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Abstract: Dynamical analysis of the incommensurate fractional-order neural network is a novel
topic in the field of chaos research. This article investigates a Hopfield neural network (HNN)
system in view of incommensurate fractional orders. Using the Adomian decomposition method
(ADM) algorithm, the solution of the incommensurate fractional-order Hopfield neural network
(FOHNN) system is solved. The equilibrium point of the system is discussed, and the dissipative
characteristics are verified and discussed. By varying the order values of the proposed system,
different dynamical behaviors of the incommensurate FOHNN system are explored and discussed
via bifurcation diagrams, the Lyapunov exponent spectrum, complexity, etc. Finally, using the DSP
platform to implement the system, the results are in good agreement with those of the simulation.
The actual results indicate that the system shows many complex and interesting phenomena, such
as attractor coexistence and an inversion property, with dynamic changes of the order of q0, q1, and
q2. These phenomena provide important insights for simulating complex neural system states in
pathological conditions and provide the theoretical basis for the later study of incommensurate
fractional-order neural network systems.

Keywords: incommensurate fractional orders; Hopfield neural network; fractional-order chaotic
system; coexisting attractors

1. Introduction

The exploration of fractional order calculus theory provides a new way of thinking
to create value [1,2]. Fractional order calculus is a theory that studies differential inte-
grals of an arbitrary order, and it has a very important role in many fields [3,4], such as
bioinformatics, image enhancement, image encryption, chaos, and complex networks [5–8].
Fractional order calculus accumulates global information about functions in a weighted
form [9]. Its memorability and global relevance enable it to be widely used in engineering
applications [10,11]. To facilitate ease of reading and understanding in this article, the full
names appearing in the paper correspond to the abbreviations shown in Table 1.

Table 1. Full name corresponding to the abbreviation.

Full Name Abbreviation

Artificial neural network ANN
Adomian decomposition method ADM
Fractional-order neural network FONN

Fractional-order Hopfield neural network FOHNN

Artificial neural network (ANN) [12,13] consists of neurons and synapses. It is used
to simulate the different electrical activities in the nervous systems [14,15]. Numerous
physiological experiments have shown that biological neurons and electrical activity in the
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nervous system are highly correlated with thinking, memory, and learning skills [16,17].
The chaotic behavior in the human brain is also closely related to the brain’s unique abilities
of memory, thinking, and learning [18]. Scholars have subsequently discovered ways to
introduce chaos theory into artificial neural network models; in this way, they can better
simulate the neural network structure of the brain [19]. The mystery of the brain has
inspired many researchers to study chaotic neural networks [20]. In recent years, chaotic
neural networks have been widely used in the areas of image identification, biomedicine,
pattern recognition, etc. [21,22]. The Hopfield neural network (HNN) is one of the most
used neural network models [23–25]. For instance, Ma et al. built a novel 4D HNN system
with two nonlinear memristors, which are used to simulate the neural synapses in the
model. There have also been investigations of how the chaotic state changes when an
external stimulus is added to the neuron [26]. Xu et al. proposed a FOHNN system
with four neurons. Moreover, a new multi-hash index chain construction method has been
designed based on this system [27]. These experiments suggest that studying the dynamical
behavior of the HNN can provide a foundation for work associated with neurodynamical
behaviors. It is necessary for scholars to study the neural network model in depth [28–31].

The memory of a neural network model is analogous to the associative global de-
pendence of fractional order calculus [32]. It has been demonstrated that the function of
introducing fractional calculus into the neural network is to simulate the complex infor-
mation processing and memory function of the human brain [33,34]. The fractional-order
neural network (FONN) has an infinite “memory” property compared with the integer
order; this property can improve the control ability of the network model for many practical
problems and has strong application potential. Since the end of the 20th century, attempts
to use and studies on FONN have been emerging. Alsaade et al. proposed a model-free and
finite-time super-twisting control technique for a variable-order fractional Hopfield-like
neural network with the aim of improving the robustness of FONN system control [35].
Boroomand et al. replaced the capacitor in the conventional HNN with this fractional-order
partial resistance to build a FOHNN and used it for parameter estimation of second-order
systems [36].

Findings indicate that the human brain first classifies information into different lev-
els of importance before memorizing it, and that each segment of memory is stored in
the human brain for different lengths of time and profundity [37]. The commensurate
fractional-order neural network system can only process all information according to the
same level of importance [38]. The incommensurate order can classify information into
different levels of importance and then process it [39]. In fact, the commensurate order is
only a special case of a FONN system, as each order of equations affects the system differ-
ently, such that incommensurate FONN systems can more accurately describe the working
mechanism of the brain [40]. However, very few studies have been conducted on incom-
mensurate FONN [41]. Abbes et al. calculated the stability of zero equilibrium points for a
novel discrete incommensurate FOHNN [42]. Jia et al. lagged the quasi-synchronization of
incommensurate fractional-order memristor neural networks with disparate characteristics,
which was achieved via quantization control [43]. Chen et al. established the asymptotic
stability criterion of FONN, and this criterion was used to effectively investigate the stabil-
ity and synchronization of the incommensurate FOHNN system [44]. Jia et al. obtained
the global stability of the incommensurate fractional-order memristor-based neural net-
works [45]. According to current research results, the characteristics of incommensurate
FONN systems are more often studied by changing one order when the other orders of the
system are equal. No complete order inequality has ever been realized before. Therefore,
no ADM decomposition process has been given for the incommensurate fractional-order
neural network. There are also relatively few implementations of non-commutative FONN
systems. In this paper, a complete ADM decomposition procedure was given when the or-
ders were not equal at all. The effect of the order on the complexity of FOHNN systems with
complex activation functions was analyzed, and the effects of synaptic weights change on
the system were also explored when the orders were completely unequal. It was found that
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the incommensurate FOHNN system has complex and rich dynamical behaviors [46,47].
The study of incommensurate FOHNN systems has contributed to a better understanding
of the neural function of the human brain [48] and provided a theoretical basis for the
subsequent study of incommensurate fractional-order systems.

Based on the above analysis, this paper constructs an incommensurate FOHNN system.
The paper has the following structure. In Section 2, a new FOHNN system of an unequal
order is presented. The numerical solution is calculated using the ADM algorithm, and then
the dissipative nature of the system is analyzed and the equilibrium point and stability are
explored. Section 3 provides a dynamical analysis of the system, and the effects of different
synaptic weights and orders on the system are investigated. The system is implemented
using the DSP platform in Section 4, and Section 5 is the conclusion of the whole paper.

2. The Incommensurate FOHNN System
2.1. Fractional Calculus

Definition 1 [49]. The definition of the Caputo fractional-order derivative is introduced as

(∗Dq
t0+

f )(t) =
1

Γ(s− q)

∫ t

t0

f (s)(τ)

(t− τ)q+1−s dτ, (1)

where Γ represents the Gamma function, q stands for order, s represents the first integer greater than
q, and ∗Dq

t0+
represents the Caputo differential operator.

Theorem 1 [50]. For the given fractional-order chaotic function (∗D q
t0+

x)(t
)
= f (x(t))+ c(t),

where x(t) is the given function variable, c(t) is the constant term, and f denotes a functional equation
containing linear and nonlinear components, the ADM algorithm expressed the system as(

∗Dq
t0+

x
)
(t) = Lx(t) + Nx(t) + c(t), (2)

where L and N are the linear and nonlinear parts of the system, respectively. Both sides of the
equation are subjected to some calculus operations, and the following can be obtained

x = Jq
t0

Lx + Jq
t0

Nx + Φ, (3)

where Φ is the initial condition that satisfies the system and Jq
t0

indicates the R-L fractional integral
operator of order q. The nonlinear term is decomposed as

Ai
j =

1
i!

[
di

dαi N(ui
j(α))

]
α=0

ui
j(α) =

i
∑

g=0
αgxg

j

, (4)

in which i = 0, 1, 2, 3... ∞ and j = 1, 2, 3... n.

2.2. Solution of the Incommensurate FOHNN-Based System

HNN is a recurrent neural network suitable for computing complex dynamical be-
haviors in simulated neurons. The novel Hopfield neural network can be represented as

.
xi = −xi +

G

∑
j=1

kijtanh(xj), (5)

xi (i = 1, 2, 3) indicates the status variable associated with the membrane potential of the
i-th neuron, kij represents the G × G matrix of synaptic weights, and tanh(xj) (j = 1, 2, 3)
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denotes the activation function responsible for mapping its input to the output on a neuron
that is nonlinear. The topology is shown in Figure 1 and the matrix can be expressed as

K =

k11 k12 k13
k21 k22 k23
k31 k32 k33

 =

k11 −1.8 0.7
2.8 0 k23
k31 1.4 k33

. (6)
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Combining Equations (5) and (6), a nonlinear dimensionless form of the 3-neuron
HNN is written as

.
x1 = −x1 + k11tanh(x1)− 1.8tanh(x2) + 0.7tanh(x3).
x2 = −x2 + 2.8tanh(x1) + k23tanh(x3).
x3 = −x3 + k31tanh(x1) + 1.4tanh(x2) + k33tanh(x3)

. (7)

Based on the compliant derivative, the incommensurate fractional-order nonlinear
system can be written as

∗Dq0
t0

x1(t) = −x1 + k11tanh(x1)− 1.8tanh(x2) + 0.7tanh(x3)

∗Dq1
t0

x2(t) = −x2 + 2.8tanh(x1) + k23tanh(x3)

∗Dq2
t0

x3(t) = −x3 + k31tanh(x1) + 1.4tanh(x2) + k33tanh(x3)

, (8)

q0, q1, and q2 are the systems of three disparate orders. The linear and nonlinear terms of
the system are Lx1

Lx2
Lx3

 =

x1
x2
x3

,

Nx1
Nx2
Nx3

 =

tanh(x1)
tanh(x2)
tanh(x3)

. (9)
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The nonlinear terms possess similar expressions; as such, here, only the decomposition
Nx1 through Equation (4) can be obtained as

A0
1 = tanh(x0

1)

A1
1 = x1

1sech2(x0
1)

A2
1 = x2

1sech2(x0
1)− (x1

1)
2sech2(x0

1)tanh(x0
1)

A3
1 = x3

1sech2(x0
1)− 2x2

1x1
1sech2(x0

1)tanh(x0
1)

+ 1
3 (x1

1)
3
(4sech3(x0

1)tanh2(x0
1)− sech4(x0

1))

A4
1 = x4

1sech2(x0
1)−

(
2x3

1x1
1 + x2

1x2
1
)
sech2(x0

1)tanh(x0
1)

+
(
x1

1
)2x2

1(4sech3(x0
1)tanh2(x0

1)− sech4(x0
1))

+ 1
3 (x1

1)
4
(sech3(x0

1)tanh(x0
1)− 3sech3(x0

1)tanh3(x0
1))

, (10)

and the first term can be obtained as
x0

1 = x1(t0+) = c0
1

x0
2 = x2(t0+) = c0

2
x0

3 = x3(t0+) = c0
3

. (11)

The second term of the state parameter is represented as
x1

1 = (−c0
1 + k11tanh(c0

1)− 1.8tanh(c0
2) + 0.7tanh(c0

3))
(t−t0)

q0

Γ(q0+1)

x1
2 = (−c0

2 + 2.8tanh(c0
1) + k23tanh(c0

3))
(t−t0)

q1

Γ(q1+1)

x1
3 = (−c0

3 + k31tanh(c0
1) + 1.4tanh

(
c0

2
)
+ k33tanh(c0

3))
(t−t0)

q2

Γ(q2+1)

. (12)

Let 
c1

1 = −c0
1 + k11tanh(c0

1)− 1.8tanh(c0
2) + 0.7tanh(c0

3)
c1

2 = −c0
2 + 2.8tanh(c0

1) + k23tanh(c0
3)

c1
3 = −c0

3 + k31tanh(c0
1) + 1.4tanh

(
c0

2
)
+ k33tanh(c0

3)
. (13)

The coefficient decompositions of the other three terms are listed in Appendix A. The
first five terms of the solutions to the incommensurate FOHNN chaotic systems are

x1(t) = c0
1 + c1

1
(t−t0)

q0

Γ(q0+1) + c2
1
(t−t0)

2q0

Γ(2q0+1) + c3
1
(t−t0)

3q0

Γ(3q0+1) + c4
1
(t−t0)

4q0

Γ(4q0+1)

x2(t) = c0
2 + c1

2
(t−t0)

q1

Γ(q1+1) + c2
2
(t−t0)

2q1

Γ(2q1+1) + c3
2
(t−t0)

3q1

Γ(3q1+1) + c4
2
(t−t0)

4q1

Γ(4q1+1)

x3(t) = c0
3 + c1

3
(t−t0)

q2

Γ(q2+1) + c2
3
(t−t0)

2q2

Γ(2q2+1) + c3
3
(t−t0)

3q2

Γ(3q2+1) + c4
3
(t−t0)

4q2

Γ(4q2+1)

. (14)

According to the ADM process, the whole region is divided into an infinite number
of small regions, and the solution obtained from the previous small region is used as the
initial condition for the next small region for iteration, with iteration step h = 0.01. The
setting was k11 = 3.7, k23 = 1, k31 = −7, k33 = 0, initial value x0 = (1, 1, 1), incommensurate
order q0 = 0.88, q1 = 0.86, and q2 = 0.83. The incommensurate FOHNN-based system’s
Lyapunov exponents are L1 = 0.2502, L2 = 0, and L3 = −1.6173. The system has a chaotic
state because L1 > 0, L2 = 0, and L1 + L2 + L3 < 0. The relative phase diagram of the attractor
is presented in Figure 2.

2.3. Dissipation

The volume of the phase space of a system in dissipation is always contracting during
motion; this state is expressed in mathematics as Λ < 0, and its properties guarantee the
existence of bounded global attractors. The dissipative of the system is obtained as

Λ =
∂

.
x1

∂x1
+

∂
.
x2

∂x2
+

∂
.
x3

∂x3
= −3 + k11(1− tanh2(x1)) + k33(1− tanh2(x3)). (15)
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Because−1 < tanh(xi) < 1, the model is guaranteed to be dissipative for all xi (i = 1, 2, 3)
if the self-synaptic weights k33, k11 are properly selected. A positive definite Lyapunov
function is introduced as

V(x1, x2, x3) =
1
2

x2
1 +

1
2

x2
2 +

1
2

x2
3, (16)

the time derivative of Equation (16) can be deduced as

.
V(x1, x2, x3) = x1

.
x1 + x2

.
x2 + x3

.
x3

= −(x2
1 + x2

2 + x2
3)

+tanh(x1)(k11x1 + 2.8x2 − k31x3) + tanh(x2)(−1.8x1 + 1.4x3)
+tanh(x3)(0.7x1 + k23x2 + k33x3)

, (17)

h(x1, x2, x3) = tanh(x1)(k11x1 + 2.8x2 − k31x3) + tanh(x2)(−1.8x1 + 1.4x3)
+tanh(x3)(0.7x1 + k23x2 + k33x3)

, (18)

next, the equation can become

.
V(x1, x2, x3) = −2V(x1, x2, x3) + h(x1, x2, x3). (19)

Because tanh(xi) < 1 for all xi (i = 1, 2, 3).

h(x1, x2, x3) ≤ |tanh(x1)(k11x1 + 2.8x2 − k31x3)|+ |tanh(x2)(−1.8x1 + 1.4x3)|
+|tanh(x3)(0.7x1 + k23x2 + k33x3)|
< |k11x1 + 2.8x2 − k31x3|+ |(−1.8x1 + 1.4x3)|+ |0.7x1 + k23x2 + k33x3|
≤ |x1|(|k11| − 1.1) + |x2|(|k31|+ 2.8) + |x3|(|k23|+ |k33|+ 1.4)

, (20)

put D0 > 0, which is a wirelessly extensive range of values. Let the range of all xi (i = 1, 2, 3)
be D with D > D0, and obtain

h(x1, x2, x3) < |x1|(k11 − 1.1) + |x2|(k23 + 2.8) + |x3|(−k31 + k33 + 1.4)
< x2

1 + x2
2 + x2

3 = 2V(x1, x2, x3)
, (21)

where k11 − 1.1 > 0, k23 + 2.8 > 0, and k33 − k31 + 1.4 > 0, and they are both constants on
the surface

{(x1, x2, x3)|V(x1, x2, x3) = D}, (22)
.

V(x1, x2, x3) = −2V(x1, x2, x3) + h(x1, x2, x3) < 0, (23)

therefore, it yields
{(x1, x2, x3)|V(x1, x2, x3) ≤ D}. (24)

The restricted region of all solutions of Equation (7) is obtained by a series of calculations.
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2.4. Equilibrium Points and Stabilities

To obtain the dynamical behavior of stretching, contraction, and folding transforma-
tions of chaotic attractors in FOHNN systems with respect to the nature of equilibrium
points, set the left side of Equation (8) to 0.

0 = −x1 + k11tanh(x1)− 1.8tanh(x2) + 0.7tanh(x3)
0 = −x2 + 2.8tanh(x1) + k23tanh(x3)
0 = −x3 + k31tanh(x1) + 1.4tanh(x2) + k33tanh(x3)

. (25)

The Jacobian matrix corresponding to it is

J =

−1 + k11sech2(x1) −1.8sech2(x2) 0.7sech2(x3)

2.8sech2(x1) −1 k23sech2(x3)

k31sech2(x1) 1.4sech2(x2) −1− k33sech2(x3)

, (26)

The equilibrium point is [0, 0, 0] obtained by calculating. The setting is k11 = 3.7,
k23 = 0.8, k31 = −6.6, and k33 = 0.1. The equilibrium equation is

λ3 + 6.4λ2 − 29.32λ− 22.74 = 0, (27)

and the solution is 
λ1 = −9.29
λ2 = −0.68
λ3 = 3.58

. (28)

According to Equation (25), all three eigenvalues are real roots, and λ1 < 0, λ2 < 0, and
λ3 > 0. λ1 is a positive real root corresponding to an unstable solution, while λ2 and λ3 are
two negative real roots corresponding to two stable solutions. As shown in Figure 3, this is
a saddle point with an unstable manifold and the confluence of two stable manifolds for
indicator 2.
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3. The Dynamical Analysis of the Incommensurate FOHNN System
3.1. Dynamical Behaviors with the Incommensurate Fractional Order

The setting is k11 = 3.7, k23 = 0.7, k31 = −7.1, k33 = 1, initial value x0 = (1, 1, 1),
incommensurate order q0 = 0.85, q1 = 0.75, and q2 = 0.6. The incommensurate order is
varied. The setting q0, q1, and q2 in the range of 0.75 to 0.85, in turn, was studied. The
Lyapunov exponent spectrum and the bifurcation diagram are displayed in Figure 4, and
the max Lyapunov exponent spectrum is displayed in Figure 5. To obtain a better view
of the changes in the Lyapunov exponents of the system, only values greater than −4 are
shown in Figure 4.
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(a) q0 ∈ (0.75, 0.85); (b) q1 ∈ (0.75, 0.85); (c) q2 ∈ (0.75, 0.85).

Observe that q0 in Figure 4a enters chaos from 0.772, with occasional brief periodic
states in a continuous chaotic state. q1 in Figure 4b is already in a chaotic state at 0.75; it has
a longer period-3 window at 0.782, enters chaos again at 0.795 via a tangent bifurcation, and
then changes back to a periodic state at 0.84. q2 in Figure 4c undergoes a brief chaotic state
and then enters the periodic state through an inverse multiplicative periodic bifurcation.
As shown in Figure 5, the max Lyapunov diagram for qi is (i = 1, 2, 3), unfolding the range
of local instability of chaotic attractors caused by each order.
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Analysis of Figures 4 and 5 reveals that when the orders of the FOHNN system are
not the same, by changing the order, the dynamical behavior of the system changes more.
This indicates that the incommensurate order is more accurate in describing the physical
phenomena of the system.

3.2. The Dynamical Behavior of Distinct Synaptic Weights
3.2.1. The Self-Synaptic Weight k11 Varies

Auto synapses play an important role in regulating the accuracy of their own action
potential delivery. Altering the self-synaptic weight can enhance neuronal responsiveness
and make the FOHNN system appear as a complex chaotic phenomenon. Consider the
effects of shifts in the self-synaptic weight k11 on the system. The setting is k23 = 0.9,
k31 = −7.1, k33 = 0.1, initial value x0 = (1, 1, 1), incommensurate order q0 = 0.88, q1 = 0.84,
q2 = 0.8, and self-synaptic weight k11 ∈ (3.4, 3.9). The diagrams of the bifurcation and the
Lyapunov exponents spectrum of the system are drawn in Figure 6. Observe a and b of
Figure 6 at k11 = 3.4. The system has entered a chaotic state, which lasts until k11 = 3.58.
At k11 = 3.58, the system degenerates back to the periodic state; at k11 = 0.61, it enters
the chaotic state again and lasts until k11 = 3.73, when it returns to the periodic state; at
k11 = 3.76, it enters the chaotic state again; and, in the interval from k11 = 3.76 to 3.9, it is
mostly in the chaotic state. The phase diagram in the x2-x3 plane of the attractor obtained
by varying k11 in this range is given in Figure 7.
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3.2.2. The Synaptic Weight k31 Varies

Varying the synaptic weights between neurons, the incommensurate FOHNN system
harvests complex and research-worthy dynamical properties when k11 = 3.9, k23 = 0.8,
k33 = 1.3, incommensurate order q0 = 0.94, q1 = 0.86, q2 = 0.8, the remaining characters
are the same as described above, and synaptic weight k31 ∈ (−5, −10). The Lyapunov
exponent spectrum and bifurcation diagram are displayed in Figure 8. The system enters a
chaotic state at k31 = −5.1 via a tangent bifurcation, and then the period-7 attractor appears
at k31 ∈ (−6, −6.95). At k31 = −6.95, the system enters the chaotic state again through a
short period of doubling bifurcation lasting until k31 = −7.3; during k31 ∈ (−7.3, −7.5), the
system is in period-7 states and then enters a chaotic state at k31 = −7.5; after, it returns to
the periodic state at k31 = −8.2 through the internal crisis bifurcation at k31 = −8.36, and
then it enters a longer chaotic state, other conditions being unchanged. The attractor phase
diagram obtained by choosing different k31 is shown in Figure 9.
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Figure 8. The dynamical behaviors with k31 vary. (a) Diagram of bifurcation; (b) Lyapunov exponents
of the system.
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3.3. Complexity Analysis

Spectral entropy complexity (SE) belongs to structural complexity. The main analysis
is whether the sequence has the complexity of frequency component. The spectral entropy
value is obtained using the energy distribution in the Fourier transform domain.

The setting is k11 = 3.7, k23 = 0.7, k31 = −7.1, k33 = 1, initial value x0 = (1, 1, 1),
incommensurate order q0 = 0.85, q1 = 0.75, and q2 = 0.6. The incommensurate order is
varied. q0 and q1 are set in the range of 0.75 to 0.85 and q2 is set in the range of 0.65 to
0.75. The 3D SE complexity of various order planes is plotted in Figure 10, and, as shown,
the maximum spectral entropy value reaches 0.55. The larger the SE value, the larger the
average uncertainty of all possible events of the system. In a neural network system, the
greater the complexity, the nearer it is to the brain’s proper working state. Therefore, the
parameter values should be selected in the dark red area of Figure 10a,b.
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blue when the initial value x0 = (1, 1, 1) and pink when the initial value x0 = (1, −5, −5); 
incommensurate order q0 = 0.91, q1 = 0.89, and q2 = 0.8. The coexistence attractor phase 
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3.4. Coexistence of the Attractors for the Incommensurate Fractional Order

In the field of neural networks, there are multiple pathological states in brain dynamics,
which include both normal and pathogenic states, and the coexistence of the two states
corresponds to the phenomenon of attractor coexistence. Brain activity is highly dynamical;
in normal conditions, the brain is in a chaotic state, while in the pathogenic state, the brain’s
behavior is periodic.

The coexistence of incommensurate fractional orders was observed by adjusting the
order of the system. The setting was k11 = 3.7, k23 = 0.8, k31 = −8, and k33 = 1. The attractor
is blue when the initial value x0 = (1, 1, 1) and pink when the initial value x0 = (1, −5, −5);
incommensurate order q0 = 0.91, q1 = 0.89, and q2 = 0.8. The coexistence attractor phase
diagram is shown in Figure 11a. By fixing q0 = 0.91 and q2 = 0.8 and changing the value of
q1 so that it is equal to 0.88 and 0.86, the different types of coexistence attractors are plotted
in Figure 11b,c.
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4. Circuit Design and Simulation of the FOHNN System

The hardware implementation of the chaotic system is the key step in its application in
engineering practice. DSP becomes the core of the electronic system with its programmabil-
ity and easy implementation. This part uses DSP to obtain the chaotic signal of the system
based on a typical TMS320F28335 DSP chip to study the implementation of FOHNN. The
DSP hardware block diagram to realize the incommensurate FOHNN system is shown in
Figure 12.
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Figure 15. Chaotic attractor. (a) k11 = 3.7, k23 = 1, k31 = −7, k33 = 0, initial value x0 = (1, 1, 1),
incommensurate order q0 = 0.88, q1 = 0.86, and q2 = 0.83; (b) k11 = 3.7, k23 = 0.8, k31 = −7.1, k33 = 0.1,
initial value x0 = (1, 1, 1), incommensurate order q0 = 0.88, q1 = 0.85, and q2 = 0.82; (c) k11 = 3.7, k23 = 1,
k31 = −7, k33 = 0.1, initial value x0 = (1, 1, 1), incommensurate order q0 = 0.88, q1 = 0.86, and q2 = 0.84.

5. Conclusions

In this article, an incommensurate FOHNN system is designed and solved by the ADM
algorithm. The dissipative properties of the system are given and the stabilization point at
fixed values is calculated. The effects of the order q0, q1, q2 and the changes of the synaptic
weights k31 and self-synaptic weight k11 in the system on the dynamic characteristics were
analyzed. The results indicate that the system shows complex dynamical behaviors with
the dynamic changes of the five parameters. Interestingly, the coexistence of attractors
is found for many cases and its inversion property is found. Finally, the digital circuit
of the incommensurate FOHNN system is implemented on the DSP platform, and the
Matlab simulation results match those obtained by the DSP. The rich nonlinear phenomena,
exhibited by the incommensurate FOHNN system, offer an additional experimental basis
for the study of this system in fractional-order chaotic systems and the practical application
of neural networks. The next step will be to consider its application in medical image
encryption, and the actual circuit realization of the system.
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