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Abstract: Although the literature presents promising techniques for the control of integer-order
systems, control and synchronizing fractional systems still need further improvement to ensure their
robustness and convergence time. This study aims to address this issue by proposing a model-free
and finite-time super-twisting control technique for a variable-order fractional Hopfield-like neural
network. The proposed controller is enhanced with an intelligent observer to account for disturbances
and uncertainties in the chaotic model of the Hopfield-like neural network. The controller is able to
regulate the system even when its complex variable-order fractional dynamic is completely unknown.
Moreover, the proposed technique guarantees finite-time convergence of the closed-loop system. First,
the dynamics of the variable-order fractional Hopfield-like neural network are examined. Then, the
control design is described and its finite-time stability is proven. The controller is then applied to the
variable-order fractional system and tested under two different scenarios to evaluate its performance.
The results of the simulations demonstrate the excellent performance of the proposed method in both
scenarios.

Keywords: Hopfield-like neural network; variable-order fractional; neural network estimator; super-
twisting sliding mode

1. Introduction

Fractional-order neural networks are a relatively recent development in the field of
neural networks [1,2]. They employ fractional calculus to represent the network’s behavior,
which allows them to capture the complex and memory-dependent behavior of many
physical systems more accurately [3]. This is because fractional calculus extends the concept
of differentiation and integration to non-integer orders, enabling a more comprehensive
representation of the system’s dynamics [4,5]. The major advantage of fractional-order
neural networks is their ability to model complex and memory-dependent systems with a
high degree of accuracy [6,7]. This is due to the fact that traditional integer-order neural
networks are often unable to capture non-local, non-linear, and multi-fractal behaviors
that are exhibited by these systems [8,9]. By utilizing fractional-order derivatives, neural
networks can accurately represent these complex dynamics and improve their performance
in a variety of applications [10,11].

Recently, some studies have shown that variable-order fractional (VOF) can capture the
dynamic of some systems more accurately [12]. The applications of VOF neural networks
are vast and promising. They have been successfully applied in signal processing for noise
reduction, feature extraction, and signal classification. In addition, VOF neural networks
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have been used in image and speech recognition, as well as for modeling and controlling
various physical systems such as robots, drones, and power systems. In VOF neural
networks, the order of the fractional derivative is not fixed but varies as a function of time
or the system state [13–15]. This enables the network to model systems that exhibit complex
and time-varying behavior, which is neither possible with traditional integer order nor
with constant fractional-order neural networks [16,17]. In addition, VOF neural networks
are highly flexible and adaptive to changes in the system’s behavior. Unlike traditional
neural networks, which have a fixed and pre-defined order of derivative, VOF neural
networks can vary the order of derivative as a function of time or the system’s state [18,19].
This allows the network to model time-varying and non-stationary systems that cannot be
captured by traditional neural networks [20,21].

Furthermore, VOF neural networks are capable of real-time learning and adapta-
tion to new information, which is crucial in many applications. Therefore, VOF neural
networks have been used to provide better performance in various applications, such as
signal processing, image and speech recognition, and control systems [22,23]. However,
VOF neural networks also present certain challenges that must be addressed. One of the
main challenges is the increased computational complexity compared to traditional neural
networks. Fractional-order derivatives require more computational resources, which can
result in slower training and inference times. Additionally, designing effective control
strategies for VOF neural networks is a challenging task due to the system’s complex and
memory-dependent behavior [24,25].

One of the most widely used control techniques for complex systems is sliding mode
control [26–28]. This robust control technique has been employed to stabilize and reg-
ulate neural networks [29]. By introducing a sliding mode surface, SMC can ensure
the stability and robustness of the network, even in the presence of disturbances and
uncertainties [30,31]. Adaptive control is another effective technique used for neural net-
works [32,33]. It utilizes feedback to adjust the network’s parameters in real time, depend-
ing on the system’s behavior [34]. By adapting to the changing behavior of the system,
adaptive control techniques can improve the network’s performance in different envi-
ronments [35]. Robust control is another control technique that has been successfully
implemented for neural networks [36]. Its aim is to ensure the stability and robustness
of the network, even in the presence of uncertainties and disturbances. By designing
a robust controller, the network can maintain its stability and performance in various
environments [37].

Although the latest control techniques such as SMC, adaptive control, and robust
control show promising results for VOF neural networks’ reliable operation, they still suffer
from some significant issues. For instance, most VOF controllers depend on the accuracy
of the models provided in the simulations, and their finite-time convergence has not been
proven in most studies. Hence, controlling VOF neural networks needs more attention to
achieve successful deployment in various applications. Motivated by this, in the current
study, we focus on the control of VOF Hopfield-like neural networks using a new super-
twisting control technique. The proposed controller is enhanced by an intelligent observer,
which accounts for disturbances and uncertainties that exist in the model of the chaotic
neural network. The proposed technique offers several advantages, with its main advantage
being its model-free nature that enables it to control the system even when the dynamics
of the fractional systems are entirely unknown. Furthermore, the proposed controller is
designed to guarantee finite-time convergence of the closed-loop system while avoiding
chattering in the results. Thus, the proposed approach aims to overcome the technical
challenges posed by the uncertain nature of the system by combining super-twisting control
with an intelligent observer to provide a model-free control solution that can achieve finite-
time convergence while handling uncertainties in the system. We describe the design of the
controller and prove its finite-time stability. We conduct numerical simulations to examine
the dynamics of the VOF Hopfield-like neural network, and then apply the proposed
controller to the system.
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The paper is organized as follows: In Section 2, we present the modeling and mathe-
matical representation of VOF neural networks. Section 3 is dedicated to the design process
of the controller, along with a discussion of its guaranteed stability. The proposed con-
troller’s application to the system under uncertain scenarios for synchronization and control
is explored in Section 4. Finally, we summarize the key findings and future prospects in
Section 5.

2. Modeling and Mathematical Formulation of the System

In this paper, we have utilized a fractional version of a theoretical model originally
presented in [38]. This model represents a generalization of the basic Hopfield neural
network model originally proposed by Hopfield in [39], where neuronal self-connections
are not present. The following variable-order fractional model of neural networks will be
analyzed in this paper:

Dqi(t)yi(t) = −ciyi(t) +
n

∑
j=1

aij
(
yj(t)

)
hj
(
yj(t)

)
+ Ii (1)

where i = 1, 2, ..., n denotes the number of neurons in the network. The state of the ith
neuron is denoted by yi(t). The term qi(t) represents the fractional-order derivative which is
time-dependent, and ci is a positive constant. The function hj

(
yj(t)

)
denotes the nonlinear

function of the system, and Ii is the external input to the ith neuron. Additionally, aij

indicates the constant connection memristive weights. The VOF derivative Dqi(t) captures
the complex and memory-dependent behavior of the system, which is not possible with
traditional integer-order derivatives. The nonlinear function hj

(
yj(t)

)
captures the non-

linear and non-local behavior of the system, which is essential for modeling complex
systems such as neural networks. The present study focuses on a neural network that has
three neurons and is characterized by the following governing equation:

Dq(t)y1 = −c1y1 + a1,1tanh(y1) + a1,2tanh(y2) + a1,3tanh(y3) + I1,
Dq(t)y2 = −c2y2 + a2,1tanh(y1) + w2,2tanh(y2) + a2,3tanh(y3) + I2,
Dq(t)y3 = −c3y3 + a3,1tanh(y1) + a3,2tanh(y2) + a3,3tanh(y3) + I3,

(2)

where a1,1 = 2, a1,2 = −1.2, a1,3 = −0.1, a2,1 = 2, a2,2 = 1.71, a2,3 = 1.15, a3,1 = −4.75,
a3,2 = 0, and a3,3 = 1.1. Additionally, c1 = c2 = c3 = 1, and I1 = I2 = I3 = 0. It is
noteworthy that all parameters and variables in the model are dimensionless. In this
study, all calculations are performed using the Caputo definition, which is a widely used
definition for fractional derivatives. Figure 1 displays the phase portraits of the VOF neural
network for a value of q(t) equal to 0.98 + 0.012cos

( t
5
)
. The figure clearly illustrates the

chaotic behavior exhibited by the system.
To further analyze the impact of the variable-order derivative on the system’s behavior,

we have presented the Lyapunov exponents and bifurcation diagrams. Figure 2 depicts the
Lyapunov exponents of the system with the aforementioned parameters, providing clear
evidence of the chaotic nature of the system.



Fractal Fract. 2023, 7, 349 4 of 14Fractal Fract. 2023, 7, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. Phase portraits of the VOF neural network. 

To further analyze the impact of the variable-order derivative on the system’s behav-

ior, we have presented the Lyapunov exponents and bifurcation diagrams. Figure 2 de-

picts the Lyapunov exponents of the system with the aforementioned parameters, provid-

ing clear evidence of the chaotic nature of the system. 

 

Figure 2. Lyapunov exponents of the VOF neural network. 

3. Controller Design and Its Stability 

In this section, a new control technique is proposed for nonlinear memristive neural 

networks, and the stability of the closed-loop system is proven. The following nonlinear 

fractional-order slave system is under consideration: 

𝐷𝑡
𝑞(𝑡)

𝑥𝑖(𝑡) = ℎ𝑖(𝑥, 𝑡) + 𝑢𝑖 + 𝑑0𝑖(𝑡)                  𝑖 = 1,2, … , 𝑛 (3) 

where 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) represents the state of the slave system, 0 < 𝑞(𝑡) < 1 indicates 

the fractional-order derivative of the equations, and ℎ𝑖(𝑥, 𝑡) is the uncertain fractional-

order function of the system. 𝑢𝑖 and 𝑑i indicate the control input and external disturb-

ance,  respectively. Considering the unknown external disturbance 𝑑0𝑖  and uncertain 

Figure 1. Phase portraits of the VOF neural network.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. Phase portraits of the VOF neural network. 

To further analyze the impact of the variable-order derivative on the system’s behav-

ior, we have presented the Lyapunov exponents and bifurcation diagrams. Figure 2 de-

picts the Lyapunov exponents of the system with the aforementioned parameters, provid-

ing clear evidence of the chaotic nature of the system. 

 

Figure 2. Lyapunov exponents of the VOF neural network. 

3. Controller Design and Its Stability 

In this section, a new control technique is proposed for nonlinear memristive neural 

networks, and the stability of the closed-loop system is proven. The following nonlinear 

fractional-order slave system is under consideration: 

𝐷𝑡
𝑞(𝑡)

𝑥𝑖(𝑡) = ℎ𝑖(𝑥, 𝑡) + 𝑢𝑖 + 𝑑0𝑖(𝑡)                  𝑖 = 1,2, … , 𝑛 (3) 

where 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) represents the state of the slave system, 0 < 𝑞(𝑡) < 1 indicates 

the fractional-order derivative of the equations, and ℎ𝑖(𝑥, 𝑡) is the uncertain fractional-

order function of the system. 𝑢𝑖 and 𝑑i indicate the control input and external disturb-

ance,  respectively. Considering the unknown external disturbance 𝑑0𝑖  and uncertain 

Figure 2. Lyapunov exponents of the VOF neural network.

3. Controller Design and Its Stability

In this section, a new control technique is proposed for nonlinear memristive neural
networks, and the stability of the closed-loop system is proven. The following nonlinear
fractional-order slave system is under consideration:

Dq(t)
t xi(t) = hi(x, t) + ui + d0i(t) i = 1, 2, . . . , n (3)

where xi(i = 1, 2, . . . , n) represents the state of the slave system, 0 < q(t) < 1 indicates
the fractional-order derivative of the equations, and hi(x, t) is the uncertain fractional-
order function of the system. ui and di indicate the control input and external disturbance,
respectively. Considering the unknown external disturbance d0i and uncertain dynamic
function hi(x, t) as an unknown compound term fi(x, t), the equation of the slave system
can be written as:

Dq
t xi(t) = fi(x, t) + ui (4)

fi(x, t) = hi(x, t) + d0i(t) (5)
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Furthermore, we define the master system as:

Dq
t yi = gi(y, t) (i = 1, 2, 3, 4) (6)

Here, y(i = 1, 2, . . . , n) represents the states of the master system, while gi(y, t) repre-
sents the nonlinear functions that define the behavior of the system. The synchronization
error is defined as the difference between the states of the slave system and the states of the
master system, ei = yi − xi(i = 1, 2, . . . , n).

3.1. Neural Network Estimator

The radial basis function (RBF) neural network estimator is a powerful tool for ap-
proximating functions and making predictions. It consists of an input layer, a hidden layer,
and an output layer. The hidden layer is made up of several radial basis functions that
transform the input data into a higher-dimensional space. The final output is generated by
combining the outputs of the hidden layer using linear combinations.

RBF neural networks are particularly useful for tasks that involve interpolation or
extrapolation. They have been applied in a wide range of fields, including control systems,
pattern recognition, and function approximation [40,41].

In Figure 3, the structure of the RBF neural network estimator is shown, and the output
of the estimator is denoted as f̂i. The output is calculated as a linear combination of the
hidden layer outputs, where the weights are determined through a training process. The
RBF neural network estimator is capable of learning and approximating complex functions,
and its output is given by:

f̂i = ŵ f φi = f *
i + ε =

m

∑
j=1

ω*
i,jφi,j(Ei) + ε = w*

f φi + ε, i = 1, 2, . . . no (7)

φi,j(Ei) = exp

−∥∥Ei − cj
∥∥

2
2

2b2
j

. j = 1, 2, . . . , m. (8)

In the equation above, the RBF weight, denoted by ω*
i,j, is a constant value used to

adjust the importance or strength of each function in the hidden layer. The RBF function is
represented by φi,j, and the number of hidden nodes is denoted by m, while the number of
outputs is denoted by no. The width value of the basis function, bj, determines the spread or
influence of the function. The input vector for the RBF is denoted by Ei = [Ei,1, Ei,2, . . . , Ei,N ],
which includes the input data for the network. The bounded RBF approximation error, ε,
measures the difference between the output of the network and the true value. Finally, cj
determines the position of the basis function in the input space by representing the center
of the basis function [40].
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3.2. Super-Twisting Controller

In this section, we present the proposed finite-time control scheme, which aims to
achieve finite-time stability. Finite-time stability is a property of a dynamic system, wherein
its state variables remain bounded within a finite time interval, even when the system is
subjected to disturbances or uncertainties. This property is desirable in control systems as
it ensures that the system will reach a stable state within a finite time frame, regardless of
external factors. To achieve finite-time stability in the system, we utilize the super-twisting
algorithm. The super-twisting algorithm is a well-known and widely used second-order
sliding mode control and observation technique. It was first introduced by Levant [42].
Since then, the super-twisting algorithm has been applied to a variety of control and
observation problems, including mechanical systems, power electronics, robotics, and
aerospace systems. However, the literature on super-twisting algorithms for fractional-
order systems is relatively limited. The present study proposes a dependable control
scheme for VOF neural networks that utilize the neural networks’ approximation ability
and the robustness of super-twisting sliding mode controllers. The goal is to enhance
control performance by merging these two potent techniques. We define the following
sliding surface:

sit(t) = τei(t) + Dq(t)−1ei(t), (9)

where τ is a positive value constant defined by the user. Our suggested strategy for the
system (4) is a finite-time model-free super-twisting controller that is expressed as:

ui = Dq(t)xid − uist1 − f̂i(x)− τi
.
ei(t),

uist1 = −ki1|sit|
1
2 sign(sit) + uist2.

uist2 = −ki2sign(sit)

(10)

In the provided equation, both ki1 and ki2 are positive parameters that are defined by
the user. The discrepancy between the calculated weights and the factual weights is called
the weight estimation error, which is expressed as:

∼
Wi = W*

i − Ŵi (11)

The proposed process for weight evolution of the neural network is described by the
following adaptation law equation:

.
Ŵi = −γisitφi (12)

in which γi denotes a positive design parameter.

Remark 1. In contrast to traditional training processes for neural networks, we utilized an online
approach to update the weights of the network in real time. Specifically, the weights were updated
based on a proposed adaptive law, which enabled the network to continuously adjust and improve its
performance as new data became available. This approach is commonly used in control applications
where fast and accurate estimations are necessary. By updating the weights in an online manner, the
network is able to respond quickly to changes in the input and produce reliable output predictions in
real time.

Theorem 1: Given slave system (4) and master system (6), and the following assumptions:

the states of the slave and master system are continuous and Lipschitz,
the external disturbance and uncertainties are all bounded,
the design parameters γi, ki1, and ki2 are positive;

Proposed control law (10) pushes the states of the slave system to those of the master system
within a finite time interval.
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Proof. Equation (13) denotes the rate of change of the sliding surface over time as follows:

.
sit = τi

.
ei(t) + Dα1(t)ei(t) = τi

.
ei(t) + Dq(t)xid − fi(x)− ui

= τi
.
ei(t) + Dq(t)xid − fi(x)

−
(

Dq(t)xid − uist1 − f̂i(x)− τi
.
ei(t)

)
+ di − Dq(t)xid

= uist − fi(x) + f̂i(x)

(13)

Using Equation (19), we have fi(x)− f̂i(x)= −εi which yields

.
sit = uist1 − εi (14)

Thus, by substituting the proposed control law ust1, we can obtain the following
equations.

.
sit = −ki1|sit|

1
2 sign(sit) + uist2 − εi.

uist2 = −ki2sign(sit)
(15)

By reformulating the equation and introducing new variables wi1 = sit and wi2 = uist2,
we can obtain:

.
wi1 = −ki1|wi1|

1
2 sign(wi1) + wi2 − εi.

wi2 = −ki2sign(wi1)
(16)

where εi is a bounded estimation error. Equation (16) expresses a second-order super-
twisting algorithm. As per Theorem 2 in the article [43] we adopt the given Lyapunov
function:

V0 = ςTPς (17)

in which P is a matrix that is both symmetric and positive definite, while V0 is a quadratic
Lyapunov function. The variable ς is a vector that consists of two components, ς1 and

ς2, and is defined as ς = [ς1, ς2]
T =

[
|wi1|

1
2 sign(wi1), wi2

]T
. Additionally, the following

equality holds:
.

V0 = −|wi1|
1
2 ςTQς (18)

in which Q is a symmetric and positive definite matrix. It is guaranteed that the error’s
path will be bounded globally and ultimately. The time required for convergence is defined
by t f , which can be expressed as:

ti f = tis∆ +
2λmax{P}

λ
1
2
min{P}λmin{Q}

V
1
2

0 (t0) (19)

By following the procedure described in [43], the matrices P and Q in the Lyapunov
function can be selected such that the variables w1 and w2 reach zero in finite time. Addi-
tionally, the error trajectory will be globally ultimately bounded and the convergence time
is given by t f . �

Remark 2. The proposed technique offers several benefits compared to conventional control methods.
It is model-free, which means it does not require knowledge of the exact system dynamics, which
can be difficult to obtain in practice. Therefore, it can effectively manage the nonlinearity and
uncertainty of the VOF system using an intelligent observer. Moreover, it employs a finite-time
convergence algorithm, which guarantees that the system will attain the desired equilibrium state
within a fixed duration (as opposed to exponential convergence), irrespective of initial conditions or
system parameters. However, it is noteworthy that designing the parameters and structure of the
RBF neural network can be considered a technical challenge in the proposed method.
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4. Simulation Study by Applying Controller

In this section, we illustrate the numerical simulations of the proposed controller,
highlighting the excellent performance of the suggested control method on a VOF neural
network system, even under highly unpredictable dynamics. Taking into account the
presence of external disturbances and the control input, the VOF neural network’s equation
is formulated for simulation purposes as follows:

Dq(t)x1 = −c1x1 + a1,1tanh(x1) + a1,2tanh(x2) + a1,3tanh(x3) + I1 + u1 + d1,
Dq(t)x2 = −c2x2 + a2,1tanh(x1) + w2,2tanh(x2) + a2,3tanh(x3) + I2 + u2 + d2,
Dq(t)x3 = −c3x3 + a3,1tanh(x1) + a3,2tanh(x2) + a3,3tanh(x3) + I3 + u3 + d3,

(20)

This equation shows the governing equation of the salve system. The parameters of the
slave system are assumed to be identical to those of the master system. Across all numerical
examples, the RBF network employed in the study consists of a hidden layer comprised
of 30 neurons, each of which is associated with an RBF. The inputs to the network are the
synchronization error and its time derivative. The initial weights of all neurons in the RBF
network are set to 0.1, and these weights are updated based on the proposed adaptive law
(Equation (12)). The biases of all neurons in the network are considered constant and equal
to 20. To enable the network to output continuous values, a linear activation function is
used.

To consider the impact of disturbances, the system is assumed to be affected by
unknown perturbations that vary over time, as follows:

di(t) = 3sin(t) + 2cos
(√

t
)

(21)

To evaluate the performance of our proposed method, we compared it against a
state-of-the-art control approach designed for variable-order fractional chaotic systems.
Specifically, we considered the Finite-Time Sliding Mode (FTSM) method presented in [44].
FTSM in that reference employs VOF integral-type and derivative-type sliding surfaces,
leveraging the theory of VOF calculus. Here we applied the integral-type sliding surface,
which is given by:

si(t) = ei(t) + kiD−q(t)ei(t) (22)

where ki is a positive design parameter. Additionally, the control law of FTSM is described
in [44] as follows:

ui = Dq(t)xid − kiei(t)− fi(x)− ζ1si(t) + ζ2sign(si(t)), (23)

where ζ1 and ζ2 are positive design parameters.
It is worth noting that in our proposed super-twisting sliding mode controller, we

utilized the integral of the sign function to avoid chattering. In contrast, the FTSM described
in Equations (22) and (23) directly incorporates the sign function into the controller input,
which can result in chattering and necessitates careful parameter tuning. Consequently,
designing parameters for FTSM involves a trade-off between minimizing chattering and
minimizing errors in the control results. Therefore, to compare the performance of the two
controllers, we tested FTSM with two different sets of parameters.

In Section 4.1, we compare the performance of our developed method against that of
FTSM when the latter has been optimized to produce a control signal that is free from any
unwanted chatter. Additionally, in Section 4.2, we evaluate our proposed method against
FTSM by selecting a set of parameters that minimize the error in FTSM.

4.1. Comparison 1

Here the FTSM parameters have been carefully selected to ensure that the resulting
control signal is free from any undesirable chatter. Figures 4–6 present the results of our
comparison between the proposed super-twisting sliding mode controller and FTSM in [44].
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By analyzing the results presented in these figures, we can observe that our proposed
super-twisting sliding mode controller outperforms FTSM in terms of achieving accurate
synchronization. Notably, our controller achieves lower error (see Figure 5). These findings
highlight the effectiveness of our proposed method in controlling variable-order fractional
chaotic systems.
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4.2. Comparison 2

To further evaluate the performance of our proposed super-twisting sliding mode
controller, we compared it with FTSM [44] by selecting a set of parameters that minimize the
error in FTSM. In this part, we consider the same disturbance as described in Equation (21).
While the parameters of FTSM are changed to result in smaller synchronization errors, the
parameters of our controller are the same as in the previous section. The results of this
comparison are presented in Figures 7–9.
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Figures 7 and 8 show that both controllers achieve similar levels of synchronization
error. However, upon closer examination of Figure 9, we observed that FTSM suffers
from significant chattering, which is an undesired effect in practical applications. This
behavior highlights the limitation of FTSM and reinforces the advantages of our proposed
super-twisting sliding mode controller, which achieves accurate and smooth control signals
with minimal chattering.

4.3. Quantitative Results of Comparisons 1 and 2

To better compare the performance of the controllers, we carried out quantitative
analysis based on the average norm of errors and control inputs, as summarized in Table 1.
Lower values indicate better performance, and it is worth noting that all approaches had
the same control input range. Our analysis showed that, with the first set of parameters,
the FTSM controller produced higher synchronization errors than our proposed approach.
However, when the parameters of the FTSM controller were optimized to minimize errors,
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its performance in terms of synchronization errors resembled that of our proposed control
technique. Unfortunately, the control signal of FTSM displayed significant chattering (as
depicted in Figure 9), which cannot be ignored.

Table 1. Quantitative results of the synchronization results.

Method Average Norm of Errors Average Norm of Control Inputs

Proposed technique 4.9745 × 10−4 0.0141
FTSM while parameters are selected to

avoid chattering (comparison 1) 0.0011 0.0092

FTSM while parameters are selected to
reduce error in the results (comparison 2) 4.8644 × 10−4 0.0126

To recapitulate briefly, even when we found a set of parameters that resulted in small
errors for the FTSM controller, the chattering issue persisted. Considering all factors, our
results suggest that the proposed control technique is a more practical and effective solution
compared to FTSM, despite their similar performance in terms of synchronization error
with optimized parameters.

4.4. Model-Free Control

In order to evaluate the effectiveness of the suggested control scheme, we investigated
a scenario where the dynamics of the slave system are entirely unknown. In this scenario,
the suggested neural network observation should gauge the dynamics of the VOF system
and supply this information to the controller signals. This case serves as a reference point
for assessing the efficacy of the suggested method for controlling the slave system when its
dynamics are completely unknown.

Figures 7 and 8 depict the states of the system and the synchronization error, re-
spectively. The results of the synchronization displayed in these figures indicate that the
suggested control approach can successfully achieve the desired performance. Additionally,
Figure 9 illustrates the time history of the control signal. The system behavior and control
input are both stable and smooth, without any noticeable fluctuations or unstable behavior.
These findings suggest that the proposed control method is effective in regulating the
system and generating consistent and stable outcomes, even when the dynamic of the
system is completely unknown.

5. Conclusions

In this article, we examined the synchronization of VOF neural networks without
relying on any specific model of the slave system. We proposed an extended super-twisting
sliding mode control scheme that can produce finite-time responses while taking advantage
of an RBF neural network estimator. We proved the system’s finite-time convergence
and stability using the Lyapunov stability theorem, accounting for any disturbances and
unknown models of the slave system. We evaluated the effectiveness of the proposed
method through several numerical simulations in two different scenarios, including syn-
chronization with time-varying disturbances and synchronization of a totally unknown
slave system. The numerical simulations confirmed the validity of the theoretical claims
about the proposed control technique, showcasing its outstanding performance. The pro-
posed method in this paper is a step towards addressing existing challenges in the control
of VOF neural networks, and the findings of this study pave the way for future practical
research on the application of these complex systems. As a future direction, we suggest that
the proposed controller could be further enhanced using self-tuning algorithms and that
it has immense potential for customization and adaptation to various systems, including
those with discrete-time dynamics.
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