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Abstract: This research utilizes the innovative fractional-order Archimedean spiral moth–flame
optimization (FO-AMFO) technique to address the issues of the optimal reactive power dispatch
(ORPD) problem. The formulated fitness function aims to minimize power losses and determine
the ideal flow of reactive power for the IEEE 30- and 57-bus test systems. The extensive functions of
the fractional evolutionary computing strategy are utilized to address the minimization problem of
ORPD. This involves determining the control variables, such as VAR compensators, bus voltages, and
the tap setting of the transformers. The effective incorporation of reactive compensation devices into
traditional power grids has greatly reduced power losses; however, it has resulted in an increase in the
complexity of optimization problems. A comparison of the findings indicates that swarming fractional
intelligence using FO-AMFO surpassed the state-of-the-art competitors in terms of minimizing
power losses.

Keywords: reactive power planning; fractional-order calculus; power loss minimization; fractional-
order evolutionary algorithm; swarm intelligence

1. Introduction

The optimal reactive power dispatch (ORPD) problem is gaining attention from power
system engineering researchers because of its importance in modern energy management
systems. The objective is to minimize power losses in the electric power network and
improve the net voltage profile and various equality and inequality constraints associated
with the power system. Reactive power planning is an essential prerequisite for ensuring
the dependable, efficient, and sustainable functioning of power systems as the power sector
research community is increasingly intrigued by them [1–3]. We can accomplish these
goals by finding the most accurate values of operational parameters including flexible
AC transmission system (FACTS) devices, shunt reactor banks, generator voltages, tap
positions of transformers and active power generation. Gradient-free solutions are very
useful in terms of application in integrated power plants. The research community has
become more familiar with metaheuristic methods and are using them in power system
problems. Particle swarm optimization (PSO), a metaheuristic global technique inspired by
nature, was employed to determine the optimal results for economic load dispatch (ELD)
in conjunction with differential evolution (DE) for constructing hybrid energy-generating
units [4]. Genetic algorithms (GAs) were employed to address the problem of ELD in con-
junction with physical constraints when numerical methods failed to yield globally optimal
outcomes. The enhanced genetic algorithm yielded more accurate and dependable results
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by meticulously organizing the outputs of active power generation [5]. Furthermore, the
power and energy sectors have employed recently developed metaheuristic-based search-
ing algorithms, as detailed in [6]. Mirjalili’s [7] biologically inspired meta heuristic strategy
of grey wolf optimization (GWO) is an intriguing methodology that may be applied to
challenging real-world ELD problems. GWO is used to solve many common optimization
issues. Complex power system problems were solved using quadratic programming, lin-
ear programming, dynamic programming, the Newton–Raphson method, and sequential
programming. However, because of convergence issues and initial search point sensitiv-
ities [8], these traditional optimization techniques are unable to yield global optimum
results. The combination of several optimization strategies is promising and has produced
the finest all-around results. Hybridization approaches promise the finest global solutions
by simultaneously utilizing the best aspects of individual algorithms [9]. Several practical
constraints, such as power demands, generation limits, emissions, prohibited operating
zones (POZs), multi-fuel systems, limits to ramp rates, the stochastic behavior of renewable
energy penetration, bus voltages, tap changer transformers, reactive power compensators,
and multiple controlled continuous, discrete, and integer-based variables, are involved in
addressing the various objectives of power systems. These problems are highly nonlinear
and non-convex optimization problems [10]. Because of stagnation in local optimal zones,
traditionally employed optimization strategies face more challenges in the proper planning,
operation, and management of power plants. A useful substitute for solving challenging
power system optimization issues is bio-inspired methods. Bio-inspired algorithms are
more likely to broaden the search space and have less chance of becoming trapped in local
optimum regions because of their stochastic and population-based nature compared to
deterministic techniques, which evaluate search agents using function derivatives rather
than fitness functions [11]. Among the broad categories of bio-inspired algorithms are
those based on ecology, swarming, and evolutionary optimization. Hybrid bio-inspired
algorithms benefit from the ability to simultaneously find the optimum solution without
getting entrapped in the wrong zones. An important component of power system op-
timization is the problem of economic load and emissions, which has been successfully
solved to optimize fuel cost generation and the amount of harmful gas emissions [12]. By
taking into account the valve point loading effect (VPLE), prohibited operations zones
(POZs), and multiple fuel options for test systems with 10, 40, and 160 units, the author
solved a multi-objective problem which optimizes power generation fuel costs, emission of
gases, and power losses in transmission lines, linked to the ELD problem [13], by formu-
lating a fuzzy-based PSO hybrid method with DE, called FB (PSO-DE). By comparing the
performance of the suggested combined technique to PSO with more then seven limited
benchmark functions derived from 100 separate trials, the hybrid strategy demonstrated
improved robustness and convergence compared to PSO and its various hybrid approaches.
In order to minimize the fuel generation cost while taking the VPLE into consideration, the
continuous greedy randomized adaptive search procedure algorithm (GRASP) is employed
in combination with self-adaptive differential evolution, denoted CGRASP-SADE [14].
ELD with incorporation of wind power units is discussed in [15], in which the moth–flame
optimization (MFO) algorithm was used for cost minimization. In [16], the optimal power
flow problem is approached by applying fractional-order computing via variations of FO-
PSO. This involves determining control variables, including VAR compensators, generator
bus voltages, and tap setting of transformers. The author used the DE algorithm in [17] to
address power loss minimization for nonlinear and piecewise second-order cost functions.
Comprehensive learning particle swarm optimization (CL-PSO) for reactive dispatch of
an IEEE-30 bus system is used in [18]. The harmony search algorithm’s ability to handle
inequality constraints and penalty coefficients is studied in [19]. The hybrid invasive weed
algorithm combined with the implicit competitive algorithm is used for IEEE 30- and 57-bus
systems in [20]. The quasi oppositional algorithm [21] is used for loss minimization of large
IEEE 118-bus systems. The grey wolf optimizer (GWO) is used to find the optimum pa-
rameter settings for an IEEE 57-bus system in [22]. In [23] Optimal reactive power dispatch
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solution by loss minimization is solved using moth flame optimizer. In traditional MFO,
during the last iteration of optimization, almost all individuals in the population converge
to a small region around the optimal solution. When faced with intricate multimodal global
optimization issues, the whole population may quickly converge to the local optimum. In
order to address this problem, a modified version of MFO called the FO-AMFO method is
proposed. This modified version incorporates the concept of fractional calculus to improve
the convergence characteristics and capabilities of MFO.

Recently, it has been established that incorporating fractional calculus (FC) and the fun-
damental notions of fractional derivatives into a system’s underlying mathematical model
can provide considerably better outcomes in various fields of science and engineering.
These approaches have been successfully applied to a wide range of problems, including
feature selection, image processing, hyperspectral visuals, controllers for predicting robotic
paths, Kalman filters, and fractional-order filters. According to this study, FC techniques
should be used with evolutionary strategies to address optimization difficulties in the
energy sector. We can refer to fractional-order robotic PSO, FPSO with a fractional-order
velocity [24–28], optical disc localization and segmentation [29], parameter adaptation for
Kalman filtering computations [30], land-cover tracking [31], feature selection [32], hyper-
spectral image classification [33], and robot path controller design [34]. Other applications
involve the development of a multiband power system stabilizer based on a lead–lag com-
pensator using hybrid dynamic GA-PSO [35] and identification of nonlinear systems [36].
These findings encourage the use of FC tools in conjunction with metaheuristic algorithms
to solve the energy and power sectors’ optimization challenges.

The use of fractional-order calculus in the AMFO algorithm demonstrates the syner-
gistic convergence of complex optimization approaches. FO-AMFO’s inherent fractal-order
dynamics boost exploration and exploitation capabilities, allowing for more effective ORPD
problem optimization. The addition of fractional calculus to the AMFO algorithm improves
the accessibility, consistency, and scalability of the optimization process. ORPD allows
for the automated application and enforcement of optimization criteria, which simplifies
energy dispatch operations and lowers power losses. Furthermore, the integration of FO-
AMFO in ORPD has the potential to drive innovation in energy-market procedures and grid
management strategies. FO-AMFO enabled ORPD for real-time optimization and dynamic
changes in energy loads, resulting in improved resource utilization, lower energy costs and
power losses, and improved grid stability. The performance of FO-AMFO is heavily impacted
by parameter configurations such as the fractional order, inertia weights, and acceleration
coefficients. Inadequate parameter settings may cause early convergence, a lack of progress, or
erratic behavior, necessitating careful parameter modification and optimization.

The aim of this research work is to solve the constrained optimization problem of
ORPD. According to our literature study, the potential of FO-AMFO-based heuristics has
not been applied to ORPD so far. Thus, this study investigates the potential for optimizing
the algorithms in ORPD.

This article describes the application of FO-AMFO, a recently developed variant of the
MFO algorithm that emphasizes the concepts and theories of fractional calculus. It serves
as an effective mechanism for optimizing ORPD by estimating control variables, such
as bus voltages, tap positions of transformers, and reactive power compensators, while
satisfying the load demand. As a fitness evaluation function, power loss minimization is
employed, while keeping the constraints within their designated bounds. The important
characteristics, or highlights of the contributions, are listed as:

• Utilizing the strengths of FO-AMFO, a novel application of the fractional evolutionary
approach for ORPD is proposed.

• The design scheme is successfully applied to ORPD problems in order to minimize
power losses while meeting load demand and operational constraints.

• The algorithm’s performance is determined by statistical findings in the form of
probability plots, learning curves, and histogram analysis, which demonstrate the
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algorithm’s stability, resilience, and consistency as a precise and efficient optimiza-
tion mechanism.

The remainder of the paper has been drafted in following order: Section 2 presents
the fitness function for ORPD problem; Section 3 presents a summary of the proposed FO-
AMFO method and the overall flow diagram; Section 4 presents the simulation results and
a comparison with the latest techniques applied to same problem; and Section 5 presents
the conclusions and future recommendations.

2. Problem Formulation

ORPD is an essential part of controlling and managing power systems. Its primary
goal is to meet various constraints while minimizing power losses. Efficient distribution of
electrical energy within the power grid is the goal of ORPD. The overarching goal is to lower
the system’s overall cost, which includes factors like power losses and voltage deviations.

Our primary goal is to reduce the power losses related to the standard IEEE networks.
The actual power dissipation of the system is determined by the bus voltages, corresponding
angles and line conductances, expressed mathematically by:

P_loss =
w

∑
e=1

grr

(
V2

ii + V2
ji − 2 ∗ Vii ∗ Vjj ∗ cos

(
δii − δjj

))
(1)

Here, δ are the voltage phasor angles at the i and j buses, whereas e represents the line,
w represents the transmission system, grr represents the transmission line conductance,
and Vii and Vjj are the magnitude of the bus voltages. It is also crucial to note that the
reactance of the line varies with the transformer tap setting (T) and the voltage of the bus
in relation to the complex part of power (Q).

Furthermore, the penalty factor approach has been included to penalize the control
variable violations because, in ORPD situations, if the control variables exceed the voltage
constraints, significant harm to the power network will occur. The penalty factor term is
zero if every control variable stays within the allowed ranges. Thus, the objective function
becomes the equation below.

Minimize : F : Ploss + P(X, rh, rg), (2)

xmin
i ≤ xi ≤ xmax

i , (3)

P(X, rh, rg) is the penalty factor function and rg and rh are the penalty multipliers
for constraints.

X represents the set of independent variables = xi ϵ [V, T, Q]. It comprises the IEEE
standard bus system’s Qi (capacitor bank), the voltage control bus Vi, and the transformer
tap setting Ti. The total objective function that takes into account the penalty function for
breaking both constraints is

F_obj = P_loss+
(

∑ rrgi

(
(vii − vi_lim)2

)
∑ rTTi(Tii − Ti_lim)2

)
+ ∑ rQQi

(
(Qii − Qi_lim)2

) (4)

Vlim
i =

{
Vmax

i ; Vi > Vmax
i

Vmin
i ; Vi > Vmin

i
, i = 1, 2, . . . , NG

Qlim
Gi =

{
Qmax

i ; Qi > Qmax
i

Qmin
i ; Qi > Qmin

i
, i = 1, 2, . . . , NG

Tlim
i =

{
Tmax

i ; Ti > Tmax
i

Tmin
i ; Ti > Tmin

i
, i = 1, 2, . . . , NT

In this case, the variables V, Q, and T represent the generator bus voltages, reactive
power, tap locations, generator numbers (NG), and total tap changers (NT). The upper and
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lower, or permissible, limits of these control variables are represented by the highest and
lowest values of Qi, Vi and Ti in the aforementioned equations. Equation (3) states that any
deviation from these bounds will result in a fitness penalty.

2.1. System Constraints

Power balancing equations, as given in [10], are the equality constraint in power flow,
stating that losses in the power system are equal to the difference between the generation
and demand of power at each bus. The following are mathematical equations for both real
and reactive powers:

PGi − PDi − Vi

N

∑
j=1

Vj
[
Bij sin

(
δi − δj

)
+ Gij cos

(
δi − δj

)]
= 0, (5)

QGi − QDi − Vi

N

∑
j=1

Vj
[
Bij cos

(
δi − δj

)
+ Gij sin

(
δi − δj

)]
= 0. (6)

The actual power supply and demand at the ith bus are denoted by PGi and PDi, respec-
tively, whereas the reactive power generation and demand at the ith bus are represented by
QGi and QDi. Bij and Gij are the line’s conductance and susceptance.

The inequality constraints used are given below.

2.2. Tap Limits

The tap positions of transformers are denoted as:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, . . . , NT . (7)

2.3. Voltage Generation Limits

The upper and lower voltage generation limits are:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, 2, . . . , N (8)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, 2, . . . , N (9)

2.4. Reactors Limits

The compensators at the bus are limited by:

Qmin
ci ≤ Qci ≤ Qmax

ci , i = 1, 2, . . . , Nc (10)

Here, the total number of branches si NT, the total number of generators si N and
buses with compensators are represented by NC.

3. Methodology

The approach here to address the ORPD problem for IEEE-30 and IEEE-57 bus systems
is based on FO-AMFO. Two sections are devoted to the description of the design plan. The
first section gives a quick rundown of FO-AMFO and its derivation. The second section
then presents the general workflow for solving the ORPD problem using basic steps and
processing block structures. In this part, an original method for improving the classic
MFO algorithm’s local search approach is presented. First, to develop the MFO approach,
Mirjalili [37] was motivated by the transverse positioning of moths during nocturnal navi-
gation. Unlike other nature-inspired algorithms, MFO employs spiral trajectory functions to
mathematically model dying behavior. By maintaining a steady angle with the moonlight,
and in order to facilitate more effective nocturnal migration over great distances, moths
use transverse orientation as a navigational strategy, as shown in Figure 1a. When moths
encounter artificial lights or flames during the night, they tend to bend away from the
original path; this is the reason behind moths randomly moving in arbitrary directions.
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Moths perish as they fall into artificial light because of deadly spiral orientation, as shown
in Figure 1b, which shows an Archimedean spiral trajectory.
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Figure 1. FO-AMFO: (a) moth–flame inspiration; (b) moth trajectory.

The population-based MFO algorithm is a type of search algorithm. Each moth
functions as a search agent in this system, and its orientation indicates the number of
variables that may be controlled. The goal of this strategy is to identify the best options.
The first solution for moths, called “M”, is included in the framework. It is composed of
“n” candidate solutions and “d” dimensions, which stand for controllable variables. The
matrix ‘OM’ represents the fitness of these potential solutions, which is assessed using an
objective function.

M0PoS =

MO11 · · · MO1d
...

. . .
...

MOn1 · · · MOnd

 (11)

OM f it = [OM11 OM21, OM31, . . . OMn1,]
T (12)

For flames, a matrix ‘F’ is designed, which is dimensionally the same as that observed
for moths. ‘OF’ stands for the fitness-encoded values in the matrix. Moths select the best
location, and subsequently, search agents modify their positions based on the optimal
position obtained.

Every nth moth’s location in relation to the kth flame is altered using the ‘S’ spiral function.

Mn = S(Mn, Fk) (13)

The Archimedean spiral function is used by modifying the MFO method to mimic the
flight of moths in spiral paths, and Equation (14) is used to improve the alignment. The
straight distance between the kth and the nth moth is represented by the variable “Dn”. In
this case, ‘r’ is a randomly generated value between −1 and 1, and ‘k’ is the logarithmic
spiral’s form factor.

S(Mn, Fk) = Dn.ekr. cos(2πt) + Fk (14)

The suggested approach combines fractional calculus with the previously mentioned
basic MFO to provide fractional-order MFO that controls the propensity toward faster con-
vergence and yields satisfactory outcomes. MFO works well with global search methods,
whereas its performance is not good in local search methods. To avoid the previously de-
scribed restriction, the suggested approach incorporates fractional calculus into basic MFO
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to make use of the memory retention feature of previous solutions to ensure information
exchange between solutions throughout the solution phase. As a result, modifications
are made to the convergence speed and response accuracy. Given its properties and in-
trinsic memory component, FC is ideally equipped to explain fascinating phenomena like
irreversibility and chaos. This theory states that an MFO trajectory’s dynamic character
produces a special circumstance, while FC instruments are a good complement.

The concept of fractional-order derivatives is formulated by applying fractional-order
derivatives to Grünwald–Letnikov theory. Take any random signal s(t), for which Equa-
tion (15) provides the fractional-order derivative of Grünwald–Letnikov [38].

Dδ(s(t)) = Lim
h→0

[
1
hδ

∞

∑
k=0

(−1)kΓ(δ + 1)s(t − kh)
Γ(δ − k + 1)Γ(k + 1)

]
(15)

The fractional derivative requires infinite terms to represent it, whereas an integer
derivative is simply represented by finite series. Therefore, “local” operators are derivatives
of integers. Fractional derivatives, on the other hand, automatically “remember” every
past event. Still, the impact of earlier occurrences fades with time. The expression found in
Equation (16) serves as the basis for the discrete time computation.

Dδ[s[t]] =
1

Tδ

[
r

∑
k=0

(−1)kΓ(δ + 1)s(t − kT)
Γ(δ − k + 1)Γ(k + 1)

]
(16)

where “r” denotes the truncation order and “T” denotes the sampling period. [s(t)] is a
discrete variable. In the particular case where δ equals one, the equation can be stated as
follows where it is changed to integer order or the conventional first-order derivative:

D1[s(t)] = s(t + 1)− s(t) (17)

To leverage the property of fraction calculus that was discussed earlier to improve the
local search capabilities of conventional moth–flame optimization, each moth’s position is
updated according to the velocity in Equation (18).

Mn
p(t) = Mn

p(t − 1) + Mn
v (t) (18)

Moths move in a PSO fashion, where the best flame (GBFPOS) is the global optimum
and the moth-associated flame (LBFPOS) is the local best position. Every iteration updates each
moth’s position based on its current position and velocity. The updated velocity is in line with
the moth’s initial velocity as well as social behavior patterns and cognitive processes.

MV
n(T) = MV

n(T − 1) + C11 ∗ r1 ∗ (L.B.F(T − 1) + C22 ∗ r2 ∗ (G.B.F(T − 1)− MP
n(T) (19)

The main idea of the proposed FO-AMFO algorithm is shown in Figure 2.
Considering only four terms, Equation (20) can be rewritten as follows.

Mn
v (t) = δMn

v (t − 1) + 1
2 δ(1 − δ)Mn

v (t − 2) + 1
6 δ(1 − δ)(2 − δ)Mn

v (t − 3)
+ 1

24 δ(1 − δ)(2 − δ)(3 − δ)Mn
v (t − 4)

+C1 ∗ r1 ∗ (LB.Fk
p(t − 1)− Mn

p(t − 1)) + C2 ∗ r2 ∗ (GB.Fk
p(t − 1)− Mn

p(t − 1))
(20)



Fractal Fract. 2024, 8, 225 8 of 20

Fractal Fract. 2024, 8, x FOR PEER REVIEW 8 of 20 
 

 

Moths move in a PSO fashion, where the best flame (GBFPOS) is the global optimum 

and the moth-associated flame (LBFPOS) is the local best position. Every iteration updates 

each moth’s position based on its current position and velocity. The updated velocity is in 

line with the moth’s initial velocity as well as social behavior patterns and cognitive pro-

cesses. 

𝑀V
𝑛(𝑇) =  𝑀V

𝑛(𝑇 − 1) + 𝐶11 ∗ 𝑟1 ∗ (𝐿. 𝐵. 𝐹(𝑇 − 1) + 𝐶22 ∗ 𝑟2 ∗ (𝐺. 𝐵. 𝐹(𝑇 − 1) − 𝑀P
𝑛(𝑇)  (19) 

The main idea of the proposed FO-AMFO algorithm is shown in Figure 2. 

Load generator data, bus 

data and branch data

No: of search agents,Max 

iteration,dimension and 

objective function

Initialize population of Moth/

search agents using 

random fucntion

Calculate flame no s. 

Flames being the best 

positions of Moths

Search agents  bounds

Calculate fitness of each agent 

by passing through objective 

function

Update flames and its 

associated fitness based on 

sorted search agents.

Carry to its bounds

search agents  flame no

Yes

NO

NO

Yes

Start

IEEE standard bus 

system parameters 

setting

Update pos. of 

moth w.r.t its 

corresponding 

flame.

Update pos. 

of moth w.r.t 

one flame

Using Fractional order 

swarming strategy of PSO 

algorithm to update velocity

Update position of moths 

based on updated velocity

Termination criteria met

Stop

Inputs for calling 

MFO algorithm

𝑽𝒎
𝒕+𝟏 = 𝒂𝑽𝒏

𝒕 +
𝟏

𝟐
𝒂(𝟏 − 𝒂)𝑽𝒏−𝟏

𝒕 +
𝟏

𝟔
𝒂(𝟏 − 𝒂)(𝟐 − 𝒂)𝑽𝒏−𝟐

𝒕  

+⋯𝒄𝟏 ∗ 𝒓𝒂𝒏𝒅 𝑭𝒍𝒐𝒄𝒂𝒍 −𝑴𝒐𝒕𝒉𝒑𝒐𝒔) + 𝒄𝟐 ∗ 𝒓𝒂𝒏𝒅(𝑭𝒈𝒍𝒐𝒃𝒂𝒍

−𝑴𝒐𝒕𝒉𝒑𝒐𝒔) 

Yes

NO

Random 

velocity
Reinitialized velocity

System

Fractional 

derivative

Power system

Statistical Analysis

 

Figure 2. Flowchart of the complete process. Figure 2. Flowchart of the complete process.

4. Results and Discussion

It is common practice to evaluate the performance of an optimization method via
standard uni- and multi-model benchmark functions [37]. The approximate solution with
the lowest error is considered to be the best optimizer. A total of 10 benchmark functions
are used here for the comparison of optimization methods in different scenarios. First, the
functions from F1 to F7 are uni-model functions, while F8 to F10 are multi model functions.
F0-AMFO gives the best results in 8 cases out of 10 different test cases. The numerical
outcomes are shown in Table 1, which shows F0-AMFO’s performance in terms of the mean
fitness value among 100 independent runs. FO-AMFO outperformed all three algorithms.
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Table 1. Performance comparison with benchmark functions.

Functions GSA [37] PSO [37] MFO [37] FO-AMFO

F1(x) =
n
∑

i=1
x2

i
608.2432 1.321140 0.0001170 0.0099567

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 22.7534 7.715640 0.0006390 0.0000077

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
135760.7 736.3190 696.73090 3.761800

F4(x) = max
i

{|xi|, 1 ⩽ i ⩽ n} 78.7854 12.97654 70.686460 24.662000

F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

741.005 77360.83 139.14870 97.876000

F6(x) =
n
∑

i=1
([xi + 0.5])2 3080.67 286.6585 0.0001130 0.00000408

F7(x) = (
n
∑

i=1
ix4

i + random(0, 1)) 0.11256 1.037426 0.0911550 0.0279000

F8(x) =
n
∑

i=1
− xisin

(√
|xi|
)

−2352.36 −3572.000 −8496.780 −3065.6000

F9(x) =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 31.00015 124.1962 84.600090 19.996000

F10(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 0.048679 0.021654 0.0190800 0.296200

The numerical results obtained through FO-AMFO for solving ORPD problems are
presented in this section, which includes two case studies of a 30-bus IEEE system with
13 variables to control and a 57-bus IEEE system with 25 variables to control. The parameter
values of the system can be found in [16].

4.1. Case 1: ORPD 13 Variables for a 30-Bus IEEE System

In this case, FO-AMFO is applied to a 30-bus IEEE system; a detailed single-line
diagram is shown in Figure 3. In this case, there are in total thirteen control variables—three
compensator devices, four tap changer transformers, and six generator voltages—that need
to be optimized for this case study. The system description data are given in Table 2.

Table 2. Description of IEEE 30 standard systems [16].

Characteristics IEEE 30 Bus 13 Variables

Total Buses 30
Load Buses 24

Total Generators 6
Total Transformers 4

Total Capacitors 9
Total Reactors 0
Total Branches 41

The actual and reactive power demands are taken from IEEE base case, but the
optimization variables’ boundary limitations are different, as determined by [16]. In order
to ensure a fair comparison, the same MATPOWER load flow numerical computational
paradigm is used to evaluate all of the tabulated results of transmission losses. The
results obtained by the proposed optimization technique in contrast to other optimization
techniques are shown in Table 3, which demonstrate that FO-AMFO obtained a good-
quality solution and minimized the total power losses up to the optimum value.
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Table 3. Comparison of 13 control variables for the IEEE 30-bus system.

Control
Variables

Reported Results
Proposed

D-E
[17]

G-A
[18]

(PSO)
[19]

HS-A
[19]

MICA-
(IWO)

[20]

IC-A
[20]

I-WO
[21]

G-WO
[22]

(MFO)
[23]

FO-
(AMFO)

Vg-1 1.095 1.072 1.031 1.072 1.079 1.078 1.069 1.100 1.100 1.028

Vg-2 1.085 1.063 1.011 1.062 1.070 1.069 1.060 1.096 1.094 1.021

Vg-5 1.062 1.037 1.022 1.039 1.048 1.069 1.036 1.080 1.075 0.985

Vg-8 1.065 1.044 1.003 1.042 1.048 1.047 1.038 1.080 1.771 0.990

Vg-11 1.026 1.013 0.974 1.031 1.075 1.034 1.029 1.093 1.086 1.002

Vg-13 1.014 1.089 0.998 1.068 1.070 1.071 1.055 1.100 1.100 1.028

Th6-9 1.017 1.022 0.970 1.010 1.030 1.080 1.050 1.040 1.041 1.054

Th6-10 0.979 0.991 1.020 1 0.990 0.950 0.960 0.950 0.950 1.045

Th4-12 0.977 0.996 1.010 0.990 1 1 0.970 0.950 0.955 0.922

Th27-28 1.008 0.97 0.990 0.970 0.980 0.970 0.970 0.950 0.957 0.938

Q-c3 20.223 5.350 17 34 −7 −6 8 12 7.103 30

Q-c10 9.584 36 13 12 23 36 35 30 30.796 29.870

Q-c24 13.029 12.417 23 10 12 11 11 8 9.898 30

PL 4.88 4.87 5.88 5.10 4.84 4.84 4.92 4.61 4.60 4.219
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Table 3 shows that the loss obtained by applying FO-AMFO is 4.2193 MW, which is
23.03% less than the base case loss of 5.482 MW. In contrast, MFO, MICA-IWO, GWO, DE,
GA and HSA exhibit 18.6%, 14.4%, 18.5%, 13.6%, 13.8% and 9.7% lower losses, respec-
tively, when compared to other recently established counterpart computational paradigms.
The results show that while solving the optimal RPD problem, the FO-AMFO technique
produces a superior solution to other well-known published techniques. Additionally,
it is evident that every calculated result for an optimization variable stayed inside the
predetermined bounds.

By examining the convergence and learning curves, as shown in Figures 4 and 5, it
is shown that the convergence is faster and the optimum solution is obtained in a fewer
number of iterations during the course of the simulation. Further, it is shown from learning
curve that after 23 iterations, the power loss seems to converge at a constant 4.2 MW value
also for the case of fractional values, which reaches its peak performance at α = 0.3. From
this, one can assess the resilience of FO-AMFO’s performance. The convergence curves
were plotted for various fraction orders, i.e., for α = 0.10 to 0.90, with 0.10 difference in the
computational scheme to observe the consistency in accuracy. The convergence curves for
different fractions ranging from 0.1 to 0.9 in the case of the IEEE 30-bus system are shown
in Figure 5. The X axis represents the iteration value and the Y axis represents the total
power loss in the system. As the number of iterations increases, the convergence curve
converges to a single solution. From Figure 5, it can be concluded that the fractional order
α = 0.3 solution converges to 4.2 MW, which is the best value recorded. It can be seen that
after 100 iterations, the exploration step is lowest and the exploitation step is prominent.
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Figure 6 shows the loss difference obtained by applying FO-AMFO, which is 5.482 MW,
which can also be interpreted as a 1.2627 MW power loss difference from the base case of
5.482 MW. The power loss difference is obtained by subtracting the power loss obtained
by the optimization method from the base case power loss. In the same way, MFO, MICA-
IWO, GWO, DE, GA and HSA exhibit differences of 0.874 MW, 0.869 MW, 0.636 MW,
0.5945 MW and 0.37 MW when compared to other recently established similar computa-
tional paradigms.
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4.2. Case 2: ORPD for the IEEE 57-Bus System with 25 Control Variables

In this case, the proposed FO-AMFO is applied to the IEEE 57-bus system, as shown
in Figure 7. In this case, there are a total of twenty-five variables. The system details anc be
found in [16]. The system parameters and description data for the IEEE 57-bus standard
system are shown in Table 4.

Table 4. Description of the IEEE 57-bus standard system [20].

Characteristics IEEE 57-Bus 25 Variables

Total Buses 57

Load Buses 45

Total Generators 7

Total Transformers 17

Total Capacitors 3

Total Reactors 15

Total Branches 80
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Figure 7. IEEE 57-bus system [20].

The actual and reactive power demands are the same as in the previous case, but the
optimization variable boundary limitations are different, as determined by [16]. The results
obtained from the proposed FO-AMFO are compared with those of other well-known
optimization methods and mentioned in Table 5. It can be observed that the proposed
algorithm obtained a better and superior solution in terms of the quality of the solution
and convergence characteristics and minimized the power line losses up to the optimum
value. In order to ensure a fair comparison, the same MATPOWER load flow numerical
computational paradigm was used to evaluate all of the tabulated results of transmission
losses. Table 5 shows that the loss obtained by applying FO-AMFO is 21.6210 MW, which
is 21.73% less than the base case loss of 27.86 MW. In contrast, FO-DPSO, SOA, MFO, IWO,
CLPS, GWO and FPSO-GSA exhibit 4.23%, 12.92%, 11.72%, 10.66%, 12.66%, 14.44%, and
17.73% lower losses, respectively, when compared to other recently established similar
computational paradigms. The results show that while solving the ORPD problem, the FO-
AMFO technique produces a superior solution compared to other well-known published
techniques. Additionally, it is evident that every calculated result for an optimization
variable stayed inside the predetermined bounds.
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Table 5. Comparison of optimized variables for the IEEE 57-bus system with 25 control variables.

Control
Variables

Base Case
[16]

FO-
DPSO

[16]

SOA
[39]

MFO
[15]

IWO
[20]

CLPS
[40]

GWO
[41]

FPSO-
GSA [42]

FO-
AMFO

V-G (1) 1.040 1.04 1.060 1.060 1.06 1.054 1.060 1.100 1.100

V-G (2) 1.011 1.029 1.058 1.058 1.059 1.052 1.056 1.098 1.0991

V-G (3) 0.985 1.009 1.043 1.046 1.047 1.033 1.037 1.087 1.0889

V-G (6) 0.980 0.977 1.035 1.042 1.038 1.031 1.020 1.080 1.0832

V-G (8) 1.050 0.985 1.054 1.060 1.059 1.049 1.044 1.100 1.1000

V-G (9) 0.980 0.967 1.036 1.042 1.027 1.030 1.029 1.084 1.0848

V-G (12) 1.015 0.908 1.033 1.037 1.037 1.034 1.031 0.960 1.0808

T-TS (4-18) 0.970 0.9 1 0.950 1.05 0.990 0.984 1.007 0.900

T-TS (4-18) 0.978 0.920 0.96 1.007 1.0 0.980 0.932 1.084 0.900

T-TS (21-20) 1.043 1.026 1.01 1.006 1.07 0.990 0.957 0.995 1.0032

T-TS (24-26) 1.043 1.007 1.01 1.007 1.02 1.010 0.996 0.990 0.9879

T-TS (7-29) 0.967 0.907 0.97 0.975 0.97 0.990 0.963 0.996 0.9000

T-TS (34-32) 0.965 0.987 0.97 0.972 0.99 0.930 0.981 1.007 0.9802

T-TS (11-41) 0.955 0.901 0.9 0.900 0.9 0.910 1.062 0.990 0.9000

T-TS (15-45) 0.955 0.9 0.97 0.9718 0.96 0.9700 0.9755 0.9906 0.9000

T-TS (14-46) 0.900 0.9 0.95 0.953 0.95 0.9500 0.9639 1.0028 0.9000

T-TS (10-51) 0.930 0.916 0.96 0.9673 0.98 0.9800 0.9723 0.9900 0.9108

T-TS (13-49) 0.895 0.9 0.92 0.9278 0.93 0.9500 0.9248 1.0027 0.9000

T-TS (11-43) 0.958 0.9 0.96 0.964 0.99 0.9500 0.9554 1.0844 0.9000

T-TS (40-56) 0.958 0.998 1 0.9998 1.01 1.000 1.1000 1.0023 1.1024

T-TS (39-57) 0.980 0.994 0.96 0.9606 1.04 0.9600 0.9976 0.9900 0.9844

T-TS (955) 0.940 0.9 0.97 0.9789 0.96 0.9700 0.9845 1.0951 0.900

QSC (18) 0 4 9.984 9.9968 0.0442 0.0988 1.8917 4.9846 1.1581

QSC (25) 0 15 5.904 5.9000 0.0443 0.0542 5.2489 4.9992 4.9028

QSC (53) 0 11.67 6.288 6.300 0.0615 0.0628 5.1513 4.3653 4.7725

Ploss
(MW) 27.86 26.68 24.26 24.252 24.593 24.89 24.752 22.918 21.6210

By examining the learning curve, which reaches its peak performance at α = 0.8,
one can assess the resilience of FO-AMFO’s performance, as shown in Figure 8. The
learning curves are also plotted for various fractional orders, i.e., for α = 0.1 to 0.9, in the
computational scheme to observe the consistency, as shown in Figures 9 and 10. It can be
observed from the convergence and learning graph that the proposed FO-AMFO achieved
the optimum solution and minimized the losses up to the optimum value in a lower number
of iterations. The net gain improvement in power loss achieved in MWs by the proposed
algorithm against the IEEE 30-bus base case with other optimization techniques is shown
in Figure 9, demonstrating the superiority of FO-AMFO.
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Figure 9. Convergence curves for α = 0.1 to 0.9 for case B.

The power losses for the IEEE 57-bus system and convergence curves for different
fractions ranging from 0.1 to 0.9 are shown in Figure 9. The best value of Ploss among 20 in-
dependent trials and 500 iterations is shown, where the x axis represents the iteration value
and the y- axis represents the power loss. As the number of iterations increases, the con-
vergence curve flattens to a single solution. The fractional order value of α = 0.8 converges
to 21.6210 MW, which is the lowest value. It can be seen that after 100 iterations, the
exploration step is lowest and the exploitation step is prominent. The Figure 10 shows the
minimum, average and maximum value obtained for real power losses obtained during the
course of simulation for different fractional orders while Figure 11 shows the loss difference
obtained by applying FO-AMFO as it can be seen the proposed FOAMFO achieved a Power
loss difference of 6.239MW as compared to base case of IEEE-57 Bus system.
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Figure 10. Convergence characteristic curves of the proposed FO-AMFO algorithm for fractional 
orders of 0.1 to 0.9: (a) fractional order δ = 0.1, (b) fractional order δ = 0.2, (c) fractional order δ = 0.3, 
(d) fractional order δ = 0.4, (e) fractional order δ = 0.5, (f) fractional order δ = 0.6, (g) fractional order 
δ = 0.7, (h) fractional order δ = 0.8, (i) fractional order δ = 0.9. 

Figure 10. Convergence characteristic curves of the proposed FO-AMFO algorithm for fractional
orders of 0.1 to 0.9: (a) fractional order δ = 0.1, (b) fractional order δ = 0.2, (c) fractional order δ = 0.3,
(d) fractional order δ = 0.4, (e) fractional order δ = 0.5, (f) fractional order δ = 0.6, (g) fractional order δ
= 0.7, (h) fractional order δ = 0.8, (i) fractional order δ = 0.9.
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4.3. Comparative Analysis through Statistics

In this section, the statistical analysis results are presented so that reliable conclusions
can be drawn regarding the proposed FO-AMFO technique, which has been evaluated across
20 independent trials. The outcomes of the statistical analysis are presented, enabling reliable
conclusions to be drawn concerning the FO-AMFO method, which was specifically developed
to address the difficulty of determining the optimal ORPD. Box plots can represent the spread
of data graphically. With respect to measurements of the central tendency (mean, median, and
mode), the box plot for power loss minimization in Figure 12b reveals that the median and
outliers are quite near to each other, which suggests a relatively low variation in the data. The
shape of the computed data is reflected in the underlying frequency distribution, which is
represented by the histogram drawings. It is evident that the maximum number of independent
trials yields average minimum fitness gauges for every scenario. As can be observed, even the
worst-case scenario offers a higher fitness value compared to the base case, verifying FO-AMFO’s
accuracy. These visual representations of the statistical data for the various ORPD scenarios
further demonstrate the consistency, stability, and robustness of FO-AMFO as a trustworthy and
successful alternative optimization method in the energy sector. The data are presented in the
form of probability graphs of the cumulative distribution function (CDF) in Figure 12a, which
illustrate the line loss profiles for the most favorable scenarios. These graphs demonstrate that
FO-AMFO optimizes the fitness functions consistently. The data are presented in the form of
histograms in Figure 12a. The corresponding box plot results for bus 57 are shown in Figure 12b.
The IEEE 57-bus system exhibits the minimal standard deviation and median values of 4.84 s
across its 25 control variables. It is observed that the complexity parameter for an IEEE 57-bus
system comprising 13 control variables does not exhibit any noticeable variation. In fact, as the
number of degrees of freedom increases, the optimization problem becomes more challenging.
In the overwhelming majority of FO-AMFO studies, the minimal measurements of actual power
line losses are obtained. Multiple trials, when conducted independently, yield empirical power
line loss values for the IEEE 57-bus system that are inferior to the most recent values reported
in the literature. The obtained outcomes align with the CDF probability plots. The box plot
drawings presented in Figure 12b illustrate the data, and suggest that the median value of line
losses for the IEEE 57-bus system is approximately 21.62 MW.
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5. Conclusions

In order to solve RPD problems, this work proposed and tested FO-AMFO, a recently
established fractional evolutionary optimization mechanism. The optimization method
works well with every IEEE standard bus system that is taken into consideration. When
compared to other cutting-edge meta-heuristics, the results show that the applied scheme
performs better than its competitors in terms of minimizing the loss and ensuring the
optimum reactive power. Different fractional-order values are used to create FO-AMFO
variants, each of which is applied to both ideal RPD systems with a fair degree of precision.
However, the scheme with a fractional order of 0.3 achieves a comparatively superior
performance for the IEEE 30-bus system. The algorithm is consistent, robust, and stable as
an alternative, accurate, and effective optimization mechanism for all cases of optimal RPD
systems, as demonstrated by the statistical results in the form of learning curves, histogram
studies, and probability plots based on 20 independent trials of FO-AMFO with α = 0.3.
There is no discernible difference in the IEEE 30-bus system with 13 control variables.
Also, for the 57-bus system, an alpha of 0.8 performs best according to the complexity of
FO-AMFO for the solutions of optimal RPD problems in 20 independent trials.

Future research on the optimal RPD problem may involve developing fractional
comprehensive learning MFO and fractional attributed comprehensive learning MFO
algorithms. Furthermore, for nonlinear problems, the suggested FO-AMFO algorithms
provide a promising substitute optimization strategy.
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