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Abstract: In this manuscript, we discuss fractional fuzzy Goursat problems with Caputo’s gH-
differentiability. The second-order mixed derivative term in Goursat problems and two types of
Caputo’s gH-differentiability pose challenges to dealing with Goursat problems. Therefore, in this
study, we convert Goursat problems to equivalent systems fuzzy integral equations to deal properly
with the mixed derivative term and two types of Caputo’s gH-differentiability. In this study, we
utilize the concept of metric fixed point theory to discuss the existence of a unique solution of
fractional fuzzy Goursat problems. For the useability of established theoretical work, we provide
some numerical problems. We also discuss the solutions to numerical problems by conformable
double Laplace transform. To show the validity of the solutions we provide 3D plots. We discuss,
as an application, why fractional partial fuzzy differential equations are the generalization of usual
partial fuzzy differential equations by providing a suitable reason. Moreover, we show the advantages
of the proposed fractional transform over the usual Laplace transform.

Keywords: fuzzy number; uncertainty; Goursat problem; gH-differentiability; mixed derivative term

1. Introduction

The concept of dealing with fuzzyness in real life was initiated in the work of pa-
per [1]. Classical calculus has been extended to fuzzy and fuzzy fractional calculus for
the last two decades. The attention of many mathematicians to modern fuzzy and fuzzy
fractional calculus is due to their significant applications, realistic description of physical,
optimization, linear programming, banking industry, and biological problems. To optimize
path length and energy consumption of robot routing [2], we use the fuzzy concept. The
use of fuzzy concepts in the data analysis in banking [3], medical resources allocation [4],
decision-making model for the operating system, and human–computer interaction [5],
etc., show the importance of fuzzy calculus. Also, the uncertainty in physical models is
dealt with easily in the fuzzy models [6,7].

Partial differential equations (PDEs) deal more with real-life problems than ordinary
differential equations (DEs) because, during the study of natural phenomena, we often face
several variables simultaneously. However, due to uncertainty, PDEs sometimes face diffi-
culty in the study of physical problems. To remove this drawback, the paper [8] introduced
the fuzzy PDEs (FPDEs). In this direction, many researchers share their contributions, and
the fuzzy models on heat [9,10], advection-diffusion [11,12], and the Goursat problem [13]
stem from these.
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The generalization of integer order of differential and integral operators to real order
generalized classical calculus to fractional calculus. Moreover, integer order differential
operators are particular cases of the fractional order. Therefore, researchers show more
interest in fractional order differential and integral equations. Salahshour et al. [14] extend
the gH-differentiability to fuzzy fractional differentiability. In the papers [15–17], the
existence and solutions of DEs with fuzzy fractional differentiability were discussed. Some
fractional order problems are also studied in [18–22] and the references cited therein.

The Goursat problems have a second-order hyperbolic partial differential equation
with mixed derivative terms. This problem arises in the wave phenomena with mixed
derivatives. The Goursat problems are different from the other second-order partial differ-
ential equations like diffusion, advection-diffusion, and reaction-diffusion equations due to
the mixed derivative term. The Goursat problems have important applications in different
fields. Therefore, different solutions, processes, and applications of Goursat problems were
discussed in [23–26]. The existing conditions of Goursat problems with fuzzy boundary
conditions were discussed by [13].

In this manuscript, we discuss the Goursat problems with fuzzy boundary conditions
and Caputo’s gH-differentiability concept. A fuzzy function is Caputo’s gH-differentiable
if it is C[i − gH]differentiable or C[ii − gH]differentiable. The second-order FPDEs with
gH-differentiability pose challenges due to two types of Caputo’s gH-differentiability. The
Goursat problems are partial differential equations with the second-order term having
mixed derivatives. Keeping these difficulties in mind, we study three aspects of these
problems. First of all, we convert the fractional order Goursat problem to equivalent systems
of fuzzy fractional integral equations to deal properly with the two types of Caputo’s gH-
differentiability in the mixed derivative term. Next, we show that the equivalent systems
of fuzzy fractional integral equations satisfy the FPDE and boundary conditions of the
Goursat problem. After that, the results for the existence of unique solutions to fractional
fuzzy Goursat problems are the goal of this study. In addition to theoretical proofs, in
this manuscript, we discuss numerical examples. We discuss the solutions of numerical
examples by conformable double Laplace transform. The manuscript also presents 3D
fuzzy plots of solutions to illustrate our findings. In the last, we discuss why fractional
FPDEs are the globalization of usual PDEs. We also investigate the advantages of fractional
transform on the usual Laplace transform.

2. Preliminaries

Here, we revisit specific findings of the fuzzy and fuzzy fractional calculus. The fuzzy
set A is a fuzzy number if it satisfies the following properties for all l, m, n, p ∈ R;

(i) A is upper semi-continuous;
(ii) A is convex, i.e., ϑ ∈ [0, 1], A(ϑm + (1 − ϑ)n) ≥ minA(m),A(n);
(iii) A is normal, i.e., A(p) = 1;
(iv) Closure of set {l ∈ R | A(l) > 0} is compact.

The set of all F-numbers is fuzzy space, denoted by RF.
The α -level set is [A]α = {a ∈ R |A(a) ≥ α} where [A]α = [Aα,Aα

]∈ RF for all
0 ≤ α ≤ 1 [27].

Definition 1 ([28]). The dF : RF × RF → R+ ∪ {0} is metric define in term of Hausdorff distance

dF(x, y) = sup
α∈[0,1]

d(xα, yα) = sup
α∈[0,1]

max
{
|xα − yα|, |xα − yα|

}
.
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The complete metric space (dF, RF) has the following properties for all a, x, y, z ∈ RF.

D1) dF(x + z, y + z) = dF(x, y);
D2) dF(αx, αy) = αdF(x, y);

D3) dF(x + a, y + z) ≤ dF(x, y) + dF(a, z).

In this manuscript, I = (a, b) and J = (c, d) are open intervals of real numbers

Definition 2 ([28]). The χ : I → RF is continuous if for ϵ > 0, δ > 0 and arbitrarily fixed x0 ∈ R
hold the condition

|x−x0 | < δ ⇒dF(χ(x), χ(x0)) < ϵ.

Corollary 1 ([28]). The function χ : I → RF is integrable if it is continuous.

Remark 1 ([28]). If A : I → RF is integrable and [A(ϑ)]α = [Aα(ϑ),Aα
(ϑ)] then [

∫
A(ϑ)]α =

[
∫
Aα(ϑ),

∫
Aα

(ϑ)].

Lemma 1 ([27]). If A, B : I → RF is integrable and κ ∈ R then

(i)
∫
(A+ B) =

∫
A+

∫
B.

(ii)
∫

κA = κ
∫
A.

(iii) dF(A, B) is integrable in interval I.
(iv) dF(

∫
A,
∫

B) ≤
∫

dF(A, B).

Definition 3 ([29]). Let A, B, C ∈ RF then gH- difference of A, B is define by

A ⊖gH B = C ⇔
{

A = B ⊕ C,
B = A ⊕ (−C).

If the H- difference A ⊖ B exist then A ⊖ B = A ⊖gH B.

Definition 4 ([9,30]). The partial gH-differentiability of U : I × J → RF, with respect to τ exist
at the point (τ, ω) ∈ I × J if one of the following conditions holds

(i) The H-difference U(τ + δ, ω)⊖U(τ, ω), U(τ, ω)⊖U(τ − δ, ω) exist for sufficiently small
δ > 0 and the folloing limits exist in (dF, RF).

lim
δ→0+

U(τ+δ,ω)⊖U(τ,ω)
δ = lim

δ→0+
U(τ,ω)⊖U(τ−δ,ω)

δ = Di
τU(τ, ω).

(ii) The H-difference U(τ, ω)⊖U(τ + δ, ω),U(τ − δ, ω)⊖U(τ, ω) exist for sufficiently small
δ > 0 and the following limits exist in (dF, RF).

lim
δ→0+

U(τ,ω)⊖U(τ+δ,ω)
(−δ)

= lim
δ→0+

U(τ−δ,ω)⊖U(τ,ω)
(−δ)

= Dii
τ (τ, ω).

The first one Di
τ(τ, ω) is referred to [i − gH] differentiable and second one Dii

τ (τ, ω)
to [ii − gH) differentiable.

Lemma 2 ([9,30]). Let U : I × J → RF, is a continuous function and [U(τ, ω)]α= [Uα(τ, ω),
Uα

(τ, ω)] with 0 ≤ α ≤ 1. Then for (τ, ω) ∈ I × J one can have

(i) If [Di
τU(τ, ω)]

α exist on I × J, then
[
Di

τU(τ, ω)
]α

=
[

DτUα(τ, ω), DτU
α
(τ, ω)

]
.

(ii) If [Di
ωU(τ, ω)]

α exist on I × J, then
[
Di

ωU(τ, ω)
]α

=
[

DωUα(τ, ω), DωU
α
(τ, ω)

]
.

(iii) If [Dii
τU(τ, ω)]

α exist on I × J, then
[
Dii

τU(τ, ω)
]α

=
[

DτU
α
(τ, ω), DτUα(τ, ω)

]
.
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(iv) If [Dii
ωU(τ, ω)]

α exist on I × J, then
[
Dii

ωU(τ, ω)
]α

=
[

DωU
α
(τ, ω), DωUα(τ, ω)

]
.

Definition 5 ([13]). Let u : I × J → FR be a fuzzy function. If for k, l ∈ {i, ii} the Dk
xu and

Dl
yu exists on I × J. Then, u is second-order partial [k − gH] differentiable with respect to x at

(x0, y0) ∈ {x0} × I and [l − gH] differentiable with respect to y at (x0, y0) ∈ {x0} × J.

Let us denote the partial second-order [k,l-gH]differentiability of u with respect to x, y
at (x0, y0) by Dk,l

xyu(x0, y0), where k, l ∈ {i, ii}. Similarly, we have Dk,l
xxu, Dk,l

yxu, Dk,l
yyu. For

k = l where k, l ∈ {i, ii} one can write Dk
xyu, Dk

xxu, Dk
xyu and Dk

yyu.

Lemma 3 ([13]). Let χ : I × J → RF is continuous and [χ(τ, ω)]α = [χα(τ, ω), χα(τ, ω)] and
0 ≤ α ≤ 1 such that Dk,l

τωχ(τ, ω) exist on I × J, then

(i) [Dk,l
τωχα(τ, ω)] = [Dτωχα(τ, ω), Dτωχα(τ, ω)] if k = l where k, l ∈ {i, ii}.

(ii) [Dk,l
τωχα(τ, ω)] = [Dτωχα(τ, ω), Dτωχα(τ, ω)] if k ̸= l where k, l ∈ {i, ii}.

Lemma 4 ([28]). Let χ : I → RF is gH -differentiable at s ∈ I and derivative χ′ : I → RF is
continuous at each s ∈ I then

dF(χ(s), χ(t)) ≤ (t − s) max
x∈[s,t]

dF(χ
′(x), t), forall s, t ∈ I with s < t.

The space C(k,l)(I × J, RF) consist of u : I × J → RF such that [u(s, t)]α = [uα(s, t), uα(s, t)]
then v(s, t) = Dk

s u(s, t) and w(s, t) = Dl
tu(s, t) are continuous. Now, according to Lemma 3

one can write

[v(s, t)]α = [Dk
s u(s, t)]

α
=

{
[Dsuα(s, t), Dsuα(s, t)], if k = i,
[Dsuα(s, t), Dsuα(s, t)], if k = ii.

and

[w(s, t)]α = [Dl
tu(s, t)]

α
=

{
[Dtuα(s, t), Dtuα(s, t)], if l = i,
[Dtuα(s, t), Dtuα(s, t)], if l = ii.

Also for k, l ∈ {i, ii} and (s, t) ∈ I × J.

[Dl,k
st u(s, t)]

α
= [Dl

tv(s, t)]
α
= [Dstuα(s, t), Dstuα(s, t)], if l = k.

[Dl,k
ts u(s, t)]

α
= [Dk

s w(s, t)]
α
= [Dtsuα(s, t), Dtsuα(s, t)], if l = k.

and
[Dl,k

st u(s, t)]
α
= [Dl

tv(s, t)]
α
= [Dstuα(s, t), Dstuα(s, t)], if l ̸= k.

[Dl,k
ts u(s, t)]

α
= [Dk

s w(s, t)]
α
= [Dtsuα(s, t), Dtsuα(s, t)], if l ̸= k.

Lemma 5 ([13]). Let u : (0, S)× (0, T) → FR be defined in the neighborhood (0, S)× (0, T) ∈ R2

of point (τ, ω) ∈ R2. Assume that Di
τu, Di

ωu, Di
τωu exist in (0, S)× (0, T), Di

τu(τ, ω) be
continuous on τ(for fixed ω) Di

ωu(τ, ω) be continuous on ω(for fixed τ) and Di
τωu be continuous

at (τ, ω). If for all τ ∈ (0, S) the following H-Differences exist close enough to τ.

(u(τ + κ, ω + δ)⊖ u(τ + κ, ω))⊖ (u(τ, ω + δ)⊖ u(τ, ω))⊖ κδDi
τωu(τ, ω),

(u(τ, ω + δ)⊖ u(τ, ω))⊖ (u(τ − κ, ω + δ)⊖ u(τ − κ, ω))⊖ κδDi
τωu(τ, ω),

(u(τ, ω)⊖ u(τ, ω − δ))⊖ (u(τ − κ, ω)⊖ u(τ − κ, ω − κ))⊖ κδDi
τωu(τ, ω),

(u(τ + κ, ω)⊖ u(τ + κ, ω − δ))⊖ (u(τ, ω)⊖ u(τ, ω − κ))⊖ κδDi
τωu(τ, ω).
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And for all ω ∈ (0, T) the following H-Differences exist close enough to ω.
(

Di
τu(τ + z, ω + δ)⊖ Di

τu(τ + z, ω)
)
⊖ δDi

τωu(τ, ω),

(
Di

τu(τ + z, ω)⊖ Di
τu(τ + z, ω − δ)

)
⊖ δDi

τωu(τ, ω),
(

Di
τu(τ − z, ω + δ)⊖ Di

τu(τ − z, ω)
)
⊖ δDi

τωu(τ, ω),
(

Di
τu(τ − z, ω)⊖ Di

τu(τ − z, ω − δ)
)
⊖ δDi

τωu(τ, ω),

For z ∈ [0, κ] and κ, δ > 0 small enough that Di
τωu(τ, ω) exist and Di

τωu(τ, ω) = Di
ωτu(τ, ω).

Remark 2 ([13]). Since Di
τ exist in (0, S)× (0, T) ∈ R2, then (u(τ + κ, ω + δ)⊖ u(τ, ω + δ))

(u(τ + κ, ω)⊖ u(τ, ω)) exist for κ, δ > 0 enough small. The H-Differences

(u(τ + κ, ω + δ)⊖ u(τ + κ, ω))⊖ (u(τ, ω + δ)⊖ u(τ, ω)),

(u(τ + κ, ω + δ)⊖ u(τ, ω + δ))⊖ (u(τ + κ, ω)⊖ u(τ, ω)),

exist and (u(τ + κ, ω + δ)⊖ u(τ + κ, ω)) ⊖ (u(τ, ω + δ)⊖ u(τ, ω)) = (u(τ + κ, ω + δ)
⊖u(τ, ω + δ))⊖ (u(τ + κ, ω)⊖ u(τ, ω)). Using Lemma 5 one can obtain

lim
(κ,δ)→(0+ ,0+)

(u(τ+κ,ω+δ)⊖u(τ+κ,ω))⊖(u(τ,ω+δ)⊖u(τ,ω))
κδ = Di

ωτu(τ, ω).

Similarly

lim
(κ,δ)→(0+ ,0+)

(u(τ+κ,ω+δ)⊖u(τ,ω+δ))⊖(u(τ+κ,ω)⊖u(τ,ω))
κδ = Di

ωτu(τ, ω)

Definition 6 ([31]). Let u(τ) be a function, the integral of fractional order is defined as

θ Iu(τ) = 1
Γ(θ)

∫ τ
0 (τ − ω)θ−1u(ω)dω, θ > 0,

Definition 7 ([31]). Caputo’s derivative of u(t) is defined as

CDθu(t) = 1
Γ(n−θ)

∫ t
0 (t − ζ)n−θ−1[un(ζ)]dζ, θ > 0.

Definition 8 ([15]). Caputo’s gH-differentiability of fuzzy valued function u ∈ CF[0, b] ∩ LF[0, b]
is defined as

C
gH Dθ

a+u(t) =
1

Γ(1 − θ)

∫ t

a
(t − s)θu′(s)ds (1)

(i) u is said to be C[i − gH] differentiable if Equation (1) holds and u is (i) -differentiable.
(ii) u is said to be C[ii − gH] differentiable if Equation (1) holds and u is (ii) -differentiable.

Lemma 6 ([15]). Let function u ∈ CF[a, b], then for 0 < θ ≤ 1

(i) If u is C[(i)− gH] differentiable then C
gH Iθ

a+(
C
gH Dθ

a+u(t)) = u(t)⊖gH u(a).
(ii) If u is C[(ii)− gH] differentiable then C

gH Iθ
a+(

C
gH Dθ

a+u(t)) = −u(a)⊖gH (−1)u(t).
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Lemma 7 ([14]). Let us have the following equation with 0 < θ ≤ 1
{

C
gH Dθ

a+u(x) = f (x, u(x)),
u(a) ∈ FR. (2)

(i) If u is C[i − gH] differentiable, then the equivalent integral form is

u(x) = u(a) +
1

Γ(θ)

∫ x

a
(x − z)θ−1 f (z, u(z))dz

(ii) If u is C[ii − gH] differentiable, then the equivalent integral form is

u(x) = u(a)⊖ −1
Γ(θ)

∫ x

a
(x − z)θ−1 f (z, u(z))dz

Definition 9 ([32]). Let Caputo’s fractional derivative of u ∈ CF[0, b] ∩ LF[0, b] with u =
[uα(t), uα(t)], α ∈ [0, 1] and t0 ∈ (0, b) be defined as

[CDθu(t0)]
α
= [CDθuα(t0),C Dθuα(t0)],

where
CDθuα(t0) =

1
Γ(n−θ)

[∫ t
0 (t − ζ)n−θ−1 dn

dζn uα(ζ)dζ
]

t=t0
.

CDθuα(t0) =
1

Γ(n−θ)

[∫ t
0 (t − ζ)n−θ−1 dn

dζn uα(ζ)dζ
]

t=t0
.

where n = [θ] with θ ∈ (0, 1].

Definition 10 ([31]). The Mittag–Leffler function Eγ,β of two parametric forms is defined in the
series form as follows

Eγ,β(v) =
∞

∑
k=0

vk

Γ(γk + β)
(3)

where γ > 0, β > 0. Integrating (3) term-by-term, we obtain

∫ t

0
Eγ,β(λvγ)vβ−1dv = tγEγ,β+1(λtγ), (β > 0). (4)

Definition 11 ([33]). The conformable Laplace transform(CLT) with respect to τ of u(τ, ω) is
given as

Lθ
τu(τ, ω) = u(s, ω) =

∫ ∞
0 e−s τθ

θ u(τ, ω)dθτ. (5)

Lemma 8 ([33]). θ-th order conformable Laplace transform(CLT) of order 0 < θ ≤ 1 is define as

Lθ
[

dθ ỹ(τ)
dτθ

]
= s[ỹ(τ)]− [ỹ(0)]. (6)

3. Existence and Uniqueness Results of Fractional Order Fuzzy Goursat Problem

Now, we discuss an existing result for a unique solution of the fractional order fuzzy
Goursat problem.



Fractal Fract. 2024, 8, 250 7 of 20

Let us consider the following fractional FDEs of order 0 < θ ≤ 1.




θ Dk,l
xyu(x, y) = a1

θ Dk
xu(x, y) + a2

θ Dl
yu(x, y) + a3u(x, y) + G(x, y),

u(x, 0) = ϕ1(x), 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y), 0 ≤ y ≤ y0,

ϕ1(0) = ϕ2(0).

(7)

Such that a1, a2, a3, G : Y → R are continuous on the close rectangle Y = [0, x0]× [0, y0]
where ϕ1(x) : [0, x0] → FR and ϕ2(y) : [0, y0] → FR are also continuous and k, l ∈ {i, ii}.
We search for solution u(x, y) ∈ C(k,l)(Y, FR).

Definition 12. The fuzzy valved function, u ∈ C(k,l)(Y, FR) is the solution of Equation (7) if
u(x, y) satisfies problem (7).

Let u ∈ C(k,l)(Y, FR) be the solution of Equation (7) such that θ D(k,l)
xy u(x, y), θ Dk,l

yxu(x, y)

exist and θ Dk,l
xyu(x, y) = θ Dk,l

yxu(x, y). We convert Equation (7) to the following equivalent
systems. For this put θ Dk

xu(x, y) = v(x, y), θ Dl
yu(x, y) = w(x, y) where v, w : Y → FR are

continuous fuzzy functions. Therefore, we deduce




θ Dk
xw(x, y) = θ Dl

yv(x, y) = a1v(x, y) + a2w(x, y) + a3u(x, y) + G(x, y),
v(x, 0) = θ Dk

yϕ1(x), 0 ≤ x ≤ x0,

w(0, y) = θ Dl
yϕ2(y), 0 ≤ y ≤ y0.

(8)

Using, Lemma 7 and initial condition we have

1: For k = l = i, the following system of equations is obtained





u(x, y) = ϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′,

v(x, y) = θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x, y′)dy′,

w(x, y) = θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′.

(9)

2: For k = i and l = ii, the following system of equations is obtained




u(x, y) = ϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′,

v(x, y) = θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x, y′)dy′,

w(x, y) = θ Dii
y ϕ2(y)⊖ (−1) 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′.

(10)

3: For k = ii and l = i, the following system of equations is obtained




u(x, y) = ϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′,

v(x, y) = θ Dii
x ϕ1(x)⊖ (−1) 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x, y′)dy′,

w(x, y) = θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′.

(11)

4: For k = l = ii, the following system of equations is obtained




u(x, y) = ϕ1(x)⊖ (−1) 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′,

v(x, y) = θ Dii
x ϕ1(x)⊖ (−1) 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x, y′)dy′,

w(x, y) = θ Dii
y ϕ2(y)⊖ (−1) 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′.

(12)
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Conversely, let us suppose the functions u(x, y), v(x, y) and w(x, y) are continuous
on Y and satisfying one of the system (9)–(12). We have to show that a solution u(x, y) to
the system of integral equations is the solution to the problem (7) and u ∈ C(k,l)(Y, FR).

Using Lemma 6 and Equation (9), we deduce Equation (8) and θ Di
yu(x, y) = w(x, y).

Then, w(x, y) = θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′ is C[i − gH]

differentiable with respect to x. Therefore

θ Di
x

(
θ Iyw(x, y′)dy′

)

= θ Di
x

(
θ Iy

{
θ Di

yϕ2(y) + 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′
)

,

= θ Di
x

{
θ Iy

(
θ Di

yϕ2(y)
)}

+ θ Di
x{θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′dy′},

= θ Di
x

{
θ Iy

(
θ Di

yϕ2(y)
)}

+ θ Di
x{θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′,

= θ Di
x

{
θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′,

= 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′

Now, on the other hand

θ Iy
(

θ Di
xw(x, y′)

)
dy′

= θ Iy

(
θ Di

x

{
θ Di

yϕ2(y) + 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

})
dy′,

= θ Iy

{
θ Di

x

(
θ Di

yϕ2(y)
)}

+ θ Iy( Di
x{ 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′})dy′,

= θ Iy

{
θ Di

x

(
θ Di

yϕ2(y)
)}

+ θ Iy{θ Di
x

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′,

= θ Dy

{
θ Di

x
1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′,

= 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′.

From above we can obtain

θ Di
x

(
θ Iyw(x, y′)dy′

)
= θ Iy

(
θ Di

xw(x, y′)
)

dy′ (13)

From Equations (8), (9) and (13) and Remark 1 for k = l = i, we deduce

θ Di
xu(x, y) = θ Di

xϕ1(x) + θ Di
x

{
1

Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′

}
,

= θ Di
xϕ1(x) + θ Di

x(
θ Iyw(x, y′)dy′),

= θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′,

= v(x, y) ∀ (x, y) ∈ Y.

Now, we show that u(x, y) ∈ C(i,i)(Y, FR) is a solution of Problem (7).

θ Di
yxu(x, y) = θ Di

xw(x, y) = (a1v + a2w + a3u + G)(x, y) = θ Di
yv(x, y) = θ Di

xyu(x, y).
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By Equation (9), u(x, y) satisfies the boundary conditions of Problem (7)

u(x, y)|y=0 = ϕ1(x), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

u(x, y)|x=0 = ϕ1(0) + 1
Γθ

∫ y
0 (y − y′)θ−1w(0, y′)dy′

= ϕ1(0) + 1
Γθ

∫ y
0 (y − y′)θ−1θ Di

yϕ2(y′)dy′

= ϕ1(0) + ϕ2(y)⊖ ϕ2(0)
′

= ϕ2(y), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Now, we take the case k = ii, l = i. Using Lemma 7 and Equation (10), we deduce
Equation (8) and θ Di

yu(x, y) = w(x, y). Then

w(x, y) = θ Di
yϕ2(y) ⊖ (−1) 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′ is

C[ii − gH] differentiable with respect to x. Therefore

θ Dii
x (

θ Iyw(x, y′)dy′)

= θ Dii
x

[
θ Iy

{
θ Di

yϕ2(y)⊖ (−1) 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′
]
,

= θ Dii
x

[
θ Iy

{
θ Di

yϕ2(y)
}]

+ θ Dii
x [

θ Iy{ 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′],

= θ Dii
x

{
θ Iy

(
θ Di

yϕ2(y)
)}

+ θ Dii
x{ θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′,

= θ Dii
x

{
θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′,

= 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′

Now, on the other hand

θ Iy
(

θ Dii
x w(x, y′)

)
dy′

= θ Iy

{
θ Dii

x

(
θ Di

yϕ2(y)⊖ (−) 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

)}
dy′,

= θ Iy

{
θ Di

x

(
θ Di

yϕ2(y)
)}

+ θ Iy{θ Di
x(

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′)}dy′,

= θ Iy

{
θ Dii

x

(
θ D1

yϕ2(y)
)}

+ θ Iy{θ Di
x

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′,

= θ Iy

{
θ I1

x
1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′,

= 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′.

From above we can obtain

θ Dii
x

(
θ Iyw(x, y′)dy′

)
= θ Iy

(
θ Dii

x w(x, y′)
)

dy′ (14)

From Equations (8), (10) and (14) and Remark 1 for k = ii, l = i, we deduce

θ Dii
x u(x, y)

= θ Dii
x ϕ1(x) + θ Dii

x

{
1

Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′

}
= θ Dii

x ϕ1(x) + θ Dii
x

(
θ Iyw(x, y′)dy′

)

= θ Dii
x ϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′ = v(x, y) ∀ (x, y) ∈ Y

Now, we show that u(x, y) ∈ C(ii,i)(Y, FR) is a solution of Problem (7).

θ D{ii,i}
yx u(x, y) = θ Dii

x w(x, y) = (a1v + a2w + a3u + G)(x, y) = θ Di
yv(x, y) = θ D{ii,i}

xy u(x, y).
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By Equation (10), u(x, y) satisfies the boundary conditions of Problem (7).

u(x, y)|y=0 = ϕ1(x), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

= ϕ1(0) + 1
Γθ

∫ y
0 (y − y′)θ−1w(0, y′)dy′ = ϕ1(0) + 1

Γθ

∫ y
0 (y − y′)θ−1θ Di

yϕ2(y′)dy′

= ϕ1(0) + ϕ2(y)⊖ ϕ2(0) = ϕ2(y), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

The case k = i, l = ii can be proven by a similar procedure; therefore, we omit details here.
Now, we take the case k = l = ii. Using Lemma 7 and Equation (12) we obtained

Equation (8) and θ Dii
y u(x, y) = w(x, y). Then

w(x, y) = θ Dii
y ϕ2(y) ⊖ (−1) 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′ is

C[ii − gH] differentiable with respect to x. Therefore

θ Dii
x

(
θ Iyw(x, y′)dy′

)

= θ Dii
x

{
θ Iy

(
θ Dii

y ϕ2(y)⊖ (−1) 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

)}
dy′

= θ Dii
x

{
θ Iy

(
θ Dii

y ϕ2(y)
)}

⊖ (−1)θ Dii
x{ θ Iy(

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′)dy′}
= θ Dii

x

{
θ Iy

(
θ Dii

y ϕ2(y)
)}

⊖ (−1)θ Dii
x{ θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′

= ⊖(−1)θ Dii
x

(
θ Iy

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′dy′

)

= ⊖(−1) 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′.

Now, on the other hand

θ Iy
(

θ Dii
x w(x, y′)

)
dy′

= θ Iy

{
θ Dii

x

(
θ Dii

y ϕ2(y)⊖ (−1) 1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

)}
dy′,

= θ Iy

{
θ D2

x

(
θ D1

yϕ2(y)
)}

⊖ (−1)θ Iy{θ Dii
x (

1
Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′)}dy′,

= θ Iy

{
θ Dii

x

(
θ Dii

y ϕ2(y)
)}

⊖ (−1)C Iθ
y{θ Dii

x
1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y′)dx′}dy′,

= ⊖(−1)θ Iy

{
θ Di

x
1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y′)dx′

}
dy′,

= ⊖(−1) 1
Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′.

From above we can get

θ Dii
x

(
θ Iyw(x, y′)dy′

)
= θ Iy

(
θ Dii

x w(x, y′)
)

dy′ (15)

From Equations (8), (12) and (15) and Remark 1 for k = l = ii, we deduce

θ Dii
x u(x, y)

= θ Dii
x ϕ1(x)⊖ (−1)θ Dii

x

{
1

Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′

}

= θ Dii
x ϕ1(x)⊖ (−1)θ Dii

x

(
θ Iyw(x, y′)dy′

)

= θ Dii
x ϕ1(x) +⊖(−1) 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x′, y′)dy′

= v(x, y) ∀ (x, y) ∈ Y

Now, we have to show u ∈ C(ii,ii)(Y, FR) is a solution to Problem (7).
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θ D{ii,ii}
yx u(x, y) = θ Dii

x w(x, y) = (a1v + a2w + a3u + G)(x, y) = θ Dii
y v(x, y) = θ D{ii,ii}

xy u(x, y).

By Equation (12), u(x, y) satisfies the boundary conditions of Problem (7).

u(x, y)|y=0= ϕ1(x), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

u(x, y)|x=0= ϕ1(0)⊖ (−1)
1

Γθ

∫ y

0
(y − y′)θ−1w(0, y′)dy′,

= ϕ1(0) +
1

Γθ

∫ y

0
(y − y′)θ−1θ Di

yϕ2(y′)dy′,

= ϕ1(0) + ϕ2(y)⊖ ϕ2(0) = ϕ2(y), 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Hence, the problem (7) is equivalent to one of the systems from (9) to (12) under the given
restrictions. Thus, under the provided restrictions, Problem (7) is equivalent to one of
the systems of integral equations from (9) to (12). For the existence of the solution to the
problem (7) it is sufficient to study these systems of integral equations. Now, we discuss
the existence and uniqueness of results for the solution to Problem (7).

Theorem 1. Let ϕ1 is C[k − gH] differentiable and ϕ2 is C[l − gH] differentiable for fix
k, l ∈ {i, ii} then Problem (7) has unique solution in C(k,l)(Y, FR).

Proof. Let us define metric

d1(u, v) = sup
(x,y)∈Y

{dH(u(x, y), v(x, y))e−(α1x+α1y)}, α1, α2 > 0, u, v ∈ C(Y, FR).

Let C(Y, FR)
3 = Ỹ and d0 : Ỹ × Ỹ → R is define by

d0((u1, v1, w1), (u2, v2, w2)) = d1(u1, u2) + d1(v1, v2) + d1(w1, w2),

for u1, v1, w1, u2, v2, w2 ∈ C(Y, FR). We can easily show that (C(Y, FR), d1) and (C(Y, FR), d0)
are complete metric spaces therefore, we omit their proofs here. The operator F(k,l) : Ỹ → Ỹ
define for u, v, w ∈ C(k,l)(Y, FR) where k, l ∈ {i, ii} by F(k,l)(u, v, w) = (u, v, w) For k = l = i,
we have F(i,i) : Ỹ → Ỹ is defined by

F(i,i)(u, v, w) = (ϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′, θ Di

xϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1

(a1v + a2w + a3u + G)(x, y′)dy′, θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u

+G)(x′, y)dx′)

Let ||a1|| = sup(x,y)∈Y |a1(x, y)|,||a2|| = sup(x,y)∈Y |a2(x, y)| and ||a3|| = sup(x,y)∈Y |a3(x, y)|.
Now, the upper bounds for coefficients can be found from the definitions of F(i,i) and prop-
erties of metric d0, d1 and dH as follows

d0

(
F(i,i)(u1v1, w1), F(i,i)(u2v2, w2)

)

= d1

(
ϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1w1(x, y′)dy′, ϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1w2(x, y′)dy′

)

+d1(
θ Di

xϕ1(x) + 1
Γθ

∫ y
0 (y − y′)θ−1(a1v1 + a2w1 + a3u1 + G)(x, y′)dy′,

θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v2 + a2w2 + a3u2 + G)(x, y′)dy′)

+d1

(
θ Di

yϕ2(y) + 1
Γθ

∫ x
0 (x − x′)θ−1(a1v1 + a2w1 + a3u1 + G)(x′, y)dx′,
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θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v2 + a2w2 + a3u2 + G)(x′, y)dx′

)

= sup
(x,y)∈Y

[
dH(ϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1w1(x, y′)dy′, ϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1

w2(x, y′)dy′)e−(α1x+α2y)
]
+ sup

(x,y)∈Y

[
dH(

θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v1 + a2w1

+a3u1+G)(x, y′)dy′,θ Di
xϕ1(x) + 1

Γθ

∫ y
0 (y − y′)θ−1(a1v2 + a2w2 + a3u2 + G)(x, y′)dy′)

e−(α1x+α2y)
]
+
[
dH(

θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v1 + a2w1 + a3u1 + G)(x′, y)dx′,

θ Di
yϕ2(y) + 1

Γθ

∫ x
0 (x − x′)θ−1(a1v2 + a2w2 + a3u2 + G)(x′, y)dx′)e−(α1x+α2y)

]

≤ dH(w1, w2) sup
(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1eα2y′)dy′e−α2y)

]
+ sup

(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1

dH((a1v1 + a2w1 + a3u1 + G)(x, y′), (a1v2 + a2w2 + a3u2 + G)(x, y′))e−(α1x+α2y)dy′
]

+ sup
(x,y)∈Y

[
1

Γθ

∫ x
0 (x − x′)θ−1dH((a1v1 + a2w1 + a3u1 + G)(x′, y), (a1v2 + a2w2 + a3u2

+G)(x′, y))e−(α1x+α2y)dx′
]

≤ sup
(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1dH(w1(x, y′), w2(x, y′))e−(α1x+α2y′)eα2y′dy′e−α2y

]

+ sup
(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1(|a1(x, y′)|dH(v1, v2)+|a2(x, y′)|dH(w1, w2) + |a3(x, y′)|

dH(u1, u2))e−(α1x+α2y′)eα2y′dy′e−α2y
]
+ sup

(x,y)∈Y

[
1

Γθ

∫ x
0 (x − x′)θ−1(|a1(x′, y)|dH(v1, v2)

+|a2(x′, y)|dH(w1, w2) + |a3(x′, y)|dH(u1, u2))e−(α1x′+α2y)eα1x′dx′e−α1x
]
,

≤ sup
(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1dH(w1(x, y′), w2(x, y′))e−(α1x+α2y′)eα2y′dy′e−α2y

]

+ sup
(x,y)∈Y

[
1

Γθ

∫ y
0 (y − y′)θ−1(|a1(x, y′)|dH(v1, v2)+|a2(x, y′)|dH(w1, w2) + |a3(x, y′)|

dH(u1, u2))e−(α1x+α2y′)eα2y′dy′e−α2y
]
+ sup

(x,y)∈Y

[
1

Γθ

∫ x
0 (x − x′)θ−1(|a1(x′, y)|dH(v1, v2)

+|a2(x′, y)|dH(w1, w2) + |a3(x′, y)|dH(u1, u2))e−(α1x′+α2y)eα1x′dx′e−α1x
]
,

≤ d1(w1, w2) sup
y∈(0,y0)

[
1

Γθ

∫ y
0 (y − y′)θ−1eα2y′dy′e−α2y

]
+(∥a1∥d1(v1, v2) + ∥a2∥

d1(w1, w2)+∥a3∥d1(u1, u2)) sup
y∈(0,y0)

[
1

Γθ

∫ y
0 (y − y′)θ−1eα2y′dy′e−α2y

]
+ (∥a1∥d1(v1, v2)

+∥a2∥d1(w1, w2) + ∥a3∥d1(u1, u2)) sup
x∈(0,x0)

[
1

Γθ

∫ x
0 (x − x′)θ−1eα1x′dx′e−α1x

]

Using two-parameter Mittag–Leffler function E1,θ+1 as follows

≤ d1(w1, w2) sup
y∈(0,y0)

[
yθE1,θ+1(α2y)e−α2y]+(∥a1∥d1(v1, v2) + ∥a2∥d1(w1, w2)

+∥a3∥d1(u1, u2)) sup
y∈(0,y0)

[
yθE1,θ+1(α2y)e−α2y]+(∥a1∥d1(v1, v2) + ∥a2∥d1(w1, w2)

+∥a3∥d1(u1, u2)) sup
x∈(0,x0)

[
xθE1,θ+1(α1x)e−α1x]
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Using series expression of Mittag–Leffler function E1,θ+1 as follows

≤ d1(w1, w2) sup
y∈(0,y0)

[
yθ 1

(α2y)θ

{
eα2y −

θ−1
∑

k=0

(α2y)k

k!

}
e−α2y

]
+ (∥a1∥d1(v1, v2)

+∥a2∥d1(w1, w2) + ∥a3∥d1(u1, u2)) sup
y∈(0,y0)

[
yθ 1

(α2y)θ

{
eα2y −

θ−1
∑

k=0

(α2y)k

k!

}
e−α2y

]

+(∥a1∥d1(v1, v2)+∥a2∥d1(w1, w2) + ∥a3∥d1(u1, u2)) sup
x∈(0,x0)

[
xθ 1

(α1x)θ {eα1x

−
θ−1
∑

k=0

(α1x)k

k!

}
e−α1x],

≤ d1(w1, w2) sup
y∈(0,y0)

[
1−e−α2y

(α2)
θ

]
+(∥a1∥d1(v1, v2)+∥a2∥d1(w1, w2) + ∥a3∥

d1(u1, u2)) sup
y∈(0,y0)

[
1−e−α2y

(α2)
θ

]
+(∥a1∥d1(v1, v2) + ∥a2∥d1(w1, w2)

+∥a3∥d1(u1, u2)) sup
x∈(0,x0)

[
1−e−α1x

(α1)
θ

]
,

≤ d1(w1, w2)

[
1−e−α2y0

(α2)
θ

]
+ (∥a1∥d1(v1, v2)+∥a2∥d1(w1, w2) + ∥a3∥d1(u1, u2))

[
1−e−α2y0

(α2)
θ

]
+ (∥a1∥d1(v1, v2)+∥a2∥d1(w1, w2) + ∥a3∥d1(u1, u2))

[
1−e−α1x0

(α1)
θ

]
,

≤ d1(w1, w2)

[
{1 + ∥a2∥} 1−e−α2y0

(α2)
θ + ∥a2∥ 1−e−α1x0

(α1)
θ

]
+ d1(v1, v2)∥

a1∥
[

1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]
+ d1(u1, u2)∥a3∥

[
1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]
,

Hence, one can obtain the following

d0

(
F(i,i)(u1, v1, w1), F(i,i)(u2v2, w2)

)
≤ β(d1(u1, u2) + d1(v1, v2) + d1(w1, w2))

= βd0((u1, v1, w1), (u2, v2, w2)).

where

β = max
{
(1 + ∥a2∥) 1−e−α2y0

(α2)
θ +∥a2∥ 1−e−α1x0

(α1)
θ , ∥a1∥

[
1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]
,

∥a3∥
[

1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]}

Now, for k = l = ii, we have F(ii,ii) : Ỹ → Ỹ is defined by

F(ii,ii)(u, v, w) =
(

ϕ1(x)⊖ (−1) 1
Γθ

∫ y
0 (y − y′)θ−1w(x, y′)dy′,

θ Dii
x ϕ1(x)⊖ (−1) 1

Γθ

∫ y
0 (y − y′)θ−1(a1v + a2w + a3u + G)(x, y′)dy′

θ Dii
y ϕ2(y)⊖ (−1) 1

Γθ

∫ x
0 (x − x′)θ−1(a1v + a2w + a3u + G)(x′, y)dx′

)

For k = l = ii, we deduce using a similar procedure to the previous case as follows

d0

(
F(ii,ii)(u1, v1, w1), F(ii,ii)(u2v2, w2)

)
≤ β(d1(u1, u2) + d1(v1, v2) + d1(w1, w2))

= βd0((u1, v1, w1), (u2, v2, w2)).

Hence, it is possible to choose α1 > 0 and α2 > 0 large enough such that (1 + ∥a2∥) 1−e−α2y0

(α2)
θ +

∥a2∥ 1−e−α1x0

(α1)
θ < 1, ∥a1∥

[
1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]
< 1, and ∥a3∥

[
1−e−α2y0

(α2)
θ + 1−e−α1x0

(α1)
θ

]
< 1.

Hence 0 < β < 1 and F(k,l) has unique solution to problem (7) in C(k,l)(Y, FR) for k = l ∈ {i, ii}.
For k ̸= l, the existence of a unique solution can be proven by a similar procedure to the
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previous case. For k = ii, l = i,, denote mapping by F(ii,i)(u, v, w) and k = i, l = ii, denote
mapping by F(i,ii)(u, v, w), the contraction constant 0 < β < 1 can be obtain by analogous
procedure to previous case. □

4. Some Numerical Examples

Now, we discuss numerical examples for the useability and authenticity of established
results. For the solutions of numerical problems, we apply a conformable double Laplace
transform. In this section, we also provide 3D plots of solutions of numerical examples (See
Figures 1–4).

Example 1. We have the following FPDEs with 0 < θ ≤ 1 and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y)= u(x, y),

u(x, 0) = ϕ1(x)= γex, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y)= γey, 0 ≤ y ≤ y0.

(16)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i by
Theorem 1 the problem (16) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].

Apply conformable double Laplace transform.
{

psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p),
u(s, 0) = γ

s−1 , u(0, p) = γ
p−1 .

Using initial conditions one can get

u(s, p) =
γs

(ps − 1)(s − 1)
+

γp
(ps − 1)(p − 1)

− γ

ps − 1
=

γ

(p − 1)(s − 1)
.

Apply inverse conformable double Laplace transform to obtain the solution

u(x, y) = γe
xθ

θ +
yθ

θ .

Since ϕ1 and ϕ2 are not C[ii − gH] differentiable, the rest of the cases do not have solutions.
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
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.
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γs

(ps − 1)(s − 1)
+

γp
(ps − 1)(p − 1)

− γ
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=

γ
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θ .

Since ϕ1 and ϕ2 are not C[ii − gH] differentiable, the rest of the cases do not have solutions.

Figure 1. 3D plots of the solution of Example (1) with θ = 1, 0.9, 0.8, 0.7, 0.6.

Example 2. Let the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y) = u(x, y),

u(x, 0) = ϕ1(x) = γe−x, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y) = γe−y, 0 ≤ y ≤ y0.

(17)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[ii − gH] differentiable then for k = l = ii by
Theorem 1 the Problem (17) has a unique solution in C(ii,ii)(Y, FR) where Y = [0, x0]× [0, y0].

Apply conformable double Laplace transform




psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p),

u(s, 0) =
γ

s + 1
, u(0, p) =

γ

p + 1
.

(18)

Using initial conditions and rearranging one can get

u(s, p) =
γs

(ps − 1)(s + 1)
+

γp
(ps − 1)(p + 1)

− γ

ps − 1
,

=
γ

(p + 1)(s + 1)
.

Figure 1. 3D plots of the solution of Example (1) with θ = 1, 0.9, 0.8, 0.7, 0.6.
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Example 2. Let the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y)= u(x, y),

u(x, 0) = ϕ1(x)= γe−x, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y)= γe−y, 0 ≤ y ≤ y0.

(17)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[ii − gH] differentiable then for k = l = ii
by Theorem 1 the Problem (17) has a unique solution in C(ii,ii)(Y, FR) where Y = [0, x0]× [0, y0].

Apply conformable double Laplace transform




psu(s, p)= su(s, 0) + pu(0, p)− u(0, 0) + u(s, p),

u(s, 0)=
γ

s + 1
, u(0, p) =

γ

p + 1
.

(18)

Using initial conditions and rearranging one can get

u(s, p) = γs
(ps−1)(s+1) +

γp
(ps−1)(p+1) −

γ
ps−1 ,

= γ
(p+1)(s+1) .

Apply inverse conformable double Laplace transform and the required solution is obtained as

u(x, y) = γe−
xθ

θ − yθ

θ .

Since ϕ1 and ϕ2 are not C[i − gH] differentiable, the rest of the cases do not have solutions.
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Since ϕ1 and ϕ2 are not C[i − gH] differentiable, the rest of the cases do not have solutions.

Figure 2. 3D plots of the solution of Example (2) with θ = 1, 0.8, 0.6, 0.4.

Example 3. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




3 θ Dk,l
xyu(x, y) = θ Dk

xu(x, y) + θ Dl
yu(x, y)− u(x, y),

u(x, 0) = ϕ1(x) = γex, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y) = γey, 0 ≤ y ≤ y0.

(19)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable, then for k = l = i
by Theorem 1 the problem (19) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform




(ps − s − p + 1)u(s, p) = (s − 1)u(s, 0) + (p − 1)u(0, p)− u(0, 0),

u(s, 0) =
γ

s − 1
, u(0, p) =

γ

p − 1
.

Using initial conditions and rearranging one can get

u(s, p) =
γ

(p − 1)(s − 1)

Apply inverse conformable double Laplace transform the required solution is obtained as

u(x, y) = γe
xθ

θ +
yθ

θ .

Example 4. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y) = u(x, y)− y,

u(x, 0) = ϕ1(x) = γex, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y) = y + γey, 0 ≤ y ≤ y0.

(20)

Figure 2. 3D plots of the solution of Example (2) with θ = 1, 0.8, 0.6, 0.4.

Example 3. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




3θ Dk,l
xyu(x, y) = θ Dk

xu(x, y) + θ Dl
yu(x, y)− u(x, y),

u(x, 0) = ϕ1(x) = γex, 0 ≤ x ≤ x0,
u(0, y) = ϕ2(y) = γey, 0 ≤ y ≤ y0.

(19)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable, then for k = l = i
by Theorem 1 the problem (19) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform

{
(ps − s − p + 1)u(s, p) = (s − 1)u(s, 0) + (p − 1)u(0, p)− u(0, 0),
u(s, 0) = γ

s−1 , u(0, p) = γ
p−1 .
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Using initial conditions and rearranging one can get

u(s, p) = γ
(p−1)(s−1)

Apply inverse conformable double Laplace transform the required solution is obtained as

u(x, y) = γe
xθ

θ +
yθ

θ .

Example 4. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y)= u(x, y)− y,

u(x, 0) = ϕ1(x)= γex, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y)= y + γey, 0 ≤ y ≤ y0.

(20)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i
by Theorem 1 the problem (20) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform

{
psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p)− 1

p2 ,

u(s, 0) = γ
s−1 , u(0, p) = 1

p2 +
γ

p−1 .

Using initial conditions and rearranging one can get

u(s, p) = γs
(ps−1)(s−1) +

γp
(ps−1)(p−1) −

γ
ps−1 + 1

p(ps−1) − 1
sp2(ps−1) ,

= γ
(p−1)(s−1) +

1
sp2 .

Apply inverse conformable double Laplace transform the required solution is obtained as

u(x, y) = γe
xθ

θ +
yθ

θ +
yθ

θ
.
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Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i
by Theorem 1 the problem (20) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform





psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p)− 1
p2 ,

u(s, 0) =
γ

s − 1
, u(0, p) =

1
p2 +

γ

p − 1
.

Using initial conditions and rearranging one can get

u(s, p) =
γs

(ps − 1)(s − 1)
+

γp
(ps − 1)(p − 1)

− γ

ps − 1
+

1
p(ps − 1)

− 1
sp2(ps − 1)

,

=
γ

(p − 1)(s − 1)
+

1
sp2 .

Apply inverse conformable double Laplace transform the required solution is obtained as

u(x, y) = γe
xθ

θ +
yθ

θ +
yθ

θ
.

Figure 3. 3D plots of the solution of Example (4) with θ = 1, 0.9, 0.7, 0.6.

Example 5. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y) = u(x, y) + 4xy + x2y2,

u(x, 0) = ϕ1(x) = γex, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y) = γey, 0 ≤ y ≤ y0.

(21)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i
by Theorem 1 the problem (21) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform





psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p) +
4

s2 p2 − 4
s3 p3 ,

u(s, 0) =
γ

s − 1
, u(0, p) =

γ

p − 1
.

Figure 3. 3D plots of the solution of Example (4) with θ = 1, 0.9, 0.7, 0.6.

Example 5. We have the following FPDEs with 0 < θ ≤ 1, and k, l ∈ {i, ii}




θ Dk,l
xyu(x, y) = u(x, y) + 4xy + x2y2,

u(x, 0) = ϕ1(x) = γex, 0 ≤ x ≤ x0,
u(0, y) = ϕ2(y) = γey, 0 ≤ y ≤ y0.

(21)
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Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i
by Theorem 1 the problem (21) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]× [0, y0].
Apply conformable double Laplace transform

{
psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p) + 4

s2 p2 − 4
s3 p3 ,

u(s, 0) = γ
s−1 , u(0, p) = γ

p−1 .

Using initial conditions and rearranging one can get

u(s, p) = γs
(ps−1)(s−1) +

γp
(ps−1)(p−1) −

γ
ps−1 + 4

s2 p2(ps−1) −
4

s3 p3(ps−1) ,

= γ
(p−1)(s−1) +

4
s3 p3 .

Apply inverse conformable double Laplace transform the required solution is obtain as

u(x, y) = γe
xθ

θ +
yθ

θ +
x2θy2θ

θ2 .
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Using initial conditions and rearranging one can get

u(s, p) =
γs

(ps − 1)(s − 1)
+

γp
(ps − 1)(p − 1)

− γ

ps − 1
+

4
s2 p2(ps − 1)

− 4
s3 p3(ps − 1)

,

=
γ

(p − 1)(s − 1)
+

4
s3 p3 .

Apply inverse conformable double Laplace transform the required solution is obtain as

u(x, y) = γe
xθ

θ +
yθ

θ +
x2θy2θ

θ2 .

Figure 4. 3D plots of the solution of Example (5) with θ = 1, 0.9, 0.7, 0.5.

5. Applications of Fractional Fuzzy Goursat Problems

Fractional calculus is the generalization of usual calculus. In this section, we discuss
some facts about the generalization of fractional differentiability and fractional transform.
Let us consider the following fuzzy partial differential equation





θ Dk,l
xyu(x, y) = u(x, y), k, l ∈ {i, ii}

u(x, 0) = ϕ1(x) = γ
xθ

θ
, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y) = γ sin ω
yθ

θ
, 0 ≤ y ≤ y0.

(22)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i− gH] differentiable then for k = l = i
by Theorem 1 the problem (22) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]×
[0, y0].

Now, apply conformable double Laplace transform




psu(s, p) = su(s, 0) + pu(0, p)− u(0, 0) + u(s, p),

u(s, 0) =
γ

s2 , u(0, p) =
γω

ω2 + p2 .
(23)

Using initial conditions and rearranging Equation (23), one can get

u(s, p) =
γ

s(ps − 1)
+

γpω

(ps − 1)(ω2 + p2)
− γ

s(ps − 1)
,

=
γpω

(ps − 1)(ω2 + p2)
.

Figure 4. 3D plots of the solution of Example (5) with θ = 1, 0.9, 0.7, 0.5.

5. Applications of Fractional Fuzzy Goursat Problems

Fractional calculus is the generalization of usual calculus. In this section, we discuss
some facts about the generalization of fractional differentiability and fractional transform.
Let us consider the following fuzzy partial differential equation





θ Dk,l
xyu(x, y)= u(x, y), k, l ∈ {i, ii}

u(x, 0) = ϕ1(x)= γ
xθ

θ
, 0 ≤ x ≤ x0,

u(0, y) = ϕ2(y)= γ sin ω
yθ

θ
, 0 ≤ y ≤ y0.

(22)

Since γ is a fuzzy number and ϕ1(x) and ϕ2(y) are C[i − gH] differentiable then for k = l = i
by Theorem 1 the problem (22) has a unique solution in C(i,i)(Y, FR) where Y = [0, x0]×
[0, y0].

Now, apply conformable double Laplace transform




psu(s, p)= su(s, 0) + pu(0, p)− u(0, 0) + u(s, p),

u(s, 0)=
γ

s2 , u(0, p) =
γω

ω2 + p2 .
(23)
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Using initial conditions and rearranging Equation (23), one can get

u(s, p) = γ
s(ps−1) +

γpω

(ps−1)(ω2+p2)
− γ

s(ps−1) ,

= γpω

(ps−1)(ω2+p2)
.

By applying the inverse conformable double Laplace transform the required solution is
obtain as

u(x, y) = γωe
(xy)θ

θ2 cos (ω
yθ

θ
).

Note that the fractional transform discussed in this work, particularly in this problem,
is more easy than the usual Laplace transform. Also, fractional differential equations and
their solutions are generalizations of usual differential equations because if θ = 1 then,
we obtain the usual form discussed in [13]. Moreover, the fractional partial differential
Equation (22) and their solution produce the partial fractional differential equations and
solutions for any value 0 < θ ≤ 1, particularly if θ = 1

2 and ω = 1 then Equation (22)
produce the following problem





1
2 Di,i

xyu(x, y)= u(x, y),

u(x, 0) = ϕ1(x)= 2γ
√

x, if 0 ≤ x < ∞,

u(0, y) = ϕ2(y)= γ sin (2
√

y), if 0 ≤ y ≤ π2

4
.

(24)

where solution of Equation (24) is u(x, y) = γe4
√

xy cos (2
√

y). Caputo’s fractional deriva-
tive of order 1

2 and first-order usual derivative of ϕ1(x) are the following, respectively,

1
2 Diϕ1(x) =

1
2 Di(2γ

√
x) = γ and Di(ϕ1(x)) = 2γDi√x =

γ√
x

Caputo’s fractional derivative of ϕ1(x) and ϕ2(y) exist at 0 but the usual derivative does
not exist at 0; therefore, the fractional derivative is the generalization of the usual derivative.
Concluding the above facts, we claim that this work is more advanced than [13].

6. Conclusions and Future Direction

In this manuscript, we discussed fractional order fuzzy Goursat problems with Ca-
puto’s gH-differentiability. The Goursat problems have partial differential equations
with second-order mixed derivatives. Also, Caputo’s gH-differentiability has two types,
C[i − gH] differentiability and C[ii − gH] differentiability. To avoid the difficulties of mixed
derivative terms and two types of Caputo’s gH-differentiability, we convert the Goursat
problem to four equivalent systems of fuzzy fractional integral equations. The four systems
of fuzzy fractional integral equations produced for a Goursat problem due to two types the
Caputo’s gH-differentiability. In this study, we discussed that all the equivalent systems
of fuzzy fractional integral equations satisfy the FPDEs and boundary conditions of the
Goursat problem. After that, we discussed the existence and uniqueness result of fuzzy
Goursat problems by using equivalent systems of fuzzy fractional integral equations. In
addition to theoretical proofs, we provided numerical examples to show the useability of
the theoretical work. We used conformable double Laplace transform for the solutions of
numerical examples. In the application, we discussed the generalization of PFDEs and the
advantage of fractional differentiability over the usual differentiability. Moreover, we show
the advantage of fractional transform over the usual Laplace transform. This manuscript
presents 3D fuzzy plots of solutions to illustrate our findings. This type of setting is also
interesting for other second-order fractional FPDEs like advection equations, advection-
diffusion equations, heat equations, etc. Moreover, this study is also interesting with other
types of fuzzy differences and differentiability. The stability analysis of the solutions of
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Goursat problems and other second-order fractional FPDEs with this type of setting is also
interesting for study in the future.
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