴ = ϴ 2 e ȥ 2                       ϴ 0 ,   2 e ȥ 2 4 e ȥ 2 ϴ 2 e ȥ 2       ϴ 2 e ȥ 2 ,   4 e ȥ 2   0                           otherwise ,
then, for each  ʊ 0 ,   1 ,  we have  Ψ ʊ ȥ = 2 ʊ e ȥ 2 , 2 2 ʊ e ȥ 2 . Since endpoint functions  Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  are  -pre-invex functions with respect to  ϕ ѵ , ϛ = ѵ ϛ , for each  ʊ 0 ,   1 . Hence,  Ψ ˜ ȥ  is  U D - -pre-invex  F T V M .

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality

In the results that follow, we investigate how fuzzy fractional operators can be used to apply up and down functions to integral inequalities; therefore, let us recap the generalized H . H type inequality for ℏ-pre-invex F T V M s first.
Theorem 5.
Let  Ψ ˜ : ϛ ,   ϛ + ϕ ѵ , ϛ o  be an  U D -ℏ-pre-invex  F T V M  on  ϛ ,   ϛ + ϕ ѵ , ϛ ,  whose  ʊ -cuts define the family of  T V M s  Ψ ʊ : ϛ ,   ϛ + ϕ ѵ , ϛ X C +  are given by  Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  for all  ȥ ϛ ,   ϛ + ϕ ѵ , ϛ  and for all  ʊ 0 ,   1 . If ɸ satisfies Condition C and  Ψ ˜ L ϛ ,   ϛ + ϕ ѵ , ϛ , o , then
1 β 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 F Ψ ˜ ϛ Ψ ˜ ѵ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆
If Ψ ˜ ȥ is pre-incave F T V M , then
1 β 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 1 𝓆 d 𝓆 F Ψ ˜ ϛ Ψ ˜ ѵ 0 1 𝓆 β 1 𝓆 1 𝓆 d 𝓆
Proof.
Let Ψ ˜ : ϛ ,   ϛ + ϕ ѵ , ϛ o be an U D -ℏ-pre-invex F T V M . If Condition C holds then, by hypothesis, we have
1 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Ψ ˜ ϛ + 1 𝓆 ϕ ѵ , ϛ Ψ ˜ ϛ + 𝓆 ϕ ѵ , ϛ .
Therefore, for every ʊ 0 ,   1 , we have
1 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ , 1 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ , ʊ .
Multiplying both sides by 𝓆 β 1 and integrating the obtained result with respect to 𝓆 over 0 , 1 , we have
1 1 2 0 1 𝓆 β 1 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ d 𝓆     0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ , ʊ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ d 𝓆 , 1 1 2 0 1 𝓆 β 1 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ d 𝓆     0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ , ʊ d 𝓆 .
Let μ = ϛ + 1 𝓆 ϕ ѵ , ϛ and ȥ = ϛ + 𝓆 ϕ ѵ , ϛ . Then, we have
1 β 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ   1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ϛ + ϕ ѵ , ϛ μ β 1 Ψ * μ , ʊ d μ   + 1 ϕ ѵ , ϛ β ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ d ȥ 1 β 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ϛ + ϕ ѵ , ϛ μ β 1 Ψ * μ , ʊ d μ .     + 1 ϕ ѵ , ϛ β ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ d ȥ , Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ ,   ʊ     Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ ,   ʊ ,
that is
1 β 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ ,   Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I Γ β ϕ ѵ , ϛ β I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,   ʊ ,   I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,   ʊ
thus,
1 β 1 2   Ψ ʊ 2 ϛ + ϕ ѵ , ϛ 2 I Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ʊ ϛ .
In a similar way as above, we have
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ʊ ϛ I Ψ ʊ ϛ + Ψ ʊ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 .
Combining (33) and (34), we have
1 β 1 2 Ψ ʊ 2 ϛ + ϕ ѵ , ϛ 2 I Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ʊ ϛ I Ψ ʊ ϛ + Ψ ʊ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆
that is
1 β 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β ϕ ѵ , ϛ I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 F Ψ ˜ ϛ Ψ ˜ ѵ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆
the theorem has been proved. □
Remark 4.
If one attempts to take  β = 1 , then from inequality (31) one achieves the result for  U D -ℏ-pre-invex  F T V M , see [59]:
      1 2 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F 1 ϕ ѵ , ϛ F R ϛ ϛ + ϕ ѵ , ϛ Ψ ˜ ȥ d ȥ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 0 1 𝓆 d 𝓆 .
If one attempt to take 𝓆 = 𝓆 , then from inequality (31) one achieves the result for U D -pre-invex F T V M , see [59]:
Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β + 1 2 ϕ ѵ , ϛ β I ϛ + β Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 2
Let one attempt to take β = 1 and 𝓆 = 𝓆 . Then, from inequality (31) one acquires the result for U D -pre-invex F T V M given in [59]:
Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F 1 ϕ ѵ , ϛ F R ϛ ϛ + ϕ ѵ , ϛ Ψ ˜ ȥ d ȥ F Ψ ˜ ϛ Ψ ˜ ѵ 2
If one attempt to take Ψ * ȥ ,   ʊ = Ψ * ȥ ,   ʊ and ʊ = 1 , then from inequality (31) one acquires coming inequality given in [54]:
1 β 1 2 Ψ 2 ϛ + ϕ ѵ , ϛ 2 Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ϛ Ψ ϛ + Ψ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 .
Let one attempt to take β = 1 = ʊ and Ψ * ȥ ,   ʊ = Ψ * ȥ ,   ʊ . Then, from inequality (31) one acquires coming inequality given in [80]:
1 2 1 2   Ψ 2 ϛ + ϕ ѵ , ϛ 2 1 ϕ ѵ , ϛ   R ϛ ϛ + ϕ ѵ , ϛ Ψ ȥ d ȥ Ψ ϛ + Ψ ϛ + ϕ ѵ , ϛ 0 1 𝓆 d 𝓆 .
Example 2.
If we attempt to take  β = 1 2 ,  𝓆 = 𝓆 , for all  𝓆 0 ,   1  and the  F T V M   Ψ ˜ : ϛ ,   ϛ + ϕ ѵ , ϛ = 2 ,   2 + ϕ 3 , 2 o ,  defined by
Ψ ˜ ȥ θ = θ 2 + ȥ 1 2 1 + ȥ 1 2 ,                   θ 2 ȥ 1 2 , 3   2 + ȥ 1 2 θ ȥ 1 2 1 ,               θ 3 ,   2 + ȥ 1 2   0 ,                         otherwise .
Then, for each ʊ 0 ,   1 , we have Ψ ʊ ȥ = 1 ʊ 2 ȥ 1 2 + 3 ʊ , 1 ʊ 2 + ȥ 1 2 + 3 ʊ . Since left and right end point functions Ψ * ȥ , ʊ = 1 ʊ 2 ȥ 1 2 + 3 ʊ ,   Ψ * ȥ ,   ʊ = 1 ʊ 2 + ȥ 1 2 + 3 ʊ , are -pre-invex functions for each ʊ 0 ,   1 , then Ψ ˜ ȥ is U D - -pre-invex F T V M with respect to ϕ ѵ , ϛ = ѵ ϛ . We clearly see that Ψ ˜ L ϛ ,   ϛ + ϕ ѵ , ϛ , o and
1 β 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ = Ψ * 5 2 ,   ʊ = 2 1 ʊ 4 10 + 12 ʊ
1 β 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ = Ψ * 5 2 ,   ʊ = 2 1 ʊ 4 + 10 + 12 ʊ ,
Ψ * ϛ , ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 = 2 1 ʊ 4 2 3 + 12 ʊ
Ψ * ϛ , ʊ + Ψ * ϛ + ϕ ( ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 d 𝓆 = 2 1 ʊ 4 + 2 + 3 + 12 ʊ   .
Note that
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ , ʊ = Γ 1 2 2 1 π 2 3 3 ȥ 1 2   .   1 ʊ 2 ȥ 1 2 + 3 ʊ d ȥ + Γ 1 2 2 1 π 2 3 ȥ 2 1 2   .   1 ʊ 2 ȥ 1 2 + 3 ʊ d ȥ = 1 ʊ 7393 2500 + 9501 2500 + 12 ʊ = 1 ʊ 8447 2500 + 12 ʊ .
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ , ʊ = Γ 1 2 2 1 π 2 3 3 ȥ 1 2   .   1 ʊ 2 + ȥ 1 2 + 3 ʊ d ȥ + Γ 1 2 2 1 π 2 3 ȥ 2 1 2   .   1 ʊ 2 + ȥ 1 2 + 3 ʊ d ȥ = 1 ʊ 7260 1000 + 7049 1000 + 12 ʊ = 1 ʊ 14309 1000 + 12 ʊ .
Therefore
2 1 ʊ 4 10 + 12 ʊ , 2 1 ʊ 4 + 10 + 12 ʊ I 1 ʊ 8447 2500 + 12 ʊ , 1 ʊ 14309 1000 + 12 ʊ I 2 1 ʊ 4 2 3 + 12 ʊ , 2 1 ʊ 4 + 2 + 3 + 12 ʊ
and Theorem 5 is verified.
We get various fuzzy fractional integral inequalities connected to fuzzy-interval fractional H⋅H-inequalities from Theorems 6 and 7 via products of two U D - -pre-invex F T V M s.
Theorem 6.
Let  Ψ ˜ , ˜   : ϛ ,   ϛ + ϕ ѵ , ϛ o  be  U D - 1 -pre-invex and  U D - 2 -pre-invex  F T V M s on  ϛ ,   ϛ + ϕ ѵ , ϛ , respectively, whose  ʊ -cuts  Ψ ʊ ,   ʊ : ϛ ,   ϛ + ϕ ѵ , ϛ X C +  are defined by  Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  and  ʊ ȥ = * ȥ , ʊ ,   * ȥ , ʊ  for all  ȥ ϛ ,   ϛ + ϕ ѵ , ϛ  and for all  ʊ 0 ,   1 . If  ϕ  satisfies Condition C and  Ψ ˜ ˜   L ϛ ,   ϛ + ϕ ѵ , ϛ , o , then
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ ˜ ϛ F ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆 M ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 .
where  ˜ ϛ , ϛ + ϕ ѵ , ϛ = Ψ ˜ ϛ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ϛ + ϕ ѵ , ϛ ,   M ˜ ϛ , ϛ + ϕ ѵ , ϛ = Ψ ˜ ϛ ˜ ϛ + ϕ ѵ , ϛ     Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ϛ ,  and  ʊ ϛ , ϛ + ϕ ѵ , ϛ = * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ  and  M ʊ ϛ , ϛ + ϕ ѵ , ϛ = M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ .
Proof.
Since Ψ ˜ ,   ˜ both are U D - 1 -pre-invex and U D - 2 -pre-invex F T V M then, for each ʊ 0 ,   1 we have
    Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ   1 𝓆 Ψ * ϛ , ʊ + 1 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ   1 𝓆 Ψ * ϛ , ʊ + 1 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ .
and
* ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ 2 𝓆 * ϛ , ʊ + 2 1 𝓆 * ϛ + ϕ ѵ , ϛ ,   ʊ   * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ 2 𝓆 * ϛ , ʊ + 2 1 𝓆 * ϛ + ϕ ѵ , ϛ ,   ʊ .
From the definition of U D -ℏ-pre-invex F T V M s it follows that 0 ˜ F Ψ ˜ ȥ and 0 ˜ F ˜ ȥ , so
Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ   1 𝓆 2 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ + 1 1 𝓆 2 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ     + 1 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ     Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ                           1 𝓆 2 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ                               + 1 1 𝓆 2 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ .
Analogously, we have
Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ                                                     1 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ + 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 1 𝓆 2 𝓆 Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ   + 1 𝓆 2 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ                                                 1 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ           + 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 1 𝓆 2 𝓆 Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ .
Adding (41) and (42), we have
Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ + Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ                             1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 Ψ * ϛ , ʊ × * ϛ , ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ , ʊ + Ψ * ϛ , ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ .
Taking multiplication of (43) with 𝓆 β 1 and integrating the obtained result with respect to 𝓆 over (0,1), we have
0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ d 𝓆       * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆       + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆   0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ                         + 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ d 𝓆       * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆 + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 .
It follows that
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ , ʊ × * ϛ , ʊ   * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆     + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ , ʊ × * ϛ , ʊ   * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆     + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 .
It follows that
Γ β ϕ ѵ , ϛ β I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ , ʊ × * ϛ , ʊ ,     I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ × * ϛ + ϕ ѵ , ϛ ,   ʊ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ , ʊ × * ϛ ,   ʊ I * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆 + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆
that is
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ × ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ ʊ ϛ × ʊ ϛ I ʊ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆 + M ʊ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 .
Thus,
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ ˜ ϛ F ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 d 𝓆 M ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 d 𝓆 .
and the theorem has been established. □
Theorem 7.
Let  Ψ ˜ , ˜   : ϛ ,   ϛ + ϕ ѵ , ϛ o  be two  U D - 1 -pre-invex and  U D - 2 -pre-invex  F T V M s, respectively, for which the  ʊ -cuts define the family of  T V M s. Ψ ʊ ,   ʊ : ϛ ,   ϛ + ϕ ѵ , ϛ X C +  are given by  Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  and  ʊ ȥ = * ȥ , ʊ ,   * ȥ , ʊ  for all  ȥ ϛ ,   ϛ + ϕ ѵ , ϛ  and for all  ʊ 0 ,   1 . If  ϕ  satisfies Condition C and  Ψ ˜ ˜ L ϛ ,   ϛ + ϕ ѵ , ϛ , o , then
1 β 1 1 2 2 1 2   Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β ϕ ѵ , ϛ β I ϛ + β Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ѵ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ × ˜ ˜ ϛ M ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 𝓆 2 1 𝓆 d 𝓆 ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆 .
where    ˜ ϛ , ϛ + ϕ ѵ , ϛ = Ψ ˜ ϛ ˜ ϛ   Ψ ˜ ѵ ˜ ѵ ,   M ˜ ϛ , ϛ + ϕ ѵ , ϛ = Ψ ˜ ϛ ˜ ѵ Ψ ˜ ѵ ˜ ϛ ,  and  ʊ ϛ , ϛ + ϕ ѵ , ϛ = * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ  and  M ʊ ϛ , ϛ + ϕ ѵ , ϛ = M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ ,   M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ .
Proof.
Consider Ψ ˜ , ˜   : ϛ ,   ϛ + ϕ ѵ , ϛ o are U D - 1 -pre-invex and U D - 2 -pre-invex F T V M s. Then, by hypothesis, for each ʊ 0 ,   1 , we have
Ψ * 2 ϛ + ϕ ѵ , ϛ 2   , ʊ × * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ   Ψ * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ × * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ 1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ +   1 1 2 2 1 2 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ 1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ +   1 1 2 2 1 2 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ , 1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ +   1 1 2 2 1 2 1 𝓆 Ψ * ϛ ,   ʊ + 1 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ , ,   ʊ × 2 1 𝓆 * ϛ ,   ʊ + 2 𝓆 * ϛ + ϕ ѵ , ϛ , ,   ʊ + 1 1 𝓆 Ψ * ϛ ,   ʊ + 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ , ,   ʊ × 2 𝓆 * ϛ ,   ʊ + 2 1 𝓆 * ϛ + ϕ ѵ , ϛ , ,   ʊ       1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ +   1 1 2 2 1 2 1 𝓆 Ψ * ϛ ,   ʊ + 1 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ , ,   ʊ × 2 1 𝓆 * ϛ ,   ʊ + 2 𝓆 * ϛ + ϕ ѵ , ϛ , ,   ʊ + 1 1 𝓆 Ψ * ϛ ,   ʊ + 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ , ,   ʊ × 2 𝓆 * ϛ ,   ʊ + 2 1 𝓆 * ϛ + ϕ ѵ , ϛ , ,   ʊ ,   = 1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ   +   1 1 2 2 1 2 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ = 1 1 2 2 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ × * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ   +   1 1 2 2 1 2 1 𝓆 2 1 𝓆 + 1 1 𝓆 2 𝓆 M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ + 1 𝓆 2 𝓆 + 1 1 𝓆 2 1 𝓆 * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ .
Taking multiplication of (45) with 𝓆 β 1 and integrating over 0 ,   1 , we obtain
1 β 1 1 2 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ × * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ                                                                 Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ × * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ × * ϛ   + M * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 𝓆 2 1 𝓆 d 𝓆           + * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆     1 β 1 1 2 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ × * 2 ϛ + ϕ ѵ , ϛ 2 , ʊ                                                                 Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ × * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ × * ϛ + M * ϛ , ϛ + ϕ ѵ , ʊ ,   𝓆 0 1 𝓆 β 1 + 1 𝓆 β 1 1 𝓆 2 1 𝓆 d 𝓆 + * ϛ , ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆 ,      
It follows that
1 β 1 1 2 2 1 2   Ψ ʊ 2 ϛ + ϕ ѵ , ϛ 2 × ʊ 2 ϛ + ϕ ѵ , ϛ 2 I Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ × ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ʊ ϛ × ʊ ϛ + M ʊ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆 + ʊ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆
that is
1 β 1 1 2 2 1 2   Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 ˜ 2 ϛ + ϕ ѵ , ϛ 2 F Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ ˜ ϛ M ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 𝓆 2 1 𝓆 d 𝓆 ˜ ϛ , ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 + 1 𝓆 β 1 1 1 𝓆 2 1 𝓆 d 𝓆 .
Hence, the required result. □
In upcoming outcomes, we will obtain new versions of H⋅H-Fejér inequality using a fuzzy Riemann–Liouville fractional integral. A nontrivial example is also given to discuss the validation of the first and second fuzzy fractional H⋅H-Fejér inequalities for U D - -pre-invex F T V M .
Theorem 8.
Let  Ψ ˜ : ϛ ,   ϛ + ϕ ѵ , ϛ o  be an  U D - -pre-invex  F T V M  with  ϛ < ѵ , for which the  ʊ -cuts define the family of  T V M s.  Ψ ʊ : ϛ ,   ϛ + ϕ ѵ , ϛ X C +  are given by  Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  for all  ȥ ϛ ,   ϛ + ϕ ѵ , ϛ  and for all  ʊ 0 ,   1 . If  Ψ ˜ L ϛ ,   ϛ + ϕ ѵ , ϛ , o  and  : ϛ ,   ϛ + ϕ ѵ , ϛ ,   ȥ 0 ,  symmetric with respect to  2 ϛ + ϕ ѵ , ϛ 2 ,  then
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 F Ψ ˜ ϛ Ψ ˜ ѵ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 .
If  Ψ ˜  is pre-incave  F T V M  , then inequality (46) is reversed.
Proof.
Let Ψ ˜ be an U D -ℏ-pre-invex F T V M and 𝓆 β 1 ϛ + 1 𝓆 ϕ ѵ , ϛ 0 . Then, for each ʊ 0 ,   1 , we have
    𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ   𝓆 β 1 𝓆 Ψ * ϛ ,   ʊ + 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ   𝓆 β 1 𝓆 Ψ * ϛ ,   ʊ + 1 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ ,
and
𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ 𝓆 β 1 1 𝓆 Ψ * ϛ ,   ʊ + 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ 𝓆 β 1 1 𝓆 Ψ * ϛ ,   ʊ + 𝓆 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ .
After adding (47) and (48), and integrating over 0 ,   1 , we obtain
0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆     0 1 𝓆 β 1 Ψ * ϛ ,   ʊ 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ + 𝓆 β 1 Ψ * ϛ + ϕ ѵ , ϛ , ʊ 1 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ + 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 , = Ψ * ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ d 𝓆 + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 , 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 1 𝓆 ϕ ѵ , ϛ d 𝓆   0 1 𝓆 β 1 Ψ * ϛ ,   ʊ 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ + 𝓆 β 1 Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 1 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ + 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 , = Ψ * ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 1 𝓆 ϕ ѵ , ϛ d 𝓆   + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 .
Taking right hand side of inequality (49), we have
  0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆   + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 = 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * 2 ϛ + ϕ ѵ , ϛ ȥ , ʊ ȥ d ȥ   + 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ ȥ d ȥ   = 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ϛ + ϕ ѵ , ϛ ȥ β 1 Ψ * ȥ , ʊ 2 ϛ + ϕ ѵ , ϛ ȥ d ȥ + 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ ȥ d ȥ = Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ ,   0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 = Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ .
From (50), we have
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 2 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ   Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 2 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ ,
that is
Γ β ϕ ѵ , ϛ β I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,   I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ I Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 2 ,   Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 2 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆
hence
Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 2 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 . F Ψ ˜ ϛ Ψ ˜ ѵ 2 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 .
Theorem 9.
Let  Ψ ˜ : ϛ ,   ϛ + ϕ ѵ , ϛ o  be an  U D -ℏ-pre-invex  F T V M  with  ϛ < ϛ + ϕ ѵ , ϛ ,  whose  ʊ -cuts define the family of  T V M s.  Ψ ʊ : ϛ ,   ϛ + ϕ ѵ , ϛ X C +  are given by  Ψ ʊ ȥ = Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ  for all  ȥ ϛ ,   ϛ + ϕ ѵ , ϛ  and for all  ʊ 0 ,   1 . Let  Ψ ˜ L ϛ ,   ϛ + ϕ ѵ , ϛ , o  and  : ϛ ,   ϛ + ϕ ѵ , ϛ ,   ȥ 0 ,  symmetric with respect to  2 ϛ + ϕ ѵ , ϛ 2 . If  ϕ  satisfies Condition C, then
  1 2 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ F I ϛ + β Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ
If  Ψ ˜  is pre-incave  F T V M  , then inequality (51) is reversed.
Proof.
Since Ψ ˜ is an U D -ℏ-pre-invex F T V M , then for ʊ 0 ,   1 , we have
Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ 1 2 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ + Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ .
Since ϛ + 1 𝓆 ϕ ѵ , ϛ = ϛ + 𝓆 ϕ ѵ , ϛ then by multiplying (52) by 𝓆 β 1 ϛ + 𝓆 ϕ ѵ , ϛ and integrating it with respect to 𝓆 over 0 ,   1 , we obtain
Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ 0 1 𝓆 β 1 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆             1 2 0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 , Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ 0 1 𝓆 β 1 ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 1 2 0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 .
Let ȥ = ϛ + 𝓆 ϕ ѵ , ϛ . Then, for the right hand side of inequality (54), we have
0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 = 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * 2 ϛ + ϕ ѵ , ϛ ȥ , ʊ ȥ d ȥ + 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ ȥ d ȥ     = 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ 2 ϛ + ϕ ѵ , ϛ ȥ d ȥ + 1 ϕ ѵ , ϛ β   ϛ ϛ + ϕ ѵ , ϛ ȥ ϛ β 1 Ψ * ȥ , ʊ ȥ d ȥ = Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ , 0 1 𝓆 β 1 Ψ * ϛ + 1 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 + 0 1 𝓆 β 1 Ψ * ϛ + 𝓆 ϕ ѵ , ϛ ,   ʊ ϛ + 𝓆 ϕ ѵ , ϛ d 𝓆 = Γ β ϕ ѵ , ϛ β I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ .  
Then, from (54), (53) we have
1 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ     1 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,
from which, we have
1 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ ,   Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ   I   I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,     I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ ,
it follows that
1 2 1 2 Ψ ʊ 2 ϛ + ϕ ѵ , ϛ 2 I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ I I ϛ + β   Ψ ʊ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ ʊ ϛ
that is
1 2 1 2 Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ F I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β Ψ ˜ ϛ .
This completes the proof. □
Remark 5.
If one attempts to take  ȥ = 1 , then from (46) and (51) one achieves Theorem 5.
If one attempts to take 𝓆 = 𝓆 , then from (46) and (51) one achieves the following inequality.
Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β ϛ F I ϛ + β   Ψ ˜ ϛ + ϕ ѵ , ϛ I ϛ + ϕ ѵ , ϛ β   Ψ ˜ ϛ F Ψ ˜ ϛ Ψ ˜ ϛ + ϕ ѵ , ϛ 2 I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ F Ψ ˜ ϛ Ψ ˜ ѵ 2 I ϛ + β ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ
Let one attempt to take 𝓆 = 𝓆 and β = 1 . Then, from (46) and (51) one achieves coming inequality for U D -pre-invex F T V M , see [59].
Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F 1 ϛ ϛ + ϕ ѵ , ϛ ȥ d ȥ F R ϛ ϛ + ϕ ѵ , ϛ Ψ ˜ ȥ ȥ d ȥ F Ψ ˜ ϛ Ψ ˜ ѵ 2
Let one attempt to take 𝓆 = 𝓆 and β = 1 = ȥ . Then, from (46) and (51) one achieves the following inequality for U D -pre-invex F T V M given in [59]:
Ψ ˜ 2 ϛ + ϕ ѵ , ϛ 2 F F R ϛ ϛ + ϕ ѵ , ϛ Ψ ˜ ȥ d ȥ F Ψ ˜ ϛ Ψ ˜ ѵ 2
If one attempts to take Ψ * ȥ ,   ʊ = Ψ * ȥ ,   ʊ and 1 = ʊ and 𝓆 = 𝓆 , then from (46) and (51) one achieves the following inequality given in [81]:
Ψ 2 ϛ + ϕ ѵ , ϛ 2 I ϛ + β   ѵ + I ѵ β   ϛ I ϛ + β   Ψ ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ ϛ Ψ ϛ + Ψ ϛ + ϕ ѵ , ϛ 2 I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ Ψ ϛ + Ψ ѵ 2 I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ
If one attempts to take Ψ * ȥ ,   ʊ = Ψ * ȥ ,   ʊ and β = 1 = ʊ and 𝓆 = 𝓆 , then from (46) and (51) one achieves the classical H H -Fejér inequality.
If one attempts to take Ψ * ȥ ,   ʊ = Ψ * ȥ ,   ʊ and ȥ = β = 1 = ʊ and 𝓆 = 𝓆 , then from (46) and (51) one achieves the classical H H -inequality.
Example 3.
If we attempt to take  F T V M   Ψ ˜ : 0 ,   2 o  defined by,
Ψ ˜ ȥ ϴ = ϴ 2 + ȥ ȥ 1 2 ,                         ϴ 2 ȥ , 3 2 , 2 + ȥ ϴ 1 2 + ȥ ,                   ϴ 3 2 ,   2 + ȥ ,   0 ,                                                       otherwise .
Then, for each ʊ 0 ,   1 , we have Ψ ʊ ȥ = 1 ʊ 2 ȥ + 3 2 ʊ , 1 ʊ 2 + ȥ + 3 2 ʊ . Since endpoint functions Ψ * ȥ , ʊ ,   Ψ * ȥ , ʊ are -pre-invex functions for each ʊ 0 ,   1 , then Ψ ˜ ȥ is U D - -pre-invex F T V M . If
ȥ = ȥ ,             ϴ 0 , 1 , 2 ȥ ,       ϴ 1 ,   2 ,  
then 2 ȥ = ȥ 0 , for all ȥ 0 ,   2 . Since Ψ * ȥ , ʊ = 1 ʊ 2 ȥ + 3 2 ʊ and Ψ * ȥ , ʊ = 1 ʊ 2 + ȥ + 3 2 ʊ . If 𝓆 = 𝓆 and β = 1 2 , then we compute the following:
Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ = 1 ʊ π 4 2 2 + 3 2 π ʊ ,   Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ѵ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ = 1 ʊ π 4 + 2 2 + 3 2 π ʊ ,  
Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ϛ + ϕ ѵ , ϛ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ = 1 ʊ π 4 2 2 + 3 2 π ʊ ,   Ψ * ϛ ,   ʊ + Ψ * ϛ + ϕ ϛ + ϕ ѵ , ϛ , ϛ ,   ʊ 0 1 𝓆 β 1 𝓆 + 1 𝓆 ϛ + 𝓆 ϕ ѵ , ϛ = 1 ʊ π 4 + 2 2 + 3 2 π ʊ ,  
Γ β ϕ ѵ , ϛ β I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ = 1 2 1 ʊ 2 π + 4 8 2 3 + 3 2 2 π ʊ ,   Γ β ϕ ѵ , ϛ β I ϛ + β Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ = 1 2 1 ʊ 2 π + 8 2 4 3 + 3 2 2 π ʊ .
From (59) and (60), we have
1 2 1 ʊ 2 π + 4 8 2 3 + 3 2 π ʊ ,   1 ʊ 2 π + 8 2 4 3 + 3 2 π ʊ I π 1 ʊ 4 2 2 + 3 2 ʊ ,   1 ʊ 4 + 2 2 + 3 2 ʊ ,   for   each   ʊ 0 ,   1 .
Hence, (46) is verified.
For (51), we have
I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β Ψ * ϛ                                                   = 1 π 0 2 2 ȥ 1 2   ȥ 1 ʊ 2 ȥ + 3 2 ʊ d ȥ + 1 π 0 2 ȥ 1 2 ȥ 1 ʊ 2 ȥ + 3 2 ʊ d ȥ = 1 π 1 ʊ 2 π + 4 8 2 3 + 3 2 π ʊ               I ϛ + β   Ψ * ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   Ψ * ϛ                                                     = 1 π 0 2 2 ȥ 1 2   ȥ 1 ʊ 2 + ȥ + 3 2 ʊ d ȥ + 1 π 0 2 ȥ 1 2 ȥ 1 ʊ 2 + ȥ + 3 2 ʊ d ȥ = 1 π 1 ʊ 2 π + 8 2 4 3 + 3 2 π ʊ .  
      1 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ = 1 ʊ π + 3 2 π ʊ ,   1 2 1 2 Ψ * 2 ϛ + ϕ ѵ , ϛ 2 ,   ʊ I ϛ + β   ϛ + ϕ ѵ , ϛ + I ϛ + ϕ ѵ , ϛ β   ϛ = 3 1 ʊ π + 3 2 π ʊ .  
From (61) and (62), we have
1 ʊ π + 3 2 π ʊ ,   3 1 ʊ π + 3 2 π ʊ I 1 π 1 ʊ 2 π + 4 8 2 3 + 3 2 π ʊ ,   1 ʊ 2 π + 8 2 4 3 + 3 2 π ʊ ,   for   each   ʊ 0 ,   1 .

4. Conclusions

Fuzzy-number valued mapping is a good method for incorporating uncertainty into prediction systems. We demonstrated fractional versions of the Hermite–Hadamard-, Fejér-, and Pachpatte-type inequalities using a novel concept from [59]. We showed that our results can lead to a few new results for the h-preinvex mapping and the h-convex mapping in fuzzy-number valued settings. The well-known Riemann–Liouville fractional integral was used in a novel method for solving U D -fuzzy ordered inequalities. Some numerical examples were also looked at to help explain the findings. Future work could adapt this strategy to include other fractional operators such as tempered, Atangana–Baleanu, Caputo–Fabrizio, and generalized fractional integral operators. Various non-symmetric functions can also be used using these methods.
Future presentations of various inequalities, including those of the Hermite–Hadamard, Ostrowski, Jensen–Mercer, Bullen, and Simpson types, can be obtained using this new this idea. A variety of interval-valued quantum calculus, fuzzy calculus, and fractional calculus can all be used to establish related inequalities.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K. and A.C.; validation, M.S.S. and A.C.; formal analysis, M.S.S.; investigation, M.B.K. and A.C.; resources, M.S.S. and A.C.; data curation, A.C.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K., A.C. and M.S.S.; visualization, M.B.K.; supervision, M.B.K. and N.A.; project administration, M.B.K., A.C. and N.A. All authors have read and agreed to the published version of the manuscript.

Funding

The research was funded by University of Oradea, Romania.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier dune function considree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  2. Hermite, C. Sur deux limites dune integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
  3. Fejér, L. Über die Fourierreihen. II. Math. Nat. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
  4. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  5. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  6. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. Real Acad. A 2022, 116, 53. [Google Scholar] [CrossRef]
  7. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  8. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  9. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  10. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
  11. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  12. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef] [PubMed]
  13. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  14. Dragomir, S.S. Hermite-Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces. Linear Algebra Appl. 2012, 436, 1503–1515. [Google Scholar] [CrossRef]
  15. Ghazanfari., A.G.; Shakoori, S.; Barani, A.; Dragomir, S.S. Hermite-Hadamard type inequality for operator preinvex functions. arXiv 2013, arXiv:1306.0730. [Google Scholar]
  16. Ghazanfari, A.G. The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 2014, 6, 52–61. [Google Scholar] [CrossRef]
  17. Erdas, Y.; Ünlüyol, E.; Sala, S. Some new inequalities of operator m-convex functions and applications for synchronousasynchronous functions. Complex Anal. Oper. Theory 2019, 13, 3871–3881. [Google Scholar] [CrossRef]
  18. Wang, S.; Liu, X. Hermite-Hadamard type inequalities for operator s-preinvex functions. J. Nonlinear Sci. Appl. 2015, 8, 1070–1081. [Google Scholar] [CrossRef]
  19. Wang, S.; Sun, X. Hermite-Hadamard type inequalities for operator a-preinvex functions. J. Anal. Number Theory 2017, 5, 13–17. [Google Scholar] [CrossRef]
  20. Zhao, T.H.; Qian, W.M.; Chu, Y.M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  21. Liu, Z.H.; Motreanu, D.; Zeng, S.D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
  22. Liu, Y.J.; Liu, Z.H.; Wen, C.F.; Yao, J.C.; Zeng, S.D. Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
  23. Zeng, S.D.; Migorski, S.; Liu, Z.H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
  24. Liu, Y.J.; Liu, Z.H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
  25. Liu, Y.J.; Liu, Z.H.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
  26. Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
  27. Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
  28. Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic methd. Appl. Math. Comput. 2022, 430, 127304. [Google Scholar]
  29. Barani, A.; Ghazanfari, A.G. Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions. Banach J. Math. Anal. 2015, 9, 9–20. [Google Scholar]
  30. Omrani, Z.; Rahpeyma, O.P.; Rahimi, H. Some inequalities for operator (p, h)-convex function. J. Math. 2022, 2022, 11. [Google Scholar] [CrossRef]
  31. Ghazanfari, A.G. Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 2016, 10, 1695–1703. [Google Scholar] [CrossRef]
  32. Dragomir, S.S. The Hermite-Hadamard type inequalities for operator convex functions. Appl. Math. Comput. 2011, 218, 766–772. [Google Scholar]
  33. Dragomir, S.S. An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2002, 3, 31. [Google Scholar]
  34. Dragomir, S.S. An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2012, 2002, 35. [Google Scholar]
  35. Furuta, T.; Hot, J.M.; Pecaric, J.; Seo, Y. Mond-Pecaric Method in Operator Inequalities: Inequalities for Bounded Self-Adjoint Operators on a Hilbert Space, 2nd ed.; Element: Zagreb, Croatia, 2005. [Google Scholar]
  36. Mihai, M.V.; Awan, M.U.; Noor, M.A.; Du, T.S.; Khan, A.G. Two dimensional operator preinvex punctions and associated Hermite-Hadamard type inequalities. Filomat 2018, 32, 2825–2836. [Google Scholar] [CrossRef]
  37. Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics 2022, 10, 3127. [Google Scholar] [CrossRef]
  38. Liu, Z.-H.; Papageorgiou, N.S. Anisotropic (p,q)-equations with competition phenomena. Acta Math. Sci. 2022, 42B, 299–322. [Google Scholar] [CrossRef]
  39. Liu, Z.-H.; Papageorgiou, N.S. Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 2022, 316, 249–269. [Google Scholar] [CrossRef]
  40. Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
  41. Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
  42. Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids 2019, 24, 845–861. [Google Scholar] [CrossRef]
  43. Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
  44. Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
  45. Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
  46. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  47. Podlubny, I. Geometric and physical interpretations of fractional integration and differentiation. Fract. Calc. Appl. Anal. 2001, 5, 230–237. [Google Scholar]
  48. Dragomir, S.S. Ostrowski type inequalities for Riemann-Liouville fractional integrals of absolutely continuous functions in terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49. [Google Scholar]
  49. Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
  50. Ögülmüs, H.; Sarikaya, M.Z. Hermite–Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
  51. Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
  52. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Differential inclusion problems with convolution and discontinuous nonlinearities. Evol. Equ. Control Theory 2020, 9, 1057–1071. [Google Scholar] [CrossRef]
  53. Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
  54. Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
  55. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  56. Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
  57. Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
  58. Butt, S.I.; Yousaf, S.; Khan, K.A.; Matendo Mabela, R.; Alsharif, A.M. Fejer–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel. Math. Prob. Eng. 2022, 2022, 7269033. [Google Scholar] [CrossRef]
  59. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  60. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  61. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  62. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  63. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  64. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. Real Acad. A 2021, 115, 46. [Google Scholar] [CrossRef]
  65. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  66. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  67. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  68. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  69. Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  70. Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
  71. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  72. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  73. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  74. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  75. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  76. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  77. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  78. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  79. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer-Verlag: Berlin, Germany, 1984. [Google Scholar]
  80. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  81. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  82. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. https://doi.org/10.3390/fractalfract7020171

AMA Style

Khan MB, Catas A, Aloraini N, Soliman MS. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal and Fractional. 2023; 7(2):171. https://doi.org/10.3390/fractalfract7020171

Chicago/Turabian Style

Khan, Muhammad Bilal, Adriana Catas, Najla Aloraini, and Mohamed S. Soliman. 2023. "Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings" Fractal and Fractional 7, no. 2: 171. https://doi.org/10.3390/fractalfract7020171

Article Metrics

Back to TopTop