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Abstract: This study investigates the dynamics of predator–prey interactions with non-overlapping
generations under the influence of fear effects, a crucial factor in ecological research. We propose a
novel discrete-time model that addresses limitations of previous models by explicitly incorporating
fear. Our primary question is: How does fear influence the stability of predator–prey populations
and the potential for chaotic dynamics? We analyze the model to identify biologically relevant equi-
libria (fixed points) and determine the conditions for their stability. Bifurcation analysis reveals how
changes in fear levels and predation rates can lead to population crashes (transcritical bifurcation)
and complex population fluctuations (period-doubling and Neimark–Sacker bifurcations). Further-
more, we explore the potential for controlling chaotic behavior using established methods. Finally,
two-parameter analysis employing Lyapunov exponents, spectrum, and Kaplan–Yorke dimension
quantifies the chaotic dynamics of the proposed system across a range of fear and predation levels.
Numerical simulations support the theoretical findings. This study offers valuable insights into the
impact of fear on predator–prey dynamics and paves the way for further exploration of chaos control
in ecological models.

Keywords: predator–prey system; fear effect; transcritical bifurcation; period-doubling bifurcation;
Neimark–Sacker bifurcation; chaos control; complexity
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1. Introduction

Predator–prey interactions have received considerable attention within mathematical
ecology, recognized as a fundamental mechanism driving population dynamics [1]. Numer-
ous studies have documented the direct effects of predation on prey populations, leading
to population declines. Predation’s influence extends beyond direct prey consumption,
potentially impacting predator populations themselves. Studies suggest that fear responses
in prey can indirectly affect predator dynamics by altering foraging behavior and resource
use [2]. These intricate dynamics draw attention to the complex ecological interactions that
exist between predators and their prey, necessitating more research into the various effects
of predation on both populations.

In the case of ecology, applying mathematical models is an essential technique for
scientific research. One of the earliest ecological phenomena represented through mathe-
matical techniques is the interaction between predators and prey. Lotka in 1925 and Volterra
in 1926 were pioneers in applying mathematical approaches to study this interaction [3,4].
According to the traditional perspective, predator can only affect the prey population
through direct killing. This is because predation events are easily observed in the field, and
removing predators from the population would suggest that direct killing is the primary
mechanism involved. However, an emerging theory suggests that the mere presence of a
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predator can have a profound impact on the behavior and physiology of prey, potentially
having an even greater effect on prey populations than direct hunting [5–9]. Recently, both
theoretical and empirical studies have revealed that not only direct predation and density-
mediated effects, but also trait-mediated indirect effects can significantly alter the structure
of an ecosystem. The mere presence of predation threats alone has been shown to reduce
growth, survival, or reproduction of prey [10,11]. This results in a wide range of biological
phenomena, including Allee effect dynamics, such as decreased anti-predator vigilance,
social thermoregulation, genetic drift, mating difficulties, reduced anti-predator defense,
and decreased low-density feeding [12]. However, there are many other factors that can
contribute to this phenomenon [13,14]. At the population level, the non-lethal effects of
predators intimidating their prey may be more important than the lethal effects [15–17].

On the other hand, prey species respond to the presence of predators with a range
of anti-predator behaviors. These behaviors include changes in habitat use, alterations
in feeding patterns, increased vigilance, and various other physical adaptations [18–20].
For instance, mule deer have been observed to modify their foraging behavior in response
to the risk of predation by mountain lions [21]. However, in situations where prey is
frightened by predator presence, they may exhibit reduced feeding behavior, which can
result in starvation and reduced reproductive success [22].

A study by Clinchy et al. [23] also supports the notion that fear can have a detrimen-
tal effect on the survival of adult prey by altering the psychological states of juveniles.
Hunting can have a range of significant impacts on ecosystems, including biocontrol of
pest species and impacts on ecosystem processes such as primary production and nu-
trient cycling [23–26]. Climate change, along with its associated abiotic factors such as
temperature, can induce changes in species traits such as oviposition, development time,
and behavior [27–31]. In the field of population dynamics, various ecological interactions
such as competition, mutualism, and predation hold significant importance. Nonetheless,
the impact of parasite infestation on population size should not be disregarded. There
have been numerous studies in the field that have documented the presence of parasite
infection in both prey and predators. Parasites can hinder the survival and reproductive
capacity of infected organisms by disrupting their internal mechanisms [32]. Data obtained
from field surveys and experimental studies on terrestrial vertebrates indicate that fear of
predation leads to significant variation in prey density [33]. In a study by Mukherjee [34], a
predator-prey system with fear effects on prey and competition for resources was analyzed.
In the past decade, many biologists have demonstrated empirically that predator–prey
systems reflect not only direct killing by predators but also fear of predators see [35] for
example. Currently, many studies explain that fear is a very strong impact on ecosystem as
in [36], their experiment it appeared that female birds that repeatedly experienced nesting.
Predators produced fewer eggs in subsequent nests. Therefore, the presence of predators
has a greater effect on prey demographics than direct victimization. Zanette et al. [37]
conducted an experiment on song sparrows which showed that 40% of offspring produced
by song sparrows (Melospiza Melodia) are reduced due to fear of the predator.

Wang et al. [38] constructed mathematical models for predator–prey systems by
including the cost of fear to prey species caused by predators, where the cost of fear
determines the birth rate of the prey species. They showed that the presence of activity that
defeats the predator or a large fear cost can eliminate repeated behavior, except in contrast
to the enrichment scenario. Moreover, they showed that fear can stabilize the system by
eliminating population oscillations. Moreover, oscillations emerge from supercritical or
subcritical Hop bifurcation distributions under relatively low costs for fear. Therefore, the
effect of fear can create multi-stability in predator–prey systems [38–40]. Mondal et al. [41]
showed the saddle node distribution, Hopf bifurcation, and Bogdanov–Takens bifurcation
in an imprecise predator–prey system to show the fear effect and the existence of non-
linear harvesting of predators in an uncertain environment [41]. In a more recent scientific
investigation conducted by Wang et al. [42], the emphasis was on examining how various
predator hunting strategies influence the dynamics of a prey-predator interaction. The



Fractal Fract. 2024, 8, 221 3 of 35

study proposed a comprehensive model that incorporated the cost of fear and integrated
three distinct predator hunting strategies: active hunting, passive hunting, and random
hunting. Through their research, the authors discovered that the chosen hunting strategy
had a notable impact on the overall dynamics of the system. Specifically, they observed
that passive hunting resulted in the lowest population levels for both the predator and the
prey [42].

Considering the impact of predator-induced fear on prey, we adjust the predator–prey
model initially presented by Li and Shao [43] to incorporate the fear effects. We delve
into the detailed analysis of their dynamic behavior thereafter. In the present study, we
mathematically formulate a real-world predator–prey system using a ratio-dependent
response to characterize the predation process. The selection of ratio-dependent functional
response stems from its importance in predator–prey interactions [40]. It clarifies the
response of predator and prey populations to changes in their relative abundance. The
way predators and prey interact with each other, and how their populations are affected by
the environment, determines this ratio-dependent response. Understanding this response
helps us see how predator–prey relationships stay balanced in nature and how they might
change with environmental shifts. It also sheds light on how predator–prey interactions
affect ecosystem’s dynamics.

Taking into account the intergenerational interactions in the dynamics between preda-
tors and prey, Li and Shao [43] suggested a model that includes a functional response of
the type ratio-dependent, and their proposed model is given as follows:

du
dt = p u

(
1 − u

q

)
− r uv

s v+u ,
dv
dt = v

(
r1 u

s v+u − d
)

,
(1)

where u and v represent population densities of prey and predator, respectively. Further-
more, p denotes the prey intrinsic growth rate, q is the maximum prey population size
or carrying capacity, r is fraction of prey caught per predator per unit time, s denotes
the handling time or time taken by a predator to consume the prey, r1 represents con-
version factor or prey biomass converted into newly born predators, and d is used to
represent the predator death rate. On the other hand, r u

s v+u is Michaelis–Menten-type ratio-
dependent functional response. Next, arguing as in [43], one can apply the transformation(

u
q , p t, s v

q , r
s p , r1

p , d
r1

)
→ (x, t, y, a, b, c) , and the following system is obtained:

{ dx
dt = x(1 − x)− a x y

x+y ,
dy
dt = b y

(
x

x+y − c
)

.
(2)

To delve into the concept of non-overlapping generations, Li and Shao [43] employed
the exponential discretization method to formulate and analyze a discrete-time predator–
prey model, as presented below:{

xn+1 = xne
1−xn− a yn

xn+yn ,

yn+1 = yneb ( xn
xn+yn −c),

(3)

where a, b, c > 0. Furthermore, Li and Shao [43] studied local dynamics, Neimark–Sacker
bifurcation and flip bifurcation for system (3). However, the discrete system that incorpo-
rates the fear effect associated with the given system (3) has not been explored in previous
research. Moreover, when considering the implications of fear that arise from predator–prey
interactions and incorporating non-overlapping generations, system (3) can be altered as
described below: {

xn+1 = xne(
1−xn

1+k yn
− a yn

xn+yn ),

yn+1 = yneb( xn
xn+yn −c),

(4)
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where xn and yn denote population densities of prey and predator for the year n, respec-
tively, a determines the impact of predators on the predator population, b represents the
growth rate of the prey population and c signifies the consumption rate of the prey by
the predator. Moreover, the function f (k, y) = 1

1+ky delineates the cost associated with
anti-predator defense in response to fear, and k ≥ 0 quantifies the level of fear. Moreover,
for k = 0 system (4) reduces to predator–prey system (3).

This model (4) addresses a key limitation of previous models by explicitly incorpo-
rating fear effects. However, existing models often lack this crucial element, hindering
a complete understanding of predator–prey dynamics. To address this gap, we propose
a modified predator–prey interaction incorporating fear effects. The inclusion of fear
effects in this novel discrete-time model allows for a more comprehensive analysis of
predator–prey interactions. This approach has the potential to provide valuable insights
into population stability, potential for chaotic dynamics, and ultimately, the overall health
of ecosystems.

Our model incorporates the fear effect into the existing model from [43], which focused
on logistic prey growth and a ratio-dependent functional response. This is not entirely a
new model, but an extension of [43] to include a well-established ecological phenomenon
fear effect. While ref. [38] also presents a predator–prey model with a fear effect, our
choice to modify [43] is based on specific considerations, that is, ref. [43] uses logistic
growth, which is more suitable for our scenario where prey populations can reach carrying
capacities. Ref. [38] omits logistic growth, making it potentially less applicable in our case.
Our focus aligns better with the ratio-dependent functional response of [43] compared to
the Holling type II used in [38]. Our current approach is theoretical, aiming to explore the
impact of fear within the established framework of [43].

The remaining subsequent sections of this paper are outlined below:
Firstly, in Section 2, we analyze the existence and local stability dynamics of the

equilibrium points in model (4). Secondly, in Section 3, we demonstrate that model (4)
experiences transcritical bifurcation around its boundary equilibrium point by applying
center manifold theory of bifurcation. Furthermore, in Section 4, we show that model (4)
undergoes period-doubling bifurcation around its interior equilibrium using bifurcation
theory and center manifold theorem. In Section 5, we examine the existence of Neimark–
Sacker bifurcation with the help of normal forms theory of bifurcation. This study also
investigates the existence of chaos and implements the several chaos control techniques to
control the system’s chaotic behavior in Section 6. Finally, we present numerical simulations
techniques to validate our analytical and theoretical findings in Section 7. Moreover,
numerical simulations also include two-parameter analysis to better understand the impact
of fear with respect to other parameters.

2. Existence and Local Stability of Fixed Points

This section analyzes the stability of realistic populations in the predator–prey system
described by (4). We use mathematical tools to understand how these populations change
over time and whether they remain stable under different conditions. Here, we initially
explore the fixed points of system (4). Consequently, it becomes evident that the fixed
points of system (4) correspond to the solutions of the subsequent algebraic system:

x = x e(
1−x
1+ky −

a y
x+y ),

y = y eb( x
x+y −c).

(5)

On solving above algebraic system, it is a simple observation that the point(
c(1−a+ac)

c+ak−2ack+ac2k , (1−c)(1−a+ac)
c+ak−2ack+ac2k

)
serves as an interior fixed point and (1, 0) is boundary

equilibrium point for model (4). Furthermore, the stability for boundary equilibria
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is taken into consideration. Calculating the Jacobian matrix for model (4) around its
boundary equilibrium point is straightforward, as outlined below:

J(1, 0) =
(

0 −a
0 b−bc

)
.

Then, it is easy to see that λ1 = 0 and λ2 = eb−bc are the eigenvalues for J(1, 0).
Moreover, it is obvious that the boundary equilibrium (1, 0) sink if c > 1, and saddle
(unstable) point for 0 < c < 1.

Next, to observe the behavior of system (4) about is interior fixed point, first we denote:

x∗ :=
c(1 − a + ac)

c + ak − 2ack + ac2k
, y∗ :=

(1 − c)(1 − a + ac)
c + ak − 2ack + ac2k

.

Assume that 0 < c < 1, and k > 0; therefore, it is clear that ( x∗, y∗) is unique interior
(positive) fixed point of system (4) under the condition 0 < a < 1

1−c .
Evaluating the Jacobian matrix at the point (x∗, y∗) yields:

J
(

x*, y*
)

:=

1 + ac − ac2 + c+a(−1+c)c
c(−1+k)−k

ac(c2(1+a(−1+c)+c)k)
c(−1+k)−k

b(c − 1)2 1 + b(c − 1)c

.

However, the characteristic equation at J(x∗, y∗) is computed as follows:

F(λ) = λ2 − Tλ + D, (6)

where

T := 2 − (a − b)(c − 1)c +
c + a(c − 1)c
c(k − 1)− k

,

and

D := (c − 1)(ac(1 + c + b(c − 1)c) + k + (b + a(−1 + b(1 + a(−1 + c))(c
−1)))(c − 1)ck)/(c(k − 1)− k).

Next, from (6), it follows that

F(1) :=
b(1 + a(c − 1))(c − 1)c

(
c + a(c − 1)2k

)
c(k − 1)− k

,

and

1 + T + D := (c(−2 − b(c − 1)c + a(c − 1)(2 + (2 + b(c − 1))c)) + (c − 1)(4
+(2b + a(−2 + b(1 + a(c − 1))(c − 1)))(c − 1) c) k)/(c(k
−1)−k).

Under positivity conditions of ( x∗, y∗), it is apparent that F(1) > 0.
Moreover, the Lemma 1 mentioned below gives local dynamical behavior of system

(4) around its positive fixed point.

Lemma 1. Assume that 0 < c < 1 and 0 < a < 1
1−c , then the following conditions hold true for

the unique positive fixed point (x∗, y∗) of system (4):

1. (x∗, y∗) is a stable spiral if T2 − 4D < 0, 1 + T + D > 0, and D < 1.
2. (x∗, y∗) is a stable node if T2 − 4D > 0, 1 + T + D > 0, and D < 1.
3. (x∗, y∗) is an unstable spiral if T2 − 4D < 0, 1 + T + D > 0, and D > 1.
4. (x∗, y∗) is an unstable node if T2 − 4D > 0, 1 + T + D > 0, and D > 1.
5. (x∗, y∗) is a saddle point if 1 + T + D < 0.
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Furthermore, a visualization representation of Lemma 1 is given in Figure 1. On
the other hand, PD and NS curves represent the period-doubling bifurcation curve and
Neimark–Sacker bifurcation curve, respectively.
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Figure 1. Dynamical classification of system (4) about its positive fixed point with k = 0.1 and c = 0.8.

Secondly, dynamical behavior with respect to large variation in the level of fear
k ∈ [0, 1000] is taken into account, and corresponding results are depicted in Figure 2. The
region in Figure 2 are stable spiral (SS), stable node (SN), unstable spiral (US), unstable
node (UN), saddle, and nonexistence (NE). From Figure 2, it is easy to see that increasing
the level of fear after a certain value has no significance of the dynamics of predator–prey
interaction. Moreover, corresponding to Figure 2, the three-dimensional PD and NS curves
are depicted in Figure 3.
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3. Transcritical Bifurcation

In this section, emergence of transcritical bifurcation is investigated about predator-
free fixed point (1, 0) of system (4). For this, c is selected as bifurcation parameter. Then,
from the calculation presented in the Section 2, it is easy to see that J(1, 0) has one eigenvalue
λ2 = 1 at c = c0 := 1.

Theorem 1. Let c ≡ c0 = 1, then system (4) undergoes transcritical bifurcation around its
boundary fixed point (1, 0) whenever the bifurcation parameter c varies in small neighborhood
of c0.

Proof. Let c = c0, and writing system (4) alternatively as follows:

(
x1

y1

)
→

(x1 e(
1−x1

1+k y1
− a y1

x1+y1
)

y1e b (
x1

x1+y1
−c0)

)
. (7)

Taking u = x1 − 1 and y1 = v in system (7), one can obtain the following:

(
u
v

)
→

(
(u + 1)e(

−u
1+k v −

a (u+1)
u+1+v ) − 1

v e b ( u+1
u+1+v −c0−c)

)
, (8)

where |c| ≪ 1 is a small perturbation parameter and taken as bifurcation parameter. Then,
from (8), it follows that: (

u
v

)
→
(

0 −a
0 1

)(
u
v

)
+

(
Φ (u, v)

Ψ (u, v, c)

)
, (9)
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where
Φ(u, v) = − 1

2 u2 + (a + k)uv + 1
2
(
2a + a2)v2 + 1

3 u3 − a
2 u2v

−
(
a(2 + a) + ak + k2)uv2 − 1

6 a(6 + a(6 + a))v3

+O
(
(|u|+ |v|)4

)
,

and
Ψ(u, v, c) = −bv2 + buv2 + 1

2 b(2 + b)v3 − bvc + b2v2c + b2

2 vc2

+O
(
(|u|+ |v|+ |c|)4

)
.

Next one can assume the following similarity transformation:(
u
v

)
=

(
−a −a
1 0

) (
x
y

)
. (10)

Using (10) in (9), we obtain the following system in canonical form:(
x
y

)
→
(

0 0
0 1

)(
x
y

)
+

(
Φ1 (x, y, c)
Ψ1 (x, y, c)

)
, (11)

where
Φ1(x, y, c) := Ψ(−a(x + y), x, c),

and
Ψ1(x, y, c) =: −1

a
Φ(−a(x + y), x)− Ψ(−a(x + y), x, c).

Next, suppose for the center manifold of system (11), we have

yn = ζ(xn, c) := m0xn
2 + m1xnc + m2c2 + O

(
(|xn|+ |c|)3

)
,

where
m0 = a + b + k − 1, m1 = b, and m2 = 0.

Then, system (11) is restricted to the following one-dimensional map:

Θ : x → x + Φ1(x, ζ(x, c), c)
= 1

2 x
(
2 + b2(c + x)

(
c + x − 2ax2)

−2b
(
c + x + (a − 1)x2 + a(a − 1 + k)x3))

+O
(
(|x|+ |c|)5

)
.

Then, one can easily verify that:∣∣∣∣∣ ∂Θ(x,c)
∂x (0, 0) = 1; ∂2Θ(x,c)

∂x2 (0, 0) = −2 b ̸= 0,
∂Θ(x,c)

∂c (0, 0) = 0; ∂2Θ(x,c)
∂x∂c (0, 0) = −b ̸= 0.

Therefore, taking into account Winggins ([44], p. 507), all conditions for the emergence
of transcritical bifurcation are satisfied. □

4. Period-Doubling Bifurcation

In the context of the occurrence of period-doubling bifurcation (PDB) about the interior
equilibrium point of system (4), we employ the concept of bifurcation theory, specifically
the normal form and center manifold theorem. Moreover, Mathematica 13.2 software is
used for all mathematical computation of this section.



Fractal Fract. 2024, 8, 221 9 of 35

Let b represents the bifurcation parameter, and it is presupposed that:

b ≡ b0 =
4k + 2c

(
1 + a − ac2 +

(
−2 + a(−1 + c)2

)
k
)

(c − 1)c((−1 + a(c − 1))c + (2 + a(1 + a(−1 + c))(c − 1))(c − 1)k)
.

To define the period-doubling curve for the emergence of PDB in system (4) about its
positive fixed point, the curve SPDB is defined as follows:

SPDB =
{
(α, b, c, k) ∈ R4

+ : b = b0

}
.

Let (α, b, c, k) ∈ SPDB, then system (4) alternatively can be written by the following
two-dimensional perturbed map:

(
U
V

)
→

(
Ue

( 1−U
1+kV − αV

U+V
)

Ve(b0+b)( U
U+V −c)

)
, (12)

where b is very small perturbation in b0. In order to apply bifurcation theory of normal
forms, first we need a corresponding map for (12) whose fixed point must be shifted
at origin. For this, we assume that u = U − X and v = V − Y then the map (12) is
transformed as: (

u
v

)
→

(
(u + X)e

( 1−(u+X)
1+k(v+Y)−

α(v+Y)
u+X+v+Y

)

(v + Y)e(b0+b)( u+X
u+X+v+Y −c)

)
, (13)

where

X :=
c(1 − a + ac)

c + ak − 2ack + ac2k
and Y :=

(1 − c)(1 − a + ac)
c + ak − 2ack + ac2k

.

The subsequent map can be derived by utilizing Taylor’s series to approximate the
model described in section (9) around the point

(
u, v, b

)
= (0, 0, 0):

a11 = 1 + ac − ac2 +
c + a(c − 1)c
c(−1 + k)− k

, a12 =
ac
(
c2 − (c − 1)(1 + a(c − 1) + c)k

)
c(−1 + k)− k

,

(
u
v

)
→
(

a11 a12

b0(c − 1)2 1 + b0(c − 1)c

)(
u
v

)
+

( f1(u, v)

g1

(
u, v, b

)), (14)

where

f1(u, v) = a200u2 +a110uv + a020v2 + a300u3 + a210u2v + a120uv2 + a030v3

+O
(
(|u|+ |v|)4

)
,

g1

(
u, v, b

)
= b200u2 + b110uv + b020v2 + b300u3 + b120u2v + b030v3 + b101ub

+b011vb + b111uvb + b201u2b + b021v2b + b102ub
2

+b012vb
2
+ b003b

3
+ O

((
|u|+ |v|+

∣∣∣b∣∣∣)4
)

.

Moreover,
a200, a110, a020, a300, a210, a120, a030, b200, b110, b020, b300, b120, b300, b101, b011, b111,

b201, b021, b102, b012, b003 are given as follows:
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a200 = 1
2(X+Y)4(1+kY)2

(
X5 − 2X4(1 + (−2 + k)Y)

+2Y3(1 + kY)(a − Y + akY)
−4X2Y2(3 + a + (−1 + (3 + a)k)Y)
−2X3Y(4 + a + (−3 + (4 + a)k)Y)
+XY2(Y(−8 + Y − 8kY) + 2a(1 + (−1 + k)Y)(1 + kY)
+(a + akY)2 )),

a110 = 1
(X+Y)4(1+kY)3

(
−a2X2Y(1 + kY)3

−k(X + Y)4(1 + kY + X(−3 + X − 2kY))
+aX(X + Y)(1 + kY)

(
X2(1 + 2kY)− Y(2 + kY)(1 + 2kY)

+XY(1 − k + 2kY))),

a020 = 1
2(X+Y)4(1+kY)4 X

(
k2(X − 1)(X + Y)4(−3 + X − 2kY)

+a2X2(1 + kY)4

−2aX(X + Y)(1 + kY)2(−1
+k
(
X2 + X(Y − 1)− Y(3 + kY)

))
),

a300 = 1
6(X+Y)6(1+kY)3

(
−X7 + 3X6(1 + (−2 + k)Y)

+3X5Y(6 + a + (−5 + (6 + a)k)Y)
+X4Y2(45 + 5(−4 + 9k)Y + 12a(1 + kY))
−3X3Y2(5Y(−4 + Y − 4kY) + 2a(1 + (−3 + k)Y)(1 + kY)
+(a + akY)2

)
+3Y4(1 + kY)

(
Y2 − 2a(1 + kY)(1 + Y + kY) + (a + akY)2

)
−3X2Y2(Y2(−15 + (2 − 15k)Y)
+(a + akY)2(1 + (2 + k)Y)
+2a(1 + kY)(1 + Y(3 + 2k + (−2 + k(3 + k))Y)))
+XY3

(
−3Y(a + akY)2 + (a + akY)3

+Y2(18 + (−1 + 18k)Y)
−3a(1 + kY)(4 + Y(6 − Y + 2k(4 + (3 + 2k)Y))))),

a210 = 1
2(X+Y)6(1+kY)4

(
−a3X2Y2(1 + kY)4

+k(X + Y)6(X2 + 2(1 + kY)(2 + kY)− X(5 + 4kY)
)

+XY(X + Y)(a + akY)2(X2(2 + 3kY)− Y(4 + kY(9 + 4kY))
+X(2 + Y(2 + 3k + k(3 + 2k)Y)))
−a(X + Y)2(1 + kY)

(
X4(1 + 3kY)

−2X3Y(−1 + 2k + (−3 + k)kY)
+X2Y(−4 + Y + kY(−18 + 3Y − 10kY))
+2Y2(1 + kY)(1 + kY(3 + kY))
−2XY(2 + Y(2 + k(5 + Y(7 + 5k + 2k(2 + k)Y)))))),

a120 = 1
2(X+Y)6(1+kY)5

(
a3X3Y(1 + kY)5

−k2(X + Y)6(−3 + X(11 + (X − 7)X)− 5kY
+k(14 − 5X)XY + 2k2(2X − 1)Y2)
−a2X2(X + Y)(1 + kY)3(X2(1 + 3kY)
+X

(
1 + Y + k(3 + k)Y2)− Y(5 + kY(12 + 5kY))

)
+aX(X + Y)2(1 + kY)

(
kX4(2 + 3kY)

−2kX3(2 + Y(−2 + 5k + k(−3 + 2k)Y))
−2X(1 + Y + kY(2 + Y(1 + kY)(7 − k + k(5 + k)Y)))
+X2(−2 + kY(2(Y − 9) + k(3 + Y(2k + 3Y − 14kY − 34))))
+Y(4 + kY(20 + kY(35 + 2kY(11 + 2kY)))))),
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a030 = 1
6(X+Y)6(1+kY)6 X

(
−a3X3(1 + kY)6

+k3(−1 + X)(X + Y)6(13 + X2 + 6kY(3 + kY)
−2X(4 + 3kY))
−3aX(X + Y)2(1 + kY)2(2
+k((−1 + X)X(−2 + k(−3 + X)X)
−2(−5 + X + k(−1 + X)X(5 + (−1 + k)X))Y
+k(19 + X(−8 − 6k(−1 + X) + X))Y2 − 4k2(−3 + X)Y3

+2k3Y4))
+3a2X2(X + Y)(1 + kY)4(−2
+k
(
X2 + X(−1 + Y)− Y(5 + 2kY)

))
),

b200 = b0Y2(−2X+(b0−2)Y)
2(X+Y)4 , b110 = b0XY(2X−(b0−2)Y)

(X+Y)4 , b020

= b0X2(−2X+(b0−2)Y)
2(X+Y)4 , b300

=
b0(6X2−6(b0−2)XY+(6+(b0−6)b0)Y2)

6(X+Y)6 , b120

= − b0Y(4X3+(6−5b0)X2Y+(b0−4)b0XY2+(b0−2)Y3)
2(X+Y)6 , b030

=
b0X2(3(2+b0)X2−(b0

2−12)XY−3(b0−2)Y2)
6(X+Y)6

b101 = 1
6(X+Y)9 X

(
6(−2 − b0(4 + b0) + b0(2 + b0)c)X5

−6(6 + b0(2 − 6c + b0(−5 + b0(−1 + c) + c)))X4Y
+(−24
+b0(24(4 + c)
+b0(54 − b0(4 + b0)− 48c + (−6 + b0)b0c)))X3Y2

+(24 − 2b0(−60 + b0(3 + 5b0))
+b0(−24 + b0(−48 + b0(6 + b0)))c)X2Y3

+6(6 + b0(4 − 6c + b0(−4 + (−1 + b0)c)))XY4

+6(2 − 2b0 + (−2 + b0)b0c)Y5),
b011 =

(−((c−1)X3)+(1+b0(c−1)−3c)X2Y+(b0−3)cXY2−cY3)
(X+Y)3 , b111

= −XY(2(−1+b0(c−1))x2+(b2
0−4−(b0−4)b0c)XY+(b0−2(2−(b0−2)c))y2)

(X+Y)5 , b201

= −Y2(2(1+b0−b0c)X2+(4+b2
0(c−1)−4b0c)XY+(2−2b0+(b0−2)b0c)Y2)

2(X+Y)5 , b021

=
X2(2(−1+b0(c−1))X2+(−4+b2

0−(b0−4)b0c)XY+(−2+b0(2−(b0−2)c))Y2)
2(X+Y)5 , b102

= Y2((c−1)X+cY)((−2+b0(c−1))X+(b0c−2)Y)
2(X+Y)4 , b012

=
((c−1)X+cY)((c−1+)X3+(b0+3c−b0c)X2Y+(1−(b0−3)c)XY2+cY3)

2 (X + Y)4, b003

= −Y((−1+c)X+cY)3

6(X+Y)3 .

Suppose that (a, b, c, k) ∈ SPDB, the eigenvalues of Jacobian matrix

B =

(
a11 a12

b0(c − 1)2 1 + b0(c − 1)c

)
,

are given by λ1 = −1 and

λ2 =
((
(c − 1)

(
a(−1 + c)c2(1 + a + ac) + (−1 + a(c − 1))c(1 + a(c − 1)(c

+a
(
c2 − 1

)
))k − (c − 1)(−2 + a(1 + a(c − 1))(c − 1)(−3

+a(c − 1) c)) k2)))/((c2(1 + a − ac)−
(

3 + a2(c − 1)2
)
(c

−1)ck + (2 + a(1 + a(c − 1))(c − 1)) (c − 1)2k2
)
)
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Additionally, let us presume that λ2 ̸= ±1, and let us examine the subsequent trans-
formation: (

U
V

)
= T

(
x
y

)
, (15)

where T =

(
a12 a12

−1 − a11 λ2 − a11

)
, and T−1 =

( −a11+λ2
a12+a12λ2

− 1
1+λ2

1+a11
a12+a12λ2

1
1+λ2

)
.

From (14) and (15), we obtain

(
x
y

)
→
(
−1 0
0 λ2

)(
x
y

)
+

 f2

(
x, y, b

g2

(
x, y, b

), (16)

where
f2

(
x, y, b

)
= − g1[a12(x+y),−((1+a11)x)+y(−a11+λ2),b]

1+λ2
+

f1[a12(x+y),−((1+a11)x)+y(−a11+λ2)](−a11+λ2)
a12+a12λ2

,

g2

(
x, y, b

)
= (1+a11)f1[a12(x+y),−((1+a11)x)+y(−a11+λ2)]

a12+a12λ2

+
g1[a12(x+y),−((1+a11)x)+y(−a11+λ2),b]

1+λ2
.

By applying center manifold theory [45], one can conduct a stability analysis of
the equilibrium point at (x, y) = (0, 0) in the vicinity of b = 0. This analysis entails
investigating a set of simplified equations characterized by a single parameter. The primary
focus is on a central manifold identified as WC(0, 0, 0). This center manifold can be defined
as follows:

WC(0, 0, 0) =
{(

x, y, b
)
∈ R3 : y = k0x2 + k1xb + k2b

2
+ O

((
|u|+

∣∣∣b∣∣∣)3
)}

,

where

k0 =
−a020(1 + a11)

3 + (1 + a11)a12((1 + a11)a110 − (1 + a11)b020 + a12(b110 − a200))− a12
3b200

a12(λ22 − 1)
,

k1 =
b011 + a11b011 − a12b101

(1 + λ2)
2 ; k2 = 0.

In a significance, the restriction for system (3.1.6) in accordance with its center manifold
WC(0, 0, 0) can be presented as follows:

F : x → −x + h1x2 + h2xb + h3x2b + h4xb
2
+ h5x3 +O

((
|x|+

∣∣∣b∣∣∣)4
)

,

h1 = − 1
a12(1+λ2)

(
a020(1 + a11)

2(a11 − λ2)

+a12
(
b020 + a11

2(b020 − a110) + a12
2b200

+a11(a12a200 + 2b020 − a12b110 + a110(λ21)) + a110λ2
−a12(b110 + a200λ2))),

h2 =
b011 + a11b011 − a12b101

1 + λ2
,

h3 = 1
a12(1+λ2)

(
−(1 + a11)

2a12b021 − a12
3(b201 + 2b200c1) + a12b001c0

−2(1 + a11)b020c1 + a110c1(1 + 2a11 − λ2))(a11 − λ2)

−2a020(1 + a11)c1(a11 − λ2)
2 + a12

2((1 + a11)b111 − b101c0
+c1(b110 +−2a11a200 + 2a11b110 + 2a200λ2 − b110λ2))),
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h4 =
(1 + a11)b012 − a12(b102 + b101c1) + b011c1(a11 − λ2)

1 + λ2
,

h5 = 1
a12(1+λ2)

(
a11

3(a12(b300 − a120)− 2a020c0)

+a12(b300
−a12(b120 − b110c0 + a12(a12b300 − b210 + 2b200c0)))

+a030(1 + a11)
3(a11 − λ2)

+a12(a120 + a12(a12a300 − a210)
−(a110 − 2(a12a200 + b020) + a12b110)c0)λ2
+(−2a020 + a110a12)c0λ

2
0

+a11
2(a12

2(a210 − b120)
+a12(3b300 + 2a110c0 − 2b020c0 + a120(λ2 − 2))
+2a020c0(2λ2 − 1))
+a11

(
a12

3(b210 − a300)− 2a020c0(λ2 − 2)λ2
+a12

2(a210 − 2(b120 + a200c0 − b110c0)− a210λ2)
+a12(3b300 + a120(2λ2 − 1)
+c0(a110 + 2b020(λ2 − 1)− 3a110λ2)))),

Moreover, the representation of two non-zero values, denoted as l1 and l2, is demon-
strated as follows:

l1 :=
(

∂2F
∂u∂b

+
1
2

∂F
∂b

∂2F
∂x2

)
(0,0)

= h2,

and

l2 :=

(
1
6

∂3F
∂x3 +

(
1
2

∂2F
∂x2

)2)
(0,0)

= h1
2 + h5.

Taking into consideration the aforementioned calculation, the subsequent theorem
provides the parametric circumstances that determine the presence and trajectory of a
Positive Definite Boundary (PDB) for system (4) at its non-negative equilibrium point.

Theorem 2. If both l1 and l2 are non-zero, system (4) experiences a period-doubling bifurcation
at its stable equilibrium point ( x∗, y∗) when the parameter b changes within a small neighborhood
around b0. Moreover, when l2 > 0, the period-two orbits originating from (x ∗, y∗

)
are stable, and

if l2 < 0, these orbits become unstable.

5. Neimark–Sacker Bifurcation

This portion will predominantly center on examining the potential occurrence of a
Neimark–Sacker bifurcation (NB) in proximity to the positive equilibrium point of model
(4). As we endeavor to accomplish this objective, it is important to consider that the
solutions of Equation (6) are anticipated to manifest as pairs of complex conjugates with a
magnitude of one. Furthermore, we introduce the parameter b as the bifurcation parameter
and define the set SNS as described below:

SNS =
{
(a, b, c, k) ∈ R4

+ : b = b1, |A| < 2
}

,

where

A = 2 − (a − b1)(c − 1)c +
c + a(c − 1)c
c(k − 1)− k

,

and

b1 :=
a − 1 − ac2 + a(c − 1)2k

(c − 1)2(ac + k + a(1 + a(c − 1))(c − 1)k)
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Assume that (α, b, c, k ) ∈ SNS, then model (4) can be written in the subsequent
mapping: (

x
y

)
→
( xe(

1−x
1+ky −

αy
x+v

)

ye(b1+
∼
b)(( x

x+y)−c)

)
, (17)

here
∼
b denotes a slight perturbation in b1. For further analysis, the following translations

are considered w = x − X and z = y − Y, then it follows from (17) that:

(
w
z

)
→
((w + X)e

( 1−(w+X)
1+k(z+Y)−

α(z+Y)
(w+X)+(z+Y)

)

(z + Y)e(b1+
∼
b)( (w+X)

(w+X)+(z+Y)−c)

)
. (18)

Enlargement of Taylor’s series around (w, z) = (0, 0) results as follows:(
w
z

)
→
(

d11 d12
d13 d14

)(
w
z

)
+

(
φ(w, z)
ψ(w, z,

)
, (19)

where

ϕ(w, z) = m12w2 + m13wz + m14z2 + m15w3 + m16w2z + m17wz2 + m18z3

+O
(
(|w|+ |z|)4

)
,

ψ(w, z) = l22u2 + l23wz + l24z2 + l24w3 + l25w2z + l26z3 + O
(
(|w|+ |z|)4

)
,

(
d11 d12
d13 d14

)
=

1 + ac − ac2 + c+a(c−1)c
c(−1+k)−k

ac(c2−(c−1)(1+a(c−1)+c)k)
c(−1+k)−k

(b1 +
∼
b)(c − 1)2 1 + (b1 +

∼
b)(c − 1)c

,

m12 = 1
2(X+Y)4(1+kY)2

(
X5 − 2X4(1 + (−2 + k)Y)

+2Y3(1 + kY)(a − Y + akY)
−4X2Y2(3 + a + (−1 + (3 + a)k)Y)
−2X3Y(4 + a + (−3 + (4 + a)k)Y)
+XY2(Y(−8 + Y − 8kY) + 2a(1 + (−1 + k)Y)(1 + kY)
+(a + akY)2

)
),

m13 = 1
(X+Y)4(1+kY)3

(
−a2X2Y(1 + kY)3

−k(X + Y)4(1 + kY + X(−3 + X − 2kY))
+aX(X + Y)(1 + kY)

(
X2(1 + 2kY)− Y(2 + kY)(1 + 2kY)

+XY(1 − k + 2kY))),

m14 = 1
2(X+Y)4(1+kY)4 X

(
k2(−1 + X)(X + Y)4(−3 + X − 2kY)

+a2X2(1 + kY)4

−2aX(X + Y)(1 + kY)2(−1
+k
(
X2 + X(Y − 1)− Y(3 + kY)

))
),
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m15 = 1
6(X+Y)6(1+kY)3

(
−X7 + 3X6(1 + (−2 + k)Y)

+3X5Y(6 + a + (−5 + (6 + a)k)Y)
+X4Y2(45 + 5(−4 + 9k)Y + 12a(1 + kY))
−3X3Y2(5Y(−4 + Y − 4kY) + 2a(1 + (−3 + k)Y)(1 + kY)
+(a + akY)2

)
+3Y4(1 + kY)

(
Y2 − 2a(1 + kY)(1 + Y + kY) + (a + akY)2

)
−3X2Y2(Y2(−15 + (2 − 15k)Y)
+(a + akY)2(1 + (2 + k)Y)
+2a(1 + kY)(1 + Y(3 + 2k + (−2 + k(3 + k))Y)))
+XY3

(
−3Y(a + akY)2 + (a + akY)3

+Y2(18 + (−1 + 18k)Y)
−3a(1 + kY)(4 + Y(6 − Y + 2k(4 + (3 + 2k)Y))))),

m16 = 1
2(X+Y)6(1+kY)4

(
−a3X2Y2(1 + kY)4

+k(X + Y)6(X2 + 2(1 + kY)(2 + kY)− X(5 + 4kY)
)

+XY(X + Y)(a + akY)2(X2(2 + 3kY)− Y(4 + kY(9 + 4kY))
+X(2 + Y(2 + 3k + k(3 + 2k)Y)))
−a(X + Y)2(1 + kY)

(
X4(1 + 3kY)

−2X3Y(−1 + 2k + (−3 + k)kY)
+X2Y(−4 + Y + kY(−18 + 3Y − 10kY))
+2Y2(1 + kY)(1 + kY(3 + kY))
−2XY(2 + Y(2 + k(5 + Y(7 + 5k + 2k(2 + k)Y)))))),

m17 = 1
2(X+Y)6(1+kY)5

(
a3X3Y(1 + kY)5

−k2(X + Y)6(−3 + X(11 + (X − 7)X)− 5kY
+k(14 − 5X)XY + 2k2(2X − 1)Y2)
−a2X2(X + Y)(1 + kY)3(X2(1 + 3kY)
+X

(
1 + Y + k(3 + k)Y2)− Y(5 + kY(12 + 5kY))

)
+aX(X + Y)2(1 + kY)

(
kX4(2 + 3kY)

−2kX3(2 + Y(−2 + 5k + k(−3 + 2k)Y))
−2X(1 + Y + kY(2 + Y(1 + kY)(7 − k + k(5 + k)Y)))
+X2(−2
+kY(2(Y − 9) + k(3 + Y(2k + 3Y − 14kY − 34))))
+Y(4 + kY(20 + kY(35 + 2kY(11 + 2kY)))))),

m18 = 1
6(X+Y)6(1+kY)6 X

(
−a3X3(1 + kY)6

+k3(−1 + X)(X + Y)6(13 + X2 + 6kY(3 + kY)
−2X(4 + 3kY))
−3aX(X + Y)2(1 + kY)2(2
+k((−1 + X)X(−2 + k(−3 + X)X)
−2(−5 + X + k(−1 + X)X(5 + (−1 + k)X))Y
+k(19 + X(−8 − 6k(−1 + X) + X))Y2 − 4k2(−3 + X)Y3

+2k3Y4))
+3a2X2(X + Y)(1 + kY)4(−2
+k
(
X2 + X(−1 + Y)− Y(5 + 2kY)

))
),

l22 =

(b1 +
∼
b)Y2

(
−2X +

(
(b1 +

∼
b
)
− 2
)

Y)

2(X + Y)4 , l23 =

(b1 +
∼
b)XY

(
2X −

(
(b 1 +

∼
b
)
− 2
)

Y)

(X + Y)4 ,
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l24 =

(b1 +
∼
b)X2

(
−2X +

(
(b1 +

∼
b)− 2

)
Y
)

2(X + Y)4 ,

l25 =

(b1 +
∼
b)
(

6X2 − 6
(
(b1 +

∼
b)− 2

)
XY +

(
6 +

(
(b1 +

∼
b)− 6

)
b0
)

Y2
)

6(X + Y)6 ,

l26 = −
(b1 +

∼
b)Y

(
4X3 +

(
6 − 5(b1 +

∼
b)
)

X2Y + (−4 + b0)(b1 +
∼
b)XY2 +

(
−2 + (b1 +

∼
b)
)

Y3
)

2(X + Y)6 ,

l27 = −
(b1 +

∼
b)X2

(
−3
(

2 + (b1 +
∼
b)
)

X2 +

(
(b1 +

∼
b)

2
− 12

)
XY + 3

(
(b1 +

∼
b)− 2

)
Y2
)

6(X + Y)6 .

Now, we consider second-degree polynomial for characteristic equation of Jacobian
matrix of map (19) at (0, 0) as follows:

p(τ) = τ2 − A
(∼

b
)

τ + B
(∼

b
)

(20)

where

A
(∼

b
)

:=
((

2 − (a − b)(−1 + c)c +
(1 + a(−1 + c))c

c(−1 + k)− k

))
,

and

B
(∼

b
)

:=
(c − 1)(ac(1 + (1 + b(c − 1))c) + k + (b + a(−1 + b(1 + a(c − 1))(c − 1)))(c − 1)ck)

c(k − 1)− k
.

Furthermore, complex conjugate root of (20) are given by

τ1 =

A
(∼

b
)
+ i

√
4B
(∼

b
)
− A2

(∼
b
)

2
, τ2 =

A
(∼

b
)
− i

√
4B
(∼

b
)
− A2

(∼
b
)

2
.

Then, simple calculation yields that |τ1| = |τ2| =
√

B
(∼

b

)
. Next, to verify non-

degeneracy condition, it is perceived that:(
d

d
∼
b
|τ1,2|

)
∼
b=0

=
(c − 1)2c(ac + k + a(1 + a(c − 1))(c − 1)k)

2c(k − 1)− 2k
.

Considering non-resonance, at
∼
b = 0 it is necessary that τn

1,2 ̸= 1 for n = 1, 2, 3, 4,
which is equal to A(0) ̸= −2,−1, 0, 2. Consider that (a, b, c, k) ∈ SNB, Therefore, |A(0)| < 2.
Furthermore, we acquire

A(0) = 2 − (a − b1)(c − 1)c +
c + a(c − 1)c
c(k − 1)− k

.

Consequently, the stipulations for non-resonance are met if the following conditions
hold true:

2 − (a − b1)(c − 1)c +
c + a(c − 1)c
c(k − 1)− k

̸= 0,−1.
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Moreover, it will compute the first Lyapunov exponent, which transforms the Jacobian
matrix of Equation (19) into a canonical form. To achieve this, we take into account the
subsequent transformation: (

w
z

)
=

(
d12 0

α − d11 −β

)(
p
q

)
, (21)

where

α =
A(0)

2
, and β =

√
4B(0)− A2(0)

2
.

Consequently, from (19) and (21), it follows that:(
p
q

)
→
(

α −β
β α

)(
p
q

)
+

(
M(p, q)
N(p, q)

)
, (22)

where

M(p, q) =
φ(d12 p, (α − d11)p − βq)

d12
,

and
N(p, q) =

α − d12

d12β
φ(d12 p, (α − d11)p − βq)− 1

β
ψ(d12 p, (α − d11)p − βq).

Alternatively, we take into consideration bifurcation theory given in [44,46–49]. We

first calculate the Lyapunov exponent around
(

p, q,
∼
b
)
= (0, 0, 0) as follows:

L = −Re
(
(1 − 2τ1)τ2

2

1 − τ1
τ20τ11

)
− 1

2
|τ11|2−

∣∣∣∣τ02|2 + Re(τ2τ21),

where ∣∣∣∣∣∣∣∣
τ11 = 1

4
[
Mpp + Mqq + i

(
Npp − Nqq

)]
,

τ20 = 1
8
[
Mpp − Mqq + 2Npq + i

(
Npp − Nqq − 2Mpq

)]
,

τ02 = 1
8
[
Mpp − Mqq − 2Npq + i

(
Npp − Nqq + 2Mpq

)]
,

τ21 = 1
16
[
Mppp + Mpqq + Nppq + Nqqq + i

(
Nppp + Npqq − Mppq − Mqqq

)]
.

Finally, we take into consideration the above calculation and present the subsequent
theorem.

Theorem 3. Suppose that (a, b, c, k) ∈ SNB, c(ac+k+a(1+a(c−1))(c−1)k)
2c(k−1)−2k ̸= 0, 2− (a − b1)(c − 1)c

+ c+a(c−1)c
c(k−1)−k ̸= 0,−1 and L ̸= 0, the distinctive stable equilibrium point ( x∗, y∗) of system

(4) undergoes NB when the bifurcation parameter b varies in a small neighborhood of b1 =
a−1−ac2+a(c−1)2k

(c−1)2(ac+k+a(1+a(c−1))(c−1)k)
. Moreover, if L > 0, then a stable invariant closed curve bifurcation

from the equilibrium point b > b1, and L < 0 then an unstable invariant closed curve bifurcates
from the equilibrium points for b < b1.

6. Chaos Control

This section is devoted to applying chaos control techniques to system (4). To manage
the chaotic behavior of the system, minor disturbances are introduced, resulting in the
conversion of previously unstable orbits into stable ones. Therefore, the application of
strategies for controlling chaos enhances the ability to forecast and stabilize chaotic trajec-
tories. The success of a method for controlling chaos is crucial for stabilizing disturbed
systems and preventing fluctuations and unpredictability. It is crucial that the perturba-
tions applied to the controlled system are significantly smaller than those inherent to the
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chaotic or bifurcating system, to avoid substantial alterations to the natural dynamics of
the original system. In the realm of system (4), three methods have been studied to control
chaos. Exploring these techniques in discrete-time systems is an important area of research.
In recent years, various techniques for discrete-time systems have been studied to evaluate
how well they manage chaotic behavior and bifurcation, as documented in references
therein [50–57].

First, in this section, we consider the applicability of the Ott–Grebogi–Yorke (OGY)
approach, which was first proposed by Ott et al. [54], and this methodology consists of state
feedback control. Moreover, in the OGY control method, external perturbation is usually
applied to the bifurcation parameter of the system under consideration. Since b is taken as
bifurcation parameter for system (4), taking into account the OGY method, we apply this
method to system (4), and the corresponding control system is given as follows:{

xn+1 = xne(
1−xn
1+kyn

− a yn
xn+yn ),

yn+1 = yneχ ( xn
xn+yn −c),

(23)

where
χ := b2 − p1(xn − x∗)− p2(yn − y∗), p1 and p2 serve as external control parameters,

( x∗, y∗) represents the interior fixed point of system (4), and b2 denotes the nominal value
of bifurcation parameter b in chaotic region. Next, first we check the applicability of the
OGY method to system (4) such that external perturbation is applied to its bifurcation

parameter b. For this, the controllability matrix K is defined as: K =

[
B

...J B
]

, where J is the

Jacobian matrix for the system around (x∗, y∗, b2), and the matrix B is defined as follows:

B :=

 ∂ f (x*,y*,b2)
∂b

∂g(x*,y*,b2)
∂b

,

where
f (x, y, b) = xe(

1−x
1+ky −

a y
x+y ) and g(x, y, b) = yeb( x

x+y −c).

Simple computation yields that the matrix K can be given as 2 × 2 null matrix so its
rank is zero; therefore, the OGY method is not applicable to system (4). In other words, for
applicability of the OGY method, the rank of K must be equal to 2.

Next, we employ the hybrid control technique described by Luo et al. [55] on system
(4) to obtain the resulting control system as follows:

xn+1 = η
(

xnexp
[

1−xn
1+kyn

− ayn
xn+yn

])
+ (1 − η)xn,

yn+1 = ηynexp
[
b
(

xn
xn+yn

− c
)]

+ (1 − η)yn,
(24)

The hybrid control method relies primarily on parameter perturbation and state feed-
back control, where the parameter η falls within the range of 0 < η < 1. Furthermore,
the controllability of system (4) hinges on the stability of the system at its unique equilib-
rium point. To assess this stability, the Jacobian matrix of system (24) is evaluated at the
equilibrium point (x∗, y∗) :

JH

(
x*, y*

)
=

1 − c(−1+a−ac2+a(c−1)2k)η

c(k−1)−k
ac(c2−(c−1)(1+a(c−1)+c)k)η

c(k−1)−k

b(c − 1)2η 1 + b(c − 1)cη

.

Furthermore, the computation of the characteristic polynomial for JH(x∗, y∗) proceeds
as follows:

G(δ) = δ2 − Qδ + R, (25)
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where

Q = 2 + b(c − 1)cη −
c
(
−1 + a − ac2 + a(c − 1)2k

)
η

c(k − 1)− k
,

and

R =
(
−k + c

(
−1 + k +

(
1 − a + bc + ac2 − bc2 + (b − a)(c − 1)2k

)
η + b(1

+a(c − 1))(c − 1)
(

c + a(c − 1)2k
)

η2))/(c(k − 1)− k).

Considering the system’s controllability as described in (24), Henceforth, the Lemma 2
is put forth.

Lemma 2. The point (x∗, y∗) in system (24) is a stable sink, should the condition be fulfilled:∣∣∣∣2 + b(c − 1)cη − c(−1+a−ac2+a(c−1)2k)η

c(k−1)−k

∣∣∣∣
< 1 +

(
−k + c

(
−1 + k +

(
1 − a + bc + ac2 − bc2 + (b

−a) (c − 1)2 k
)

η + b(1 + a(c − 1))(c − 1)(c

+a(c − 1)2 k
)

η2))/(c(k − 1)− k) < 2

For k = 4.57, c = 0.95 and a = 4.5, controllable region of (24) is depicted in Figure 4 in
ηb-plane:
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Finally, we employ a recently developed strategy for controlling chaos of exponential
type to system (4) as follows [52]:

xn+1 = exp
[
−e1

(
xn − c(1−a+ac)

c+ak−2ack+ac2k

)]
xnexp

[
1−xn
1+kyn

− a yn
xn+yn

]
,

yn+1 = exp
[
−e2

(
yn − (1−c)(1−a+ac)

c+ak−2ack+ac2k

)]
ynexp

[
b
(

xn
xn+yn

− c
)]

,
(26)

To, assess the efficacy of the exponential chaos control method in relation to the positive
fixed point (x∗, y∗) within system (4), it is imperative to investigate the local stability of
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system (26) centered around the same fixed point (x∗, y∗). To achieve this, the variational
matrix JE (x∗, y∗) for system (26) is determined through the following procedure, where e1
and e2 are manipulated parameters, and (x∗, y∗) represents the internal constant solution
of system (4):

JE
(
x*, y*) =1 + c

(
a − ac + (−1+a−ac)c1

c+a(c−1)2k
− 1+a(c−1)

c+k−ck

)
ac(c2−(c−1)(1+a(c−1)+c)k)

c(k−1)−k

b(c − 1)2 1 − bc + bc2 + (1+a(c−1))(c−1)c2
c+a(c−1)2k

.

Furthermore, the computation of the characteristic polynomial for JE at the point
(x∗, y∗) proceeds as follows:

H(ξ)
= ξ2

−
(

2 − (a − b)(−1 + c)c + c+a(c−1)c
c(−1+k)−k

− (1+a(c−1))(c(c1−e2)+e2)

c+a(−1+c)2k

)
ξ + 1

+(b + a(−1 + b(1 + a(−1 + c))(−1 + c)))(−1 + c)c
+ (1+a(−1+c))(−e2+c(1+b(1+a(−1+c))(−1+c)c+e2))

c(k−1)−k

− (1+a(c−1))2(c−1)ce1e2

(c+a(c−1)2k)
2

− (1+a(c−1))(c(1+b(c−1)c)e1+(c−1)(−1+a(−1+c2))e2)
c+a(c−1)2k

.

(27)

To ensure the controllability of system (26), the subsequent Lemma 3 is provided.

Lemma 3. The point (x∗, y∗) within system (26) is considered a sink when the following condition
is satisfied. ∣∣∣∣2 − (a − b)(−1 + c)c + c+a(c−1)c

c(−1+k)−k −
(1+a(c−1))(c(c1−e2)+e2)

c+a(−1+c)2k

∣∣∣∣
< 2 + (b + a(−1 + b(1 + a(−1 + c))(−1 + c)))(−1 + c)c
+ (1+a(−1+c))(−e2+c(1+b(1+a(−1+c))(−1+c)c+e2))

c(k−1)−k

− (1+a(c−1))2(c−1)ce1e2

(c+a(c−1)2k)
2

− (1+a(c−1))(c(1+b(c−1)c)e1+(c−1)(−1+a(−1+c2))e2)
c+a(c−1)2k

< 2.

For c = 0.27, k = 1.1, a = 0.73 and b = 5.5 controllable region of (26) is depicted in
Figure 5 in e1e2-plane.
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7. Results and Discussion

To confirm the presence of transcritical bifurcation, period-doubling bifurcation,
Neimark–Sacker bifurcation, and the appropriateness of chaos management techniques,
we will illustrate a numerical simulation. Various numerical simulations will be conducted
using Mathematica 13.2. First, for the verification of emergence of transcritical bifurcation
numerically, we chose k = 50, a = 3.5, b = 2.8, and c ∈ [0.8, 1.2], then system (4) experi-
ences transcritical bifurcation about its predator-free fixed point at c = 1. The bifurcation
diagrams, and associated MLE are depicted in Figure 6.
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To verify the emergence of period-doubling bifurcation in system (4) around its unique
positive fixed point, we select the parameters k = 0.5, a = 0.01, c = 0.8, and b ∈ [10, 25].
Subsequently, system (4) exhibits period-doubling bifurcation around its positive fixed
point (0.997751, 0.2494376) when the bifurcation parameter b varies within a small neigh-
borhood of b ≡ b0 = 12.5205. Moreover, for k = 0.5, a = 0.01, c = 0.8, and b = 12.5205, the
Jacobian matrix of system (2.3) is given as follows:[

0.1144889 −0.0072871
0.50082 −1.00328

]
.
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On the other hand, the eigenvalues of above Jacobian matrix are given as follows
−1, and 0.11121428170014735. In this case, the bifurcation diagrams and corresponding
Lyapunov exponents are depicted in Figure 7a–c.
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Figure 7. Bifurcation diagrams and Lyapunov exponents for system (4) at k = 0.5, a = 0.01, c = 0.8,
and b ∈ [10, 25].

Moreover, taking parametric values a = 0.01, k = 0.5, c = 0.8, and b = 17.483, basin of
attraction is shown in Figure 8. Similarly, basin of attraction for a = 0.01, k = 0.5, c = 0.8,
and b = 22.08 is depicted in Figure 9.

Next, we discuss the relevance of period-doubling bifurcation to chaos control. Initially,
we validate the hybrid control strategy outlined in Equation (24). To achieve this, we define
the system governed by Equation (24) with the values k = 0.5, a = 0.01, and c = 0.8. We
keep the control parameter η within the permissible range of [0, 1] and vary the bifurcation
parameter b within the chaotic region [12.5205, 25] maintaining the specified fixed values.
Figure 10 illustrates the fluctuation of the stability area on the ηb-plane concerning the
bifurcation parameter b and control parameter η.
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Next, to determine the validity of exponential control, we take the values k = 0.5,
a = 0.01, c = 0.8 and b ∈ [12.5205, 25] for the system (26), then Figure 11 illustrates the
feasible region corresponding to system (26) in the e1e2b-space.

Now, we confirm that torus bifurcation occurs for the system represented by system
(4). In order to accomplish this, we set the initial condition (x0, y0) = (0.271, 0.0678) and
choose particular parameter values for system (4), namely, k = 0.6, a = 3.5 and c = 0.8.
Next, system (4) experiences a crucial bifurcation parameter value of b1 = 2.6267562614,
leading to a Neimark–Sacker bifurcation at the point (x∗, y∗ ) = (0.271493, 0.067). Addi-
tionally, when k = 0.6, a = 3.5, c = 0.8 and b ∈ (2, 3) the characteristic polynomial for the
variational matrix of system (4) is computed as follows:

p(τ) = τ2 − 1.878849432949988τ + 1
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Subsequently, the multipliers of the variational matrix, denoted as the roots of p(τ), are
expressed as τ1 = 0.9394247 + 0.3427553i and τ2 = 0.9394247 − 0.3427553i while ensuring
|τ1| = |τ2| = 1 in accordance with the conditions stipulated in Theorem 3 under the

condition, the derivatives of
(

d

d
∼
b
|τ1,2|

)
with respect to

∼
b = 0 are calculated as:

(c − 1)2c(ac + k + a(1 + a(c − 1))(c − 1)k)
2c(k − 1)− 2k

= −0.05693913043478259.

The condition

2 − (a − b1)(c − 1)c +
c + a(c − 1)c
c(k − 1)− k

= −1.5088695652173911

holds true. Consequently, the system satisfies the non-degeneracy and non-resonance
conditions. Hence, it can be inferred that (a, b, c, k) ∈ SNB, and all the conditions specified
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in Theorem 3 are met. Additionally, Figure 12 illustrates the bifurcation diagrams and the
maximum Lyapunov exponent (MLE) of the system for b ∈ [2, 3].
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In the conclusion of this part, we confirm the efficiency of chaos control techniques in
the context of Neimark–Sacker bifurcation. First, we evaluate if a hybrid control method
is acceptable by assuming that the system has values of k = 0.6, a = 3.5 and c = 0.8 in
system (24). The controllability interval changes inside the chaotic region [2, 2.62675626]
when the bifurcation parameter b changes. Interestingly, the duration of the controllability
interval is shown to increase with changing the value of the bifurcation parameter at the
left end of the chaotic zone. Figure 13, shows the variation in controllability with respect
to control parameter b. The findings show that chaotic behavior in the system may be
efficiently controlled by using a hybrid control method.
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Figure 13. Region controllable for k = 0.5, a = 3.5, c = 0.8 of system (24).

Next, to determine the validity of exponential control, we take the values k = 0.6,
a = 3.5, c = 0.8 and b ∈ [2, 2.62676] for system (26), then Figure 14 illustrates the feasible
region corresponding to system (26) in the e1e2b-space.
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Next, some phase portraits of system (4) are presented in Figure 15 taking different
values of bifurcation parameter b.

In the end, we focused on two-parameter dynamics of system (4) based on the variation
in the maximum Lyapunov exponents and Lyapunov spectrum. For this, two parameters
13 < b < 25 and 0.5 < c < 1. On the other hand, a is kept fixed as a = 0.01. In order to
check the impact of fear level k on the dynamics of prey-predator interaction, very low and
high fear levels are selected, that is, k = 0.000001 (a very low level), and k = 1000 (a high
fear level).

Moreover, two-parameter based the maximum Lyapunov exponents dynamics is pre-
sented in Figure 16 with k = 0.000001 and a = 0.01. On the other hand, the corresponding
Lyapunov spectrum is presented in Figure 17. Similarly, two-parameter based the maxi-
mum Lyapunov exponents dynamics is presented in Figure 18 with k = 1000 and a = 0.01.
On the other hand, the corresponding Lyapunov spectrum is presented in Figure 19.
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The colors regions in Figures 17 and 19 corresponding to the Lyapunov spectrum
are described as follows: L2 < 0 < L1 (white region) corresponds to chaotic attractor,
0 < L2 < L1 (blue region) corresponds to chaotic attractor, L2 < L1 < 0 (red region)
corresponds to stable region, L2 = L1 < 0 (black region) corresponds to periodic point
of focus type, L2 = L1 = 0 (yellow region) corresponds to quasiperiodic region, and
L2 < L1 = 0 (green region) corresponds to invariant circle, where L1 and L2 are the first
and the second Lyapunov exponents.

Next, it must be noted that in above two-parameter dynamics the value of parameter
a is taken as a = 0.01, which is ecologically equivalent to a low predation rate for predator–
prey interaction. In order to consider the remaining case, that is, when the predation rate
has some value greater than one, we consider a = 2.5. Furthermore, for low and high
levels of fear, k is taken as k = 0.9 for a low level of fear, and k = 500 for a high level of
fear. For a = 2.5 and k = 0.9, the two-parameter MLE is depicted in Figure 20. On the
other hand, the corresponding Lyapunov spectrum is depicted in Figure 21. Similarly, for
a = 2.5 and k = 500, the two-parameter MLE is depicted in Figure 22. On the other hand,
the corresponding Lyapunov spectrum is depicted in Figure 23.

The colors regions in Figures 21 and 23 corresponding to the Lyapunov spectrum
are described as follows: L2 < 0 < L1 (cyan region) corresponds to chaotic attractor,
0 < L2 < L1 (blue region) corresponds to chaotic attractor, L2 < L1 < 0 (red region)
corresponds to stable region, L2 = L1 < 0 (black region) corresponds to periodic point
of focus type, L2 = L1 = 0 (yellow region) corresponds to quasiperiodic region, and
L2 < L1 = 0 (green region) corresponds to invariant circle, where L1 and L2 are the first
and the second Lyapunov exponents.

Furthermore, in Figure 24, at (b, c) ∈ [13, 25]× [0.5, 1] and k = 0.5, the Kaplan–Yorke
dimension is depicted in system (4).
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8. Concluding Remarks

Examining the effects of fear on the prey community has significant implications for
understanding predator–prey natural interactions, which act as an important factor to
understand the dynamics of such ecosystems comprehensively. Our research examines
the effect of predator-induced fear on prey populations and their role in varying levels of
fear interacting with environmental factors and the fluctuating behavior of the system. It is
investigated that low levels of fear coupled with low predation rates reflect and increase
the chaotic behavior of the predator–prey interaction. On the other hand, a high level
of fear coupled with a low victimization rate stabilizes the system. Consequently, it pro-
vides a platform for researchers and ecologists to further investigate other environmental
parameters that directly or indirectly affect the fear effect. A predator–prey model with
non-overlapping generations was chosen to implement the fear effect and investigation
related to its qualitative behavior. The proposed model is ecologically well-posed and
meaningful because it preserves the positivity of non-equilibrium solutions for all positive
parametric values. Further investigation involves the existence of biologically feasible fixed
points and local asymptotic behavior of the system around these equilibrium states. More-
over, codimension-one type bifurcations such as transcritical bifurcation, period-doubling
bifurcation, and Neimark–Sacker bifurcation are studied with implementation of standard
techniques of normal forms of bifurcation theory. To deal with the unpredictability caused
by the interacting species, we use some techniques concerning chaos control, which help
us to understand and control uncertainty in the proposed system. This study contributes
to our better understanding of predator–prey interactions and highlights how different
environmental factors affect ecosystem stability. Two-parameter dynamics particularly
with implementation of Lyapunov diagram construction and the depiction of the maximum
Lyapunov exponents are implemented to better understand the chaotic behavior of the
model with respect to its low and high levels of fear.



Fractal Fract. 2024, 8, 221 33 of 35

Moreover, in Figure 16, it can be observed from the graph that when levels of fear
are low, the maximum Lyapunov exponents (MLE) exhibit positivity, which is indicated
by the red region. This implies that the model exhibits chaotic behavior. Consequently,
the prey population experiences a rapid growth due to the absence of fear, resulting in an
unstable prey dynamics. As a result of this instability, predators may adapt their strategies,
leading to fluctuations in the prey population. The concentric semicircular lines in the
graph depict the periodic patterns of the model. Moving on to Figure 18, it can be noted that
when threat levels are high, the maximum Lyapunov exponents tend to display negativity
predominantly in the blue region. This negative value indicates a stable dynamics in the
system. This indicates that the number of animals being hunted is controlled because of the
powerful impact of dangers, leading to more consistent relationships between predators
and their prey. Furthermore, as the number of prey animals becomes more foreseeable, it
can result in stabilization of predator populations. The circular lines that form concentric
patterns on the graph draw attention to regions where the system demonstrates recurring
patterns. It must be noted that low and high predation rates also play crucial role for
emergence of chaotic behavior under low and high fear levels. In the case of a high
predation rate, system is more chaotic with an increased level of fear, and less chaotic with
a low level of fear (see Figures 20–23). Moreover, fractal and complex behavior of the model
is depicted in Figure 24, in which Kaplan–Yorke dimension is plotted in two-parameter
plane. Our current approach is theoretical, aiming to explore the impact of fear within the
established framework of [43]. Future work could incorporate data to parameterize the fear
effect term for a more realistic representation.
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