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Abstract: This paper is devoted to the general theory of systems of linear time-fractional differential-
operator equations. The representation formulas for solutions of systems of ordinary differential
equations with single (commensurate) fractional order is known through the matrix-valued Mittag-
Leffler function. Multi-order (incommensurate) systems with rational components can be reduced to
single-order systems, and, hence, representation formulas are also known. However, for arbitrary
fractional multi-order (not necessarily with rational components) systems of differential equations, the
representation formulas are still unknown, even in the case of fractional-order ordinary differential
equations. In this paper, we obtain representation formulas for the solutions of arbitrary fractional
multi-order systems of differential-operator equations. The existence and uniqueness theorems in
appropriate topological vector spaces are also provided. Moreover, we introduce vector-indexed
Mittag-Leffler functions and prove some of their properties.

Keywords: fractional derivatives; fractional-order systems of differential-operator equations; Cauchy
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1. Introduction

Let X be a reflexive Banach space and A : D → X a closed linear operator with
a domain D ⊂ X. Consider the systems of m ≥ 1 time-fractional differential operator
equations, which we will write in the form

DβU (t) = F (A)U (t) +H(t), t > t0, (1)

with the initial condition
BU (t0) = Φ. (2)

In Equation (1), t > t0; B = (β1, . . . , βm), 0 < β j ≤ 1, fractional orders of the system
U (t) : [t0, ∞) → X × · · · × X, is an abstract vector-valued function with components
uj(t), j = 1, . . . , m, to be found, and

DBU = (Dβ1 u1(t), . . . , Dβm u(t)). (3)

Here, Dβ j , j = 1, . . . , m, is the fractional-order derivative of order 0 < β j ≤ 1 in the
sense of Riemann–Liouville or Caputo. The matrix-valued operator F (A) on the right-hand
side of Equation (1) has the form

F (A) =

 f11(A) . . . f1m(A)
. . .

fm1(A) . . . fmm(A)

; (4)

H(t) : [t0, ∞] → X × · · · × X is a given vector-valued function satisfying some conditions
clarified later. In initial condition (2), the operator B depends on whether DB is in the sense
of Riemann–Liouville or Caputo and Φ is a given element of some topological vector space
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specified later. The operator F (A) has a matrix symbol F (z) ≡ { fki(z)}, k, j = 1, . . . , m,
the entries of which may have singularities in the spectrum of the operator A. The exact
definitions of operators Dβ j , j = 1, . . . , m, and fkj(A), k, j = 1, . . . , m, are given in Section 2.

It is well known (see, e.g., [1,2]) that if B = (1, . . . , 1), then the solution is represented
in the form

U (t) = S(t, A)Φ +
∫ t

t0

S(t − τ, A)H(τ)dτ,

where
S(t, A) = exp(−tF (A))

is the solution operator, which has an exponential form. It is also known [3–10] that, in the
case of various fractional-order differential equations (not systems), the solution can be
represented through the Mittag-Leffler (ML) function

Eβ,ν(z) =
∞

∑
n=0

zn

Γ(βn + ν)
, z ∈ C, (5)

which generalizes the exponential function. Namely, if β = ν = 1, then we have Eβ,ν(z) =
exp(z). In the case of systems, when B has equal components, i.e., β j = β, j = 1, . . . , m, a rep-
resentation formula for the solution is obtained via the matrix-valued ML function [11–15].
Namely, the solution operator emerges in the form

S(t, A) = Eβ(tβF (A)),

where Eβ(Z) for a matrix Z is defined by

Eβ(Z) =
∞

∑
n=0

1
Γ(βn + 1)

Zn.

In the case where the components of the vector-order B in Equation (1) are rational,
i.e., β j = pj/qj, where pj and qj are co-prime numbers, the corresponding system can
be reduced to a system with a scalar order β ∈ (0, 1) [16–18]. However, the number of
equations in the reduced system may increase significantly. Let M be the lowest common
multiple of numbers q1, . . . , qm, and β = 1/M. Then, the number of equations in the re-
duced system becomes N = M(β1 + · · ·+ βm). For example, if the orders in the original
system of four equations are β1 = 1

2 , β2 = 2
3 , β3 = 1

5 , and β4 = 6
7 , then M = 210 and

N = 210 · (1/2 + 2/3 + 1/5 + 6/7) = 467. Thus, the reduced system will contain 467 equa-
tions of order β = 1

210 , although, originally, we had only four equations in the system. Even
numerical solutions of such reduced systems consume a significant amount of computing
and time resources; thus, the method of reducing to a scalar-order system should be con-
sidered ineffective. Therefore, developing direct general techniques for the solution and
qualitative analysis of systems of fractional-order differential equations with any positive
real order is important.

The representation formula for the solution of fractional-order systems in the sense
of Riemann–Liouville with equal orders β j = β, j = 1, . . . , m, (commensurate case) and
constant matrix F was first obtained in [11]. The authors of [19] derived representations
in the case of Riemann–Liouville, Caputo, and sequential Miller–Ross derivatives under
the same conditions for orders and matrix F . Applications to multi-term commensurate
fractional-order ordinary differential equations, as well as various techniques for the calcu-
lation of the matrix-valued ML functions, are considered in [13]. In [16], the procedure for
the reduction of incommensurate rational orders β j to the commensurate case is discussed.
The authors of [17] use this technique to derive a representation formula for the solution.
Note that, in these works, also F is a constant matrix—that is, the corresponding systems
are of ordinary differential equations, and fractional derivatives are in the sense of Caputo.
The representation formulas for a fractional multi-order system of pseudo-differential equa-
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tions are found in [18], in both commensurate and incommensurate rational-order cases, for
Riemann–Liouville and Caputo derivatives. Moreover, in this work, representation formu-
las are obtained for systems of arbitrary positive time-fractional-order pseudo-differential
equations with upper or lower triangular matrix-valued pseudo-differential operators.

In the current paper, we obtain representation formulas for arbitrary multi-order
B with real components (not necessarily rational) and arbitrary matrix-valued operator
F (A). The results obtained in this paper are new even for time-fractional systems of linear
ordinary differential equations. We also introduce more general ML functions, called
vector-indexed matrix-valued ML functions. We show that the solution of systems (1) and (2)
is represented through an operator-dependent matrix-valued ML function.

We note that systems of fractional-order ordinary and partial differential equations
have rich applications. For example, they are used in the modeling of processes in bio-
systems [20–22], ecology [23,24], epidemiology [25,26], quantum systems [27–29], etc.

This paper is organized as follows. In Section 2, we provide some preliminary
facts about the ML functions, including matrix-valued versions. To our knowledge,
Lemmas 1 and 2 are new. Here, we also introduce the vector-indexed matrix-valued ML
functions and study some of their properties used in this paper. This section introduces the
basic topological vector spaces on which the corresponding matrix-valued operators with
singular symbols act. In Sections 3 and 4, we formulate the main results. The representation
formulas for the solution of the initial value problem (1), (2) are obtained in the general
case: for arbitrary multi-order B and matrix-valued operator F (A). The main idea of the
method used to obtain the representation formula is demonstrated for clarity, first in the
case m = 2, and then for arbitrary m ≥ 2. Note that some particular representation formulas
were obtained in [18] in the case of systems of pseudo-differential operators. These results
are also extended to the differential-operator case. Finally, in Section 5, we discuss some
applications and examples.

2. Preliminaries
2.1. Fractional Derivatives

By definition, the Riemann–Liouville fractional derivative of order β ∈ (0, 1) of a
function f (t) defined on [0, ∞), is the integral

Dβ
+ f (t) =

1
Γ(1 − β)

d
dt

∫ t

0

f (τ)dτ

(t − τ)β
. (6)

subject to existence, where Γ(s) is Euler’s gamma function. Similarly, if 0 < β < 1, then the
Caputo derivative is defined by the integral

aDβ
∗ f (t) =

1
Γ(1 − β)

∫ t

0

f ′(τ)dτ

(t − τ)β
. (7)

subject to existence.
The Laplace transforms of the Riemann–Liouville and Caputo derivatives are

L[Dβ
+ f ](s) = sβL[ f ](s)− (J1−β f )(0), (8)

L[Dβ
∗ f ](s) = sβL[ f ](s)− f (0)sβ−1, (9)

respectively. We will use these formulas in the vector form. Namely, for a vector-valued
function F(t) = ( f1(t), . . . , fm(t)), we have

L[DB
+F(t)](s) = sBL[F(t)](s)− (J 1−BF)(0)

=
(

sβ1 L[ f1](s)− (J1−β1 f1)(0), . . . ,

sβm L[ fm](s)− (J1−βm fm)(0)
)

, (10)
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where
(J 1−BF )(t) =

(
(J1−β1 f1)(t), . . . , (J1−βm fm)(t)

)
. (11)

with fractional integrals

(J1−β j f )(t) =
1

Γ(1 − β j)

∫ t

0
(t − τ)β j f (τ)dτ, j = 1, . . . , m.

Similarly,

L[DB
∗ F(t)](s) = sBL[F(t)](s)− F(0)sB−1

=
(

sβ1 L[ f1](s)− f1(0)sβ1−1, . . . ,

sβm L[ fm](s)− fm(0)sβm−1
)

. (12)

In these formulas,

L[DBF(t)](s) =
(

L[Dβ1 f1](s), . . . , L[Dβm fm](s)
)

for both operators D = D+ and D = D∗.

2.2. Matrix-Valued Functions

Let Z be a square matrix of size m with the Jordan normal form

J = M−1ZM = Λ + N, (13)

where M is an invertible transformation matrix, Λ is a diagonal matrix with eigenvalues on
the diagonal and N is the nilpotent matrix. Suppose that Jℓ, ℓ = 1, . . . , L, are Jordan blocks
of Z and ∥Z∥ is the matrix norm of Z. Then, for a function g(z), analytic in a neighborhood
of |z| ≤ ∥Z∥, one has the spectral representation

g(J) =
m−1

∑
k=0

Nk

k!

∫
σ(Z)

g(k)(λ)dEλ

=
L

∑
ℓ=1

mℓ

∑
k=0

Nk

k!
g(k)(λℓ)Pλℓ

,

where the spectral measure dEλ is formed by projection operators Pλℓ
, determined by

eigenvalues λℓ, ℓ = 1, . . . , L, of the matrix Z of multiplicity mℓ, ℓ = 1, . . . , L. In the explicit
form, this means that

g(J) =


g(J1) 0 . . . 0

0. g(J2) . . . 0
. . . . . . . . . . . .
0. 0. . . . . g(JL)

, (14)

where

g(Jℓ) =



g(λℓ)
g′(λℓ)

1!
g′′(λℓ)

2! . . . g(mℓ−2)(λℓ)
(mℓ−2)!

g(mℓ−1)(λℓ)
(mℓ−1)!

0 g(λℓ)
g′(λℓ)

1! . . . g(mℓ−3)(λℓ)
(mℓ−3)!

g(mℓ−2)(λℓ)
(mℓ−2)!

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 0 . . . g(λℓ)

g′(λℓ)
1!

0. .0. .0. . . . 0 g(λℓ)


, ℓ = 1 . . . , L. (15)
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It follows from (13) and (14) that

g(Z) = Mg(J)M−1.

2.3. Classical ML Functions

The classical two-parameter ML function is defined by

Eβ,ν(z) =
∞

∑
n=0

zn

Γ(βn + ν)
, z ∈ C,

where C is the set of complex numbers and parameters β > 0, ν > 0. This function plays
an important role in the theory of fractional-order differential equations. For various
properties of the ML function, we refer the reader to sources [30,31] and the references
therein. Here, we only mention some properties of Eβ,ν(z) used in the current paper. The
function Eβ,ν(z) is an entire function of order 1/β and recovers the exponential function
exp(z) when β = ν = 1. It is known [30,31] that for 0 < β < 2, ν ∈ C, the ML function
Eβ,ν(z) has asymptotic behavior

Eβ,ν(z) ∼
1
β

z(1−ν)/β exp(z1/β), |z| → ∞, if
βπ

2
< | arg(z)| < min{π, βπ}, (16)

and
Eβ,ν(z) ∼ 1/|z|, |z| → ∞, if min{π, βπ} < | arg(z)| ≤ π. (17)

For derivatives of Eβ,ν(zβ), the following formulas are valid:

dk

dzk

[
zν−1Eβ,ν(zβ)

]
= zν−k−1Eβ,ν−k(zβ), Re(ν) > k, k = 1, 2, . . . . (18)

Consider the function Eβ,ν(µtβ), with a parameter µ ∈ C. This function plays an
important role in the theory of fractional-order differential equations. For the Laplace
transform of this function and its derivatives, the following formulas hold [3,10,30]:

L[tν−1Eβ,ν(µtβ)](s) =
sβ−ν

sβ − µ
, s > [Re(µ)]1/β, (19)

L

[
tkβ+ν−1

k!
E(k)

β,ν(µtβ)

]
(s) =

sβ−ν

(sβ − µ)k+1 , s > [Re(µ)]1/β, k = 1, 2, . . . , (20)

where E(k)
β,ν(z) =

dk

dzk Eβ,ν(z). In particular, if ν = 1, then one obtains

L

[
tkβ

k!
E(k)

β (µtβ)

]
(s) =

sβ−1

(sβ − µ)k+1 , s > [Re(µ)]1/β, k = 0, 1, . . . , (21)

and if ν = β in (20),

L

[
tkβ+β−1

k!
E(k)

β,β(µtβ)

]
(s) =

1
(sβ − µ)k+1 , s > [Re(µ)]1/β, k = 0, 1, . . . , (22)

The convolution of functions f (t), g(t), t ≥ 0, is defined by

( f ∗ g)(t) =
∫ t

0
f (τ)g(t − τ)dτ. (23)

The following lemmas will be used in our further analysis.
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Lemma 1. For 0 < β1 < β2, ν > 0, and k = 0, 1, . . . , the following relations hold:

(a) (
I − µJβ

)k[ tkβ+ν−1

k!
E(k)

β,ν(µtβ)
]
= JkβEβ,ν(µtβ), (24)

(b) (
Jβ2−β1 − µJβ2

)k[ tkβ1+ν−1

k!
E(k)

β1,ν(µtβ1)
]
= Jkβ2 Eβ1,ν(µtβ1), (25)

where I is the identity operator and Jβ is the fractional integral of order β.

Proof. (a) To prove this statement, we show that the Laplace transforms of both sides in
(24) coincide. Indeed, applying the Laplace transform to the left side of (24), we have(

1 − µ

sβ

)k sβ−ν

(sβ − µ)k+1 =
sβ−ν

skβ(sβ − µ)
, s > [Re(µ)]1/β.

This is obviously the Laplace transform of the right-hand side of (24), as well.
(b) Similarly, the Laplace transform of the left-hand side of (25) is(

1
sβ2−β2

− µ

sβ2

)k sβ1−ν

(sβ1 − µ)k+1 =
sβ1−ν

skβ2(sβ1 − µ)
, s > [Re(µ)]1/β1 ,

which is the Laplace transform of the right-hand side of (25), as well.

Lemma 2. For any β1 > 0, β2 > 0, ν > 0, and parameters µ1, µ2 ∈ C, the following rela-
tions hold:

(i)

(I − µ2 Jβ2)−1
[
tν−1Eβ1,ν(µ1tβ1)− µ1 Jν(tβ1−1Eβ1,β1(µ1tβ1)

]
= tν−1Eβ2,ν(µ2tβ2), (26)

(ii)
(I − µ2 Jβ2 )−1 Jβ2 [tν−1Eβ1,ν(µ1tβ1 )] =

(
tν−1Eβ1,ν(µ1tβ1 )

)
∗
(

tβ2−1Eβ2,β2 (µ2tβ2 )
)

, (27)

where “∗” is the convolution operation.

Proof. (i) Again, we show that the Laplace transforms of both sides in Equations (26) and (27)
coincide. For the Laplace transform of the left-hand side of (26), we have

L
[
(I − µ2 Jβ2)−1[tν−1Eβ1,ν(µ1tβ1)− µ1 JνEβ1,β1(µ1tβ1)]

]
= (1 − µ2

sβ2
)−1

( sβ1−ν

sβ1 − µ1
− µ1

sν(sβ1 − µ1)

)
=

sβ2

sβ2 − µ2

sβ1 − µ1

sν(sβ1 − µ1)
=

sβ2−ν

sβ2 − µ2
,

where
s > max

{
[Re(µ1)]

1/β1 , [Re(µ2)]
1/β2

}
.

This is obviously the Laplace transform of the right-hand side of (26), as well.
(ii) Similarly, the Laplace transform of the left-hand side of (27) is

L
[
(I − µ2 Jβ2)−1 Jβ2 [tν−1Eβ1,ν(µ1tβ1)]

]
= (1 − µ2

sβ2
)−1 sβ1−ν

sβ2(sβ1 − µ1)

=
sβ2

sβ2 − µ2

sβ1−ν

sβ2(sβ1 − µ1)
=

sβ1−ν

sβ1 − µ1

1
sβ2 − µ2

.
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On the other hand, due to the convolution theorem, the Laplace transform of the
right-hand side of (27) also results in the same expression.

2.4. Matrix-Valued ML Functions

Since Eβ,ν(z) is an entire function, in accordance with (14) and (15), for a matrix Z, one
can introduce a matrix-valued version of the ML function as

Eβ,ν(Z) = MEβ,ν(J)M−1 = MEβ,ν(Λ + N)M−1, (28)

where

Eβ,ν(J) =


Eβ,ν(J1) 0 . . . 0

0. Eβ,ν(J2) . . . 0
. . . . . . . . . . . .
0. 0. . . . . Eβ,ν(JL)

, (29)

with the block matrices

Eβ,ν(Jℓ) =



Eβ,ν(λℓ)
E′

β,ν(λℓ)

1! . . .
E
(mℓ−2)
β,ν (λℓ)

(mℓ−2)!

E
(mℓ−1)
β,ν (λℓ)

(mℓ−1)!

0 Eβ,ν(λℓ) . . .
E
(mℓ−3)
β,ν (λℓ)

(mℓ−3)!

E
(mℓ−2)
β,ν (λℓ)

(mℓ−2)!
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

0 0 . . . Eβ,ν(λℓ)
E′

β,ν(λℓ)

1!
0 0 . . . 0 Eβ,ν(λℓ)


, (30)

corresponding to (algebraic) eigenvalues λℓ, ℓ = 1 . . . , L, of the matrix Z. It is not difficult
to verify that, using Formulas (19), (20), and (30), one obtains the Laplace transforms of the
matrix-valued function tν−1Eβ,ν(tβ Jℓ) :

L[tν−1Eβ,ν(tβ Jℓ)](s) =


sβ−ν

sβ−λℓ

sβ−ν

(sβ−λℓ)2 . . . sβ−ν

(sβ−λℓ)
mℓ

0 sβ−ν

sβ−λℓ
. . . sβ−ν

(sβ−λℓ)
mℓ−1

. . . . . . . . . . . .
0 0 . . . sβ−ν

sβ−λℓ

, ℓ = 1, . . . L. (31)

2.5. Vector-Indexed Matrix-Valued ML Functions

Let B = (β1, . . . , βm) and V = (ν1, . . . , νm) be vector indices with components β j >
0, νj > 0, j = 1, . . . , m. For a diagonal matrix D with diagonal entries d1, . . . , dm, we use
the notation

D = diag(d1, . . . , dm).

Definition 1. Let Z be a square matrix of size m × m with complex entries. A vector-indexed
matrix-valued ML function denoted by EB,V (z), is defined by

EB,V (Z) =
∞

∑
n=0

(
IΓ(nB + V)

)−1
Zn, (32)

where IΓ(nB + V) = diag
(

Γ(nβ1 + ν1), . . . , nΓ(βm + νm)
)

.

The vector-indexed matrix-valued ML function EB,V (Z) generalizes the classical and
above-considered matrix-valued ML functions. Below are some examples.

1. Let m = 1 and β1 = β, ν1 = ν. Then, we obtain the classical two-parameter ML
function Eβ,ν(z).
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2. Let B = (β, . . . , β) and V = (ν1, . . . , ν). Then, we obtain the matrix-valued ML
function [13,30]

Eβ,ν(Z) =
∞

∑
n=0

Zn

Γ(nβ + ν)
. (33)

Indeed, in this case,(
IΓ(nB + V)

)−1
Zn =

[
diag(Γ(nβ + ν), . . . , Γ(nβ + ν))

]−1
Zn

= diag
(

1
Γ(nβ + ν)

, . . . ,
1

Γ(nβ + ν)

)
Zn

=
1

Γ(nβ + ν)
Zn.

Therefore, in this case, (32) reduces to (33).

Let λj, j = 1, . . . , L, be eigenvalues of (algebraic) multiplicity mj of the matrix Z =

M(Λ + N)M−1, and let Jℓ be the Jordan block of the Jordan canonical form Λ + N corre-
sponding to λj. Then, it is not difficult to see that

EB,V (Λ + N) =


EB1,V1(J1) 0 . . . 0

0 EB2,V2(J2) . . . 0
. . . . . . . . . . . .
0 0 . . . EBL ,VL(JL)

, (34)

where Bℓ = (βMℓ+1, . . . , βMℓ+mℓ
), Vℓ = (νMℓ+1, . . . , νMℓ+mℓ

), and Mℓ = m1 + · · ·+ mℓ−1,
with blocks

EBℓ,Vℓ
(Jℓ) =


EβMℓ

+1,νMℓ
+1(λℓ)

E′
βMℓ

+1,νMℓ
+1(λℓ)

1! . . .
E
(mℓ−1)
βMℓ

+1,νMℓ
+1(λℓ)

(mℓ−1)!

0 EβMℓ
+2,νMℓ

+2(λℓ) . . .
E
(mℓ−2)
βMℓ

+2,νMℓ
+2(λℓ)

(mℓ−2)!
. . . . . . . . . . . .
0 0 . . . EβMℓ

+mℓ,νMℓ
+mℓ

(λℓ)


. (35)

Now, suppose that

B = (β1, . . . , β1︸ ︷︷ ︸
m1 times

, β2, . . . , β2︸ ︷︷ ︸
m2 times

, . . . , βL, . . . , βL︸ ︷︷ ︸
mL times

),

and
V = (ν1, . . . , ν1︸ ︷︷ ︸

m1 times

, ν2, . . . , ν2︸ ︷︷ ︸
m2 times

, . . . , νL, . . . , νL︸ ︷︷ ︸
mL times

).

Then, it follows from (35) that, for each ℓ = 1, . . . , L,

EBℓ,Vℓ
(ItBℓ Jℓ)

=



Eβℓ,νℓ(λℓtβℓ)
tβℓ E′

βℓ ,νℓ
(λℓtβℓ )

1! . . .
t(mℓ−2)βℓ E

(mℓ−2)
βℓ ,νℓ

(λℓtβℓ )

(mℓ−2)!

t(mℓ−1)βℓ E
(mℓ−1)
βℓ ,νℓ

(λℓtβ
ℓ )

(mℓ−1)!

0 Eβℓ,νℓ(λℓtβℓ) . . .
t(mℓ−3)βE

(mℓ−3)
βℓ ,νℓ

(λℓtβℓ )

(mℓ−3)!

t(mℓ−2)βE
(mℓ−2)
βℓ ,νℓ

(λℓtβℓ )

(mℓ−2)!
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

0 0 . . . Eβℓ,νℓ(λℓtβℓ)
tβℓ E′

βℓ ,νℓ
(λℓtβℓ )

1!
0 0 . . . 0 Eβℓ,νℓ(λℓtβℓ)


, (36)
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where ItBℓ = diag(tβℓ , . . . , tβℓ) is a diagonal matrix of size mℓ × mℓ.
The latter implies

L[ItBℓ−VℓEBℓ,Vℓ
(tBℓ Jℓ)](s) =


sβℓ−νℓ

sβℓ−λℓ

sβℓ−νℓ

(sβℓ−λℓ)2 . . . sβℓ−νℓ

(sβℓ−λℓ)
mℓ

0 sβℓ−νℓ

sβℓ−λℓ
. . . sβℓ−νℓ

(sβℓ−λℓ)
mℓ−1

. . . . . . . . . . . .
0 0 . . . sβ−1

sβℓ−λℓ

, ℓ = 1, . . . L. (37)

We note that, in general, MEB,V (Λ + N)M−1 is not the same as EB,V (Z) unless vector
indices B and V have equal components. Indeed, using the equality

Zn = M(Λ + N)n M−1,

one obtains

EB,V (Z) =
∞

∑
n=0

(
IΓ(nB + V)

)−1
M (Λ + N)n M−1 ̸= MEB,V (Λ + N)M−1,

since matrices
(

IΓ(nB + V)
)−1

and M do not commute. It is not difficult to verify that
these matrices commute if and only if vectors B and V have equal components. In this case,
the following theorem holds.

Theorem 1. Let B = (β, . . . , β), 0 < β ≤ 1, and V = (ν, . . . , ν), ν > 0. Then,

1. for the matrix-valued ML function EB,V (Z), the following representation is valid

EB,V (Z) = MEB,V (Λ + N)M−1;

2. the following Laplace transform formula holds

L[ItV−1EB,V (ItBZ)](s) = IsB−V (IsB − Z)−1, (38)

where V − 1 = (ν − 1, . . . , ν − 1) and ItB = diag(tβ, . . . , tβ).

Proof. We need to prove only part 2. Using the definition (32) of the ML function, we have

L
[

ItV−1EB,V (ItBZ)
]
(s) =

∞

∑
n=0

(
IΓ(nB + V)

)−1
L
[

ItnB+V−1
]

Zn, (39)

since matrices ItV−1 and IΓ(nB+V)
)−1

commute under the conditions to B and V . Further,

using the well-known relation L[tρ](s) = Γ(ρ + 1)/sρ+1, we obtain

L
[

ItV−1EB,V (ItBZ)
]
(s) = Is−V

∞

∑
n=0

[
Is−nBZn

]
= IsB−V (IsB − Z)−1, (40)

completing the proof.

2.6. Matrix-Valued Operators with Singular Symbols

In this section, we describe matrix-valued operators F (A) on the right-hand side of
system (1). Let A be a closed linear operator with a domain D (A) dense in a reflexive
Banach space X and a nonempty spectrum σ(A) ⊂ C. Assume that the entry f jk(A) of the
matrix-valued operator F (A) has the symbol f jk(z), z ∈ C, analytic in an open connected
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domain G ⊂ C. If σ(A) is bounded and G contains σ(A), then one can define the operator
f jk(A) as (see, e.g., [1,32])

f jk(A) =
∫

γ
f jk(ζ)R(ζ, A)dζ, j, k = 1, . . . , m, (41)

where γ is a contour in G containing σ(A), and R(ζ, A), ζ ∈ C \ σ(A), is the resolvent op-
erator of A. Representation (41) is not valid if f jk(z) has singularities on the spectrum σ(A).

In the case that f has singular points in the spectrum σ(A) of the operator A, the
corresponding operator f (A) can be constructed as follows. Denote by sing( f ) the set
of singular points of f on σ(A). Let D be an open set in C containing σ(A). In particular,
if σ(A) = C, then D = C as well. Consider an open set G ⊂ D \ sing( f ). Let 0 < r ≤ +∞
and µ < r. Denote by Xµ the set of elements x ∈ ∩k≥1D(Ak) satisfying the inequalities
∥Akx∥ ≤ Cµk∥x∥ for all k = 1, 2, ..., with a constant C > 0 not depending on k. A sequence
of elements xn ∈ Xµ, n = 1, 2, ..., is said to converge to an element x0 ∈ Xµ if ∥xn − x0∥ → 0,
as n → ∞. It is easy to see that Xµ1 ⊂ Xµ2 , if µ1 < µ2, and this inclusion is continuous.
Denote by XA,r the inductive limit of spaces Xµ as µ → r, i.e.,

XA,r = ind-lim
µ→r

Xµ,

meaning that XA,r = ∪0<µ<rXµ with the strongest topology. For basic notions of topological
vector spaces including inductive and projective limits, we refer the reader to [33]. The
space XA,r is called a space of exponential vectors of type r (see, e.g., [34,35]) associated
with the operator A.

Let Aλ = A − λI, where λ ∈ G, and denote by XA, G the space whose elements
are locally finite sums of the elements in XAλ ,r, r < dist(λ, ∂G), with the corresponding
topology. Here, dist(λ, ∂G) is the minimal distance between the point λ and the boundary
of the domain G. By definition, any u ∈ XA, G has a representation

u =
mu

∑
k=1

uλk , uλk ∈ XAλk
, r,

where λk ∈ G, and mu is a finite number.
Now, we can define operators f (A) with symbols f (z) analytic in the domain G.

Recall that f (z) may have singular points on the spectrum σ(A), but G does not contain
singularities of f (z). As an analytic function in G, f (z) has the Taylor expansion

fλ(z) =
∞

∑
n=0

f (n)(λ)
n!

(z − λ)n, λ ∈ G,

convergent in any open disc |z − λ| < r, where r < dist(λ, ∂G). Therefore, the operator
fλ(A) defined as

fλ(A)uλ =
∞

∑
n=0

f (n)(λ)
n!

An
λuλ (42)

on elements uλ ∈ XAλ , r is well defined. Indeed, we have

∥ fλ(A)uλ∥ ≤ C
∞

∑
n=0

| f (n)(λ)|
n!

∥An
λuλ∥

≤ C∥uλ∥
∞

∑
n=0

| f (n)(λ)|
n!

µn < ∞, µ < r. (43)
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Finally, for an arbitrary u ∈ XA, G with the representation

u = ∑
λ∈G

uλ, uλ ∈ XAλ , r, (44)

the operator f (A) is defined by the formula

f (A)u = ∑
λ∈G

fλ(A)uλ, (45)

where fλ(A)uλ is defined in (42). Using estimate (43) and representation (45), it is easy to
show that the operator f (A) is well defined on the space XA, G.

Further, suppose that there exists a one-parameter family of bounded invertible opera-
tors Eλ : X → X such that

Aλ = Eλ AE−1
λ , λ ∈ G. (46)

Example 1. Let X = L2 ≡ L2(R) and A = −i d
dx : L2 → L2 with domain D(A) = {v ∈ L2 :

Av ∈ L2}. Then, for operators Eλ : v(x) → eiλxv(x), we have

AEλv(x) = −i
d

dx
(eiλxv(x)) = λeiλxv(x)− ieiλx dv

dx
= λEλv(x) + Eλ Av(x), x ∈ R,

obtaining (46).

It follows from (46) that
An

λ = Eλ AnE−1
λ ,

for all n = 1, 2, . . . , yielding

f (A)u = ∑
λ∈G

∞

∑
n=0

f (n)(λ)
n!

Uλ AnU−1
λ uλ. (47)

Recall that, here, the sum with respect to λ is finite.
The operator f (A) defined in (45) maps XA,G to itself. Namely, the mapping

f (A) : XA,G → XA,G

is continuous. Indeed, let u ∈ XA,G have a representation u = ∑λ uλ, uλ ∈ XAλ ,r. Then, for
f (A)u, we have the estimate

∥Ak
λ fλ(A)uλ∥ ≤

∞

∑
n=0

| f n(λ)|
n!

∥(A − λI)n Ak
λuλ∥

≤ max
|z−λ|<r

| f (z)|∥Ak
λuλ∥ ≤ Cµk∥uλ∥, (48)

with some constant C > 0 and µ < r. The latter means that fλ(A)uλ ∈ XAλ ,r. Therefore,
f (A)u has a representation ∑λ vλ, where vλ = fλ(A)uλ ∈ XAλ ,r, implying f (A)u ∈ XA,G.
The estimate (48) also implies the continuity of the mapping f (A) in the topology of XA,G.

Remark 1. If the spectrum of the operator A is discrete, then XAλ ,r consists of all linear combi-
nations of eigenvectors and associated eigenvectors corresponding to eigenvalues λk in the disc
|λ − λk| < r, and the space XA,G is their locally finite sum.
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Finally, it follows from the construction above that a matrix-valued operator F (A)
with the matrix symbol F (z) = { fkj(z), k, j = 1, . . . , m}, analytic in the domain G, is well
defined on elements of the direct product space

XA,G = XA,G⊗ · · · ⊗︸ ︷︷ ︸
m times

XA,G,

with the corresponding direct product topology. Moreover, the mapping

F (A) : XA,G → XA,G (49)

is continuous.
We note that the space XA,G is relatively narrow. For example, if A = (−i ∂

∂x1
, . . . ,−i ∂

∂xn
)

acting in the space L2(Rn), then the corresponding space XA,G is the direct product of the
space of functions analytic in G ⊂ Rn. However, the duality construction allows us to expand
the introduced spaces and consider wider classes of fractional-order systems. Let X∗ denote
the dual of X, and A∗ : X∗ → X∗ be the operator adjoint to A. We denote by X

′
A∗ ,G∗ the

space of linear continuous functionals defined on XA,G, with respect to weak convergence.
In other words, X

′
A∗ ,G∗ is the projective limit of spaces X

′
A∗

λ ,r, which are dual to XAλ ,r with

the coarsest topology. Continuing the example A = (−i ∂
∂x1

, . . . ,−i ∂
∂xn

), now, one can see

that the corresponding space X
′
A∗ ,G∗ gives rise to the space of analytic functionals (Sato’s

hyperfunctions; see, e.g., [36]).
For an analytic matrix symbol F (z) defined on G∗ = {z ∈ C : z̄ ∈ G}, we define a

matrix-valued operator F (A∗) as follows:

< F (A∗)u∗, v >=< u∗,FT(A)v >, ∀v ∈ XA,G, (50)

where FT(A) is the matrix-valued operator with the symbol F (z) analytic in G, and u∗ is
an element of the space X ′

A∗ ,G∗ , dual to XA,G. By construction, as a dual to the space of the

direct product, the space X ′
A∗ ,G∗ represents the direct sum

X ′
A∗ ,G∗ = X

′
A∗ ,G∗ ⊕ · · · ⊕︸ ︷︷ ︸

m times

X
′
A∗ ,G∗ ,

with the corresponding topology. It follows from (49) that the mapping

F (A∗) : X ′
A∗ ,G∗ → X ′

A∗ ,G∗ (51)

is continuous. Indeed, assume that a sequence u∗
n ∈ X ′

A∗ ,G∗ converges to 0 in the topology

of X ′
A∗ ,G∗ . Then, for arbitrary v ∈ XA,G, we have

< F (A∗)u∗
n, v >=< u∗

n,FT(A)v >=< u∗
n, w >,

where w = FT(A)v ∈ XA,G due to (49). Hence, F (A∗)u∗
n → 0, as n → ∞, in the topology

of X ′
A∗ ,G∗ , obtaining the continuity of mapping (51).

3. Main Results

Below, we derive representation formulas for the solutions of fractional-order systems
of differential-operator equations. We demonstrate the derivation in the case of the Caputo
fractional derivative. For the sake of clarity, we start with the case m = 2 and then
the general case. The case of the Riemann–Liouville fractional derivative can be treated
similarly (see Section 4).
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3.1. Fractional Multi-Order Systems of Differential-Operator Equations: m = 2

In this section, we demonstrate the formal method of obtaining the representation
formula for the solution of time-fractional arbitrary multi-order systems of differential-
operator equations in the particular case of two equations. Namely, consider the system

DB
∗ U (t) = F(A)U (t) +H(t), (52)

where B = (β1, β2), 0 < β1 < β2 ≤ 1, H(t) = (h1(t), h2(t)) is a given vector-valued
function, and

F(A) =

[
f11(A) f12(A)
f21(A) f22(A)

]
, (53)

with the initial condition
U (0) = Φ = (φ1, φ2), (54)

where Φ ∈ XA,G. We assume that G does not contain the roots of the equation

∆(z) = f11(z) f22(z)− f21(z) f12(z)) = 0.

To find entries of the solution operator S(t, z), we consider the homogeneous counter-
part of system (52), writing it in the explicit form{

Dβ1
∗ u1(t) = f11(A)u1(t) + f12(A)u2(t),

Dβ2
∗ u2(t) = f21(A)u1(t) + f22(A)u2(t).

Applying the Laplace transform and replacing A with the parameter z, we have{
(Isβ1 − f11(z))L[u1](s)− f12(z)L[u2](s) = Isβ1−1 φ1,
− f21(z)L[u1](s) + (Isβ2 − f22(z))L[u2](s) = Isβ2−1 φ2.

(55)

The solution of system (55) is

L[u1](s) =
1

Ψ(s, z)

(
p1(s, z)φ1 + q1(s, z)φ2

)
z ∈ G, s > r∗(z) (56)

L[u2](s) =
1

Ψ(s, z)

(
q2(s, z)φ1 + p2(s, z)φ2

)
, z ∈ G, s > r∗(z). (57)

where

Ψ(s, z) = sβ1+β2 − sβ2 f11(z)− sβ1 f22(z) + ∆(z), (58)

p1(s, z) = sβ1+β2−1 − sβ1−1 f22(z), q1(s, z) = sβ2−1 f12(z), (59)

p2(s, z) = sβ1+β2−1 − sβ2−1 f11(z), q2(s, z) = sβ1−1 f21(z), (60)

and r∗(z) is the real part of the roots of the equation Ψ(s, z) = 0. This solution is uniquely
defined, since, by assumption, G ∩ Q = ∅, where Q = {z : Ψ(s, z) = 0}. We have
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1
Ψ(s, z)

=
1

sβ2

(
sβ1 − f11(z)− f22(z)sβ1−β2 + ∆(z)s−β2

)
=

1

sβ2

(
sβ1 − f11(z)

)(
1 − f22(z)sβ1−β2−∆(z)s−β2

sβ1− f11(z)

)
=

∞

∑
k=0

(
sβ1−β2 f22(z)− s−β2 ∆(z)

)k

sβ2
(
sβ1 − f11(z)

)k+1

=
∞

∑
k=0

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j s−kβ2+jβ1−β2(
sβ1 − f11(z)

)k+1 . (61)

For s > r∗(z) large enough, the inequality∣∣∣∣∣ s−kβ2+jβ1−β2

sβ1 − f11(z)

∣∣∣∣∣ < 1

is verified, and, therefore, the series in (61) is convergent. Now, for the solution of sys-
tem (55), we have

L[u1](s) =
∞

∑
k=0

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j s−kβ2+jβ1−β2(
sβ1 − f11(z)

)k+1 [p1(s, z)φ1 + q1(s, z)φ2], (62)

L[u2](s) =
∞

∑
k=0

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j s−kβ2+jβ1−β2(
sβ1 − f11(z)

)k+1 [q2(s, z)φ1 + p2(s, z)φ2]. (63)

Consider the expressions

P1(s, z) =
s−kβ2+jβ1−β2 p1(s, z)(

sβ1 − f11(z)
)k+1 , Q1(s, z) =

s−kβ2+jβ1−β2 q1(s, z)(
sβ1 − f11(z)

)k+1 ,

and

P2(s, z) =
s−kβ2+jβ1−β2 p2(s, z)(

sβ1 − f11(z)
)k+1 , Q2(s, z) =

s−kβ2+jβ1−β2 q2(s, z)(
sβ1 − f11(z)

)k+1 .

Further, let
νkj = kβ2 − jβ1.

Since β2 > β1 and k ≥ j, we have νkj > 0, if k ≥ 1, and ν00 = 0. Taking this into
account, we obtain

P1(s, z) =
1

sνkj

sβ1−1(
sβ1 − f11(z)

)k+1 − f22(z)
sνkj+β2

sβ1−1(
sβ1 − f11(z)

)k+1

Now, taking the inverse Laplace transform, due to formula (21), we obtain

L−1[P1(·, z)](t) = Jνkj
tkβ1

k!
E(k)

β1
(tβ1 f11(z))− f22(z)Jνkj+β2

tkβ1

k!
E(k)

β1
(tβ1 f11(z)).

Similarly,

L−1[Q1(·, z)](t) = f12(z)Jνkj+1 tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 f11(z)),



Fractal Fract. 2024, 8, 254 15 of 37

L−1[P2(·, z)](t) = Jνkj
tkβ1

k!
E(k)

β1
(tβ1 f11(z))− f11(z)Jνkj+1 tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 f11(z))

]
.

and

L−1[Q2(·, z)](t) = f2,1(z)Jνkj+β2
tkβ1

k!
E(k)

β1
(tβ1 f11(z)),

It follows from (62) and (63) that the entries Sjl(t, z), j, l = 1, 2, of the matrix symbol
S(t, z) have representations

S11(t, z) =
∞

∑
k=0

1
k!

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j[
Jνkj

(
tkβ1 E(k)

β1
(tβ1 f11(z))

)
− f22(z)Jνkj+β2

(
tkβ1 E(k)

β1
(tβ1 f11(z))

)]
=

(
I − f22(z)Jβ2

) ∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

]
, (64)

S12(t, z) = f12(z)
∞

∑
k=0

1
k!

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j
Jνkj+1

(
tkβ1+β1−1E(k)

β1,β1
(tβ1 f11(z))

)
= f12(z)

∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k
J
( tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 f11(z))

)
, (65)

S21(t, z) = f21(z)
∞

∑
k=0

1
k!

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j
Jνkj+β2

(
tkβ1 E(k)

β1
(tβ1 f11(z))

)
= f21(z)

∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k
Jβ2

( tkβ1

k!
E(k)

β1
(tβ1 f11(z))

)
, (66)

S22(t, z) =
∞

∑
k=0

1
k!

k

∑
j=0

(
k
j

)
f j
22(z)

(
− ∆(z)

)k−j[
Jνkj

(
tkβ1 E(k)

β1
(tβ1 f11(z))

)
− f11(z)Jνkj+1

(
tkβ1+β1−1E(k)

β1,β1
(tβ1 f11(z))

)]
,

=
∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

− f11(z)J
( tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 f11(z))

)]
. (67)

Thus, we prove the following theorem.

Theorem 2. The formal solution to system (52), (54) has the representation

U (t) = S(t, A)Φ +
∫ t

0
S(t − τ, A)D1−B

+ H(τ)dτ

where S(t, A) is the matrix-valued solution operator with the matrix symbol S(t, z), the entries of
which are defined in (64)–(67).
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Theorem 3. Let f12(z) = 0. Then, the solution operator S(t, A) has the matrix symbol with
entries

S11(t, z) = Eβ1(t
β1 f11(z)), S12(t, z) = 0, (68)

S21(t, z) = f21(z)
(

Eβ1(t
β1 f11(z))

)
∗
(

tβ2−1Eβ2,β2(t
β2 f22(z))

)
, (69)

S22(t, z) = Eβ2(t
β2 f22(z)), (70)

where “∗” is the convolution operation.

Proof. The fact that S12(t, z) = 0 obviously follows from (65). Now, we show the equality
for S11(t, z). First, we notice that f12(z) = 0 implies ∆(z) = f11(z) f22(z). Taking this
fact into account and utilizing the semigroup property [3,10] of the fractional integration
operator Jβ, we can express S11(t, z) in the form

S11(t, z) =
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1 − f11(z) f22(z)Jβ2

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

]
=

(
I − f22(z)Jβ2

) ∞

∑
k=0

(
f22(z)Jβ2−β1

)k(
I − f11 Jβ1

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

]
, (71)

where I is the identity operator. Now, due to Lemma 1 with ν = 1 and µ = f11(z), one has

(
I − f11(z)Jβ1

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

]
= Jkβ1 Eβ1(t

β1 f11(z)), (72)

valid for all k = 0, 1, . . . . Thus, (71) reduces to

S11(t, z) =
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1

)k
Jkβ1 Eβ1(t

β1 f11(z))

=
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1 Jβ1

)k
Eβ1(t

β1 f11(z)), (73)

Since
∞

∑
k=0

(
f22(z)Jβ2

)k
=

(
I − f22(z)Jβ2

)−1
,

it follows from (73) the desired equality for S11(t, z) in (68).
Now, we show the validity of (69). Taking into account ∆(z) = f11(z) f22(z), we rewrite

S21(t, z) in (66) in the form

S21(t, z) = f21(z)
∞

∑
k=0

(
f22(z)Jβ2−β1 − f11(z) f22(z)Jβ2

)k
Jβ2

( tkβ1

k!
E(k)

β1
(tβ1 f11(z))

)
= f21(z)

∞

∑
k=0

(
f22(z)Jβ2−β1

)k
Jβ2

(
I − f11 Jβ1

)k( tkβ1

k!
E(k)

β1
(tβ1 f11(z))

)
,

Using the relation (72), we have

S21(t, z) = f21(z)
(

I − f22(z)Jβ2
)−1

Jβ2 Eβ1(t
β1 f11(z)).

Further, due to Lemma 2 (see Equation (27)) with µ1 = f11(z) and µ2 = f22(z), we
obtain relation (69).
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Similarly, S22(t, z) in (67) can be written as

S22(t, z) =
∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k[ tkβ1

k!
E(k)

β1
(tβ1 f11(z))

− f11(z)J
( tkβ1

k!
E(k)

β1,β1
(tβ1 f11(z))

)]
=

∞

∑
k=0

(
f22(z)Jβ2−β1

)k(
I − f11 Jβ1

)k( tkβ1

k!
E(k)

β1
(tβ1 f11(z))

− f11(z)J
tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 f11(z))

)
.

Finally, using Lemma 1, we obtain

S22(t, z) =
(

I − f22(z)Jβ2
)−1(

Eβ1(t
β1 f11(z))− f11(z)JEβ1,β1(t

β1 f11(z))
)

= Eβ2(t
β2 f22(z)).

In the last step, we used relation (27) with µ1 = f11(z) and µ2 = f22(z).

Remark 2. Theorem 3 states that the representation formula presented in Theorem 2 coincides with
the representation formula obtained in [18] for the solution of fractional-order systems with a lower
triangular matrix-valued operator.

3.2. Fractional Multi-Order Systems of Differential-Operator Equations: m ≥ 2

The method demonstrated in the previous section for m = 2 works, in fact, for an
arbitrary number of equations. To derive the solution operator, consider the homogeneous
system

DB
∗ U (t) = F (A)U (t), t > 0, (74)

with the initial condition
U (0) = Φ ∈ XA,G. (75)

Here, B = (β1, . . . , βm), 0 < β j ≤ 1, j = 1, . . . , m, is an arbitrary vector order. We
can assume, without loss of generality, that β1 = min{β1, . . . , βm}. Applying the Laplace
transform and replacing A with a parameter z ∈ G, we obtain

(IsB −F (z))L[U ](s) = IsB−1Φ, (76)

where IsB = diag(sβ1 , . . . , sβm). This is a system of linear algebraic equations dependent
on parameters s ∈ C and z ∈ G. The determinant of the matrix on the left has the structure

Ψ(s, z) = det(IsB −F (z)) = s|β| + G(s, z) + (−1)m∆(z),

where |β| = β1 + · · ·+ βm, ∆(z) = detF (z) and G(s, z) has the form

G(s, z) = g1(z)sβ1 + · · ·+ gm(z)sβm + g12sβ1+β2 + g13sβ1+β3 + · · ·+ g(z)sβ2+···+βm . (77)

In other words, G(s, z) is the sum of functions of the form

∑
α

gα(z)s
βαp+···+βαq ,

where α = (αp, . . . , αq), 1 ≤ p < q ≤ m, is a multi-index taking values in the subsets
of the set {1, . . . , m} except (1, . . . , m); the function gα(z) is the sum and multiplication
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combination of entrees fkj(z) of the matrix symbol F (z). Let r∗ be the real part of the largest
root of the equation Ψ(s, z) = 0. Then, for s > r∗, system (76) has a unique solution

L[U ](s) = (IsB −F (z))−1 IsB−1Φ, (78)

It follows that the solution operator has the matrix-valued symbol

S(t, z) = L−1
s→t

[
(IsB −F (z))−1 IsB−1

]
. (79)

The components of the solution have the structure (as an implication of the well-known
Cramer’s rule)

L[uj](s) =
Pj(s, z)
Ψ(s, z)

, j = 1, . . . , m,

where uj = uj(t) is the j-th component of U (t) and Pj(s, z) is the determinant of the matrix
obtained by replacing the j-th column of the matrix IsB − F(z) with the vector IsB−1Φ. The
latter can be rewritten in the form

L[uj](s) =
m

∑
l=1

pjl(s, z)
Ψ(s, z)

φl , j = 1, . . . , m, (80)

where φl , l = 1, . . . , m, are components of Φ, and functions pjl(s, z) have form (77). Let
β∗ = β2 + · · ·+ βm. We have

1
Ψ(s, z)

=
1

sβ∗
(

sβ1 + g(z)− g(s, z)s−β∗ + (−1)m∆(z)s−β∗
)

where g(z) is the coefficient in the term g(z)sβ2+···+βm in (77) and

g(s, z) = −G(s, z) + g(z)sβ2+···+βm .

Further, similar to the case m = 2, we represent 1/Ψ(s, z) in the infinite functional
series form

1
Ψ(s, z)

=
1

sβ∗
(

sβ1 + g(z)
)(

1 − g(s,z)s−β∗+(−1)m∆(z)s−β∗

sβ1+g(z)

)

=
∞

∑
k=0

(
g(s, z) + (−1)m∆(z)

)k
s−kβ∗−β∗(

sβ1 + g(z)
)k+1 . (81)

For s > r∗(z) large enough, the inequality∣∣∣∣ g(s, z)s−β∗ + (−1)m∆(z)s−β∗

sβ1 + g(z)

∣∣∣∣ < 1

is valid, and, therefore, the series in (81) is convergent.
Further, it follows from (80) that

uj(t) =
m

∑
l=0

L−1

[
pjl(s, A)

Ψ(s, z)

]
φj, j = 1, . . . , m.

Hence, the matrix symbol of the solution operator S(t, A) has entries

sjl(t, z) = L−1
s→t

[
pjl(s, z)
Ψ(s, z)

]
(t), j, l = 1, . . . , m.
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Now, using (81), we have

sjl(s, z) = L[sjl(t, z)](s) =
∞

∑
k=0

pjl(s, z)
(

g(s, z) + (−1)m∆(z)
)k

s−kβ∗−β∗(
sβ1 + g(z)

)k+1 .

Taking into account the fact that g(s, z) and functions pjl(s, z) can be represented in
form (77), we can write the expressions pjl(s, z)(g(s, z) + (−1)m∆(z))k, j, l = 1, . . . , m, as

∑
α

Qα,j,l,k(z)s
γα,j,l,k , (82)

where Qα,j,l,k(z) are the sum and product combinations of f j,k(z) and exponents γβ,j,l,k
depend on the sum combinations of β1, . . . , βm and their multiples. Therefore,

sjl(s, z) =
∞

∑
k=0

∑
α

Qα,j,l,k(z)
sγα,j,l,k−(k+1)β∗(
sβ1 + g(z)

)k+1 .

Further, let να,j,l,k = (k + 1)β∗ + β1 − 1 − γα,j,l,k. By construction, να,j,l,k ≥ 0 for all
indices α, j, l, k. Then,

sjl(t, z) =
∞

∑
k=0

∑
α

Qα,j,l,k(z)L−1
s→t

 sβ1−1

sνα,j,l,k
(

sβ1 + g(z)
)k+1


=

∞

∑
k=0

∑
α

Qα,j,l,k(z)Jνα,j,l,k

[
tkβ1

k!
E(k)

β1

(
− tβ1 g(z)

)]
, j, l = 1, . . . , m. (83)

Hence, the solution to Cauchy problem (74), (75) has the form

U (t) = S(t, A)Φ, (84)

where S(t, A) is the matrix-valued solution operator with the matrix symbol S(t, z) defined
by (83).

Theorem 4. Let B = (β1, . . . , βm), where β j ∈ (0, 1), j = 1, . . . , m, arbitrary numbers and β1 =
min{β1, . . . , βm}. Let A be a closed operator defined on a Banach space X, and the set G satisfies
the condition G ∩ Q0 = ∅, where Q0 = {z : Ψ(s, z) = 0}, Φ ∈ XA,G, H(t) ∈ AC[R+;XA,G],
and D1−B

+ H(τ, x) ∈ C[R+;XA,G].
Then, for any T > 0, Cauchy problem (1), (2) has a unique solution U(t) ∈ C∞[(0, T];XA,G]∩

C[[0, T];XA,G], having the representation

U(t) = S(t, A)Φ +

t∫
0

S(t − τ, A)D1−B
+ H(τ)dτ, t > 0, (85)

where S(t, A) is the solution matrix operator with the matrix symbol S(t, z) defined in (83).

Proof. The representation (85) follows from (84) and the fractional Duhamel principle [10,37].
Let

V(t) = S(t, A)Φ, (86)

W(t) =
t∫

0

S(t − τ, A)D1−B
+ H(τ)dτ, t ≥ 0. (87)
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It follows from (49) that V(t) ∈ XA,G for every fixed t ≥ 0, continuous on [0, T],
and infinitely differentiable on (0, T) in the topology of XA,G due to the construction of
the solution operator S(t, A). Similarly, by virtue of the continuity in XA,G of operators
with symbols analytic in G (see (49)), for each fixed t, we have W(t) ∈ XA,G for each fixed
t ∈ [0, T]. The continuity of W(t) on [0, T] in the variable t and its infinite differentiability on
(0, T) follow from the construction of the solution operator S(t, D) in the standard way.

Theorem 5. Let X be a reflexive Banach space with the conjugate X∗, A be a closed operator
with a domain D ⊂ X, and F (A) be a matrix operator with the symbol F (z) continuous on G
and satisfying condition G ∪ Q0 = ∅, where Q0 is defined in (115). Assume that Ψ ∈ X ′

A∗ ,G∗ ,
H(t) ∈ AC[R+;X ′

A∗ ,G∗ ], and D1−B
+ H(t) ∈ C[R+;X ′

A∗ ,G∗ ]. Then, for any T > 0, Cauchy
problem

DB
∗ V(t) = F (A∗)V(t) + H(t), t > 0, (88)

V(0) = Ψ, (89)

has a unique solution V(t) ∈ C∞[(0, T];X ′
A∗ ,G∗ ] ∩ C[[0, T];X ′

A∗ ,G∗ ], having the representation

V(t) = S(t, A∗)Ψ +

t∫
0

S(t − τ, A∗)D1−B
+ H(τ)dτ, t > 0, (90)

where S(t, A∗) is the operator with the matrix symbol S(t, z) defined in (158).

Proof. We note that elements DB
∗ V(t) and F (A∗)V(t) belong to the space X ′

A∗ ,G∗ if V(t) ∈
X ′

A∗ ,G∗ for each fixed t ≥ 0. This fact follows from the definition of the fractional derivative
DB
∗ and Theorem 4.

We show that V(t) defined in (90) satisfies the following conditions:

⟨DB
∗ V(t), Φ⟩ = ⟨V(t),FT(A)Φ⟩+ ⟨H(t), Φ⟩, t > 0, (91)

⟨V(0), Φ⟩ = ⟨Ψ(x), Φ⟩, (92)

where FT(A) is the conjugate transpose of F (A∗), for an arbitrary element Φ in the space
XA,G. Indeed, to prove this fact, let us first assume that H(t) = 0 (as an element of X ′

A∗ ,G∗ )
for all t ≥ 0. Then, (91) takes the form〈[

DB
∗ S(t, A∗)−F (A∗)

]
V(t), Φ

〉
=

〈
V(t),

[
DB
∗ S(t, A)−F (A)

]T
Φ

〉
= 0, (93)

for each fixed t > 0. The operator S(t, A) is constructed so that DB
∗ S(t, A) − F (A) =

0, which implies [DB
∗ S(t, A) − F (A)]T = 0, as well. Indeed, if V(t) is a solution to

Equation (74), then it follows from representation (84) that DB
∗ V(t) = DB

∗ S(t, A)Φ =
F (A)Φ for any fixed Φ ∈ XA,G. This implies the equality DB

∗ S(t, A) = F (A). Thus,
Equation (91) is valid for all Φ ∈ XA,G.

Further, it follows from the construction of the operator S(t, A) that the symbol S(t, z)
at t = 0 reduces to the identity matrix. Therefore, the operator corresponding to the matrix
symbol S(0, z) is the identity operator. Hence, V(0) = S(0, A∗)Φ = Φ. Thus, equality (92)
is also verified.

In the general case, for non-zero H(t), representation (90) is an implication of the
fractional Duhamel principle [10,37].

Remark 3. Obtaining closed-form representations for Qα,j,l,k and να,j,l,k in the general case is
possible, but it is very cumbersome. In the case of m = 2, see (64)–(67).



Fractal Fract. 2024, 8, 254 21 of 37

3.3. Fractional Multi-Order Systems of Differential-Operator Equations with Triangular
Matrix-Valued Operators

If the matrix symbol F (z) in system (1) is a lower or upper triangular matrix, then
representation (83) is significantly simplified. See Theorem 3 in the case of a lower triangular
matrix for m = 2. In this section, we derive representation formulas for the solution for
arbitrary m ≥ 2. For fractional systems of pseudo-differential equations with lower or
upper triangular matrix symbols, the representation formulas are presented in paper [18].

Assume that B is an arbitrary multi-order with components βk ∈ (0, 1), k = 1, . . . , m
and F (z) is a lower triangular matrix symbol. Then, system (76) takes the form

sβ1 − f11(z) 0 . . . 0
− f21(z) sβ2 − f22(z) . . . 0

. . . . . . . . . . . .
− fm1(z) − fm2(z) . . . sβm − fmm(z)




L[u1](s)
L[u2](s)

. . .
L[um](s)

 =


sβ1−1 φ1
sβ2−1 φ2

. . .
sβm−1 φm

.

The latter implies the following recurrent relations:

L[u1](s) =
sβ1−1

sβ1 − f11(z)
φ1, (94)

L[uk](s) =
sβk−1

sβk − f11(z)
φk +

k−1

∑
j=1

fkj(z)

sβk − fkk(z)
L[uj](s), k = 2, . . . , m. (95)

In order to represent the solution (95) through φ1, . . . , φm, we introduce the following
notations. Let T = {k, k − 1, . . . , k − j}, where k and j are integers satisfying conditions
1 ≤ k ≤ m and 1 ≤ j < k, respectively. By Tl , 1 ≤ l ≤ j − 1, we denote the set of subsets
of T such that, from T , exactly l numbers except k and k − j are removed. Then, for
L[uk](s), k = 2, . . . , m, in (95), we have

L[uk](s) =
sβk−1

sβk − f11(z)
φk +

k−1

∑
j=1

j−1

∑
l=1

Pkjl(z)s
βk−j−1

∏
τ∈Tl

(
sβτ − fττ(z)

) φk−j, k = 2, . . . , m, (96)

where Pkjl , k = 2, . . . , m, j = 1, . . . , k − 1, are the multiplication and sum combinations
of functions fτµ, τ = 2, . . . , k, µ = 1, . . . , ν − 1. Now, making use of formula (19) and the
convolution formula for the Laplace transform, it follows from (94) and (96) that

u1(t) = Eβ1( f11(A)tβ1)φ1, (97)

uk(t) = Eβk ( fkk(A)tβk )φk

+
k−1

∑
j=1

j−1

∑
l=1

Pkjl(A)Eβk−j

(
fk−jk−j(A)tβk−j

)
∗
(
∗ ∏

τ ∈ Tl
τ ̸= j

tβτ−1Eβτ ,βτ
( fττ(A)tβτ )

)φk−j, (98)

k = 2, . . . , m,

where Jγ is the fractional integration operator (see (11)) of order γ > 0, “∗” is the convolu-
tion operation, and ”∗∏” is the convolution product. Thus, the solution of homogeneous
Cauchy problem (74), (75) has the representation

U (t) = S(t, A)Φ, (99)
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where S(t, A) is the solution matrix operator with the matrix symbol S(t, z) with entries

sk j(t, z) =



0, if j > k,
Eβk ( fkk(z)tβk ), if j = k,
j−1
∑

l=1
Pkjl(z)Eβ j( f jj(z)t

β j) ∗
(
∗ ∏

τ ∈ Tl
τ ̸= k − j

tβτ−1Eβτ ,βτ
( fττ(z)tβτ )

)
, if j < k.

(100)

Similarly, if the matrix symbol F (z) is upper triangular, then the components of the
solution U (t) take the form

um(t) = Eβm( f11(A)tβm)φm, (101)

uk(t) = Eβk ( fkk(A)tβk )φk

+
m

∑
j=k+1

m−j−1

∑
l=1

Qkjl(A)Eβ j( f jj(A)tβ j) ∗
(
∗ ∏

ν ∈ Pl
ν ̸= j

tβν−1Eβν ,βν
( fνν(A)tβν)

)φj, (102)

k = m − 1, . . . , 1,

where Qkj(A) are operators obtained from fνµ(A), ν = k, . . . , m− 1, µ = k+ 1, . . . , m, via the
product and sum combinations and Pl is the set of subsets of the set P = {k, k + 1, . . . , m}
such that exactly l (1 ≤ l ≤ m − k − 1) numbers except k and m are removed from P .
In turn, the matrix symbol of the solution operator in representation formula (99) takes
the form

skj(t, z) =



0, if j < k,
Eβk ( fkk(z)tβk ), if j = k,
m−j−1

∑
l=1

Qkjl(z)Eβ j( f jj(z)t
β j) ∗

(
∗ ∏

ν ∈ Pl
ν ̸= j

tβν−1Eβν ,βν
( fνν(z)tβν)

)
, if j > k.

(103)

3.4. Commensurate and Non-Commensurate Rational-Order Systems

If all components of the vector-order B are equal, then the transformation of the matrix
symbol F (z) to the Jordan canonical form can be effectively utilized in the derivation of
representation formulas for the solution. Theorem 1 serves as an important mathematical
basis for such an approach. If all components of B are rational (not necessarily being equal),
then this case can be reduced to the case with equal components, but at the cost of an
increased number of equations (see [18]). We note that both these cases were presented
in [18] for time-fractional systems of pseudo-differential equations. Below, applying the
same technique presented in [18], but not providing explicit details, we generalize it for
fractional-order systems of differential-operator equations, which significantly expands the
scope of application.

Let F (A) be the matrix-valued operator with the matrix symbol F (z), z ∈ G, whose
Jordan normal form is

M−1(z)F (z)M(z) = Λ(z) + N =


J1(z) 0 . . . 0

0 J2(z) . . . 0
. . . . . . . . . . . .
0 0 . . . JL(z)

, (104)

where M(z) is a transformation matrix invertible at each z ∈ G, and Jℓ(z), ℓ = 1, . . . , L, are
Jordan blocks corresponding to eigenvalues λ1(z), . . . , λL(z) of the matrix

F (z) = M(z)
(

Λ(z) + N
)

M−1(z).
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First, we derive a representation formula for the solution operator of the initial value
problem for system (1) in the homogeneous case

DB
∗ U(t) = F (A)U(t), t > 0, (105)

U(0) = Φ, (106)

or due to (104) equivalently

DB
∗ U(t) = M(A)

(
Λ(A) + N

)
M−1(A)U(t), t > 0, (107)

U(0) = Φ, (108)

where M(A) is the transformation matrix operator with the matrix symbol M(z).
In order to solve problem (107), (108), we use the operator approach, considering

the following system of ordinary fractional-order differential equations dependent on the
parameter z ∈ G :

DB
∗ U(t, z) = M(z)

(
Λ(z) + N

)
M−1(z)U(t, z), t > 0, z ∈ G, (109)

U(0, z) = Ψ, (110)

assuming that Ψ is a vector of length m. Since all components of B are equal, the matrix-
valued operator IDB

∗ = diag(Dβ
∗ , . . . , Dβ

∗ ) commutes with M(z), and therefore system (109)
can be expressed as

M(z) IDB
∗ M−1(z)U(t, z) = M(z)

(
Λ(z) + N

)
M−1(z)U(t, z), t > 0, z ∈ G, (111)

Denote V(t, z) = M−1(z)U(t, z). Then, we have the Cauchy problem

DB
∗ V(t, z) =

(
Λ(z) + N

)
V(t, z), t > 0, z ∈ G, (112)

V(0, z) = M(z)Ψ. (113)

Now, applying the Laplace transform in the vector form (12) to both sides of sys-
tem (112), we obtain

IsBL[V](s) = IsB−1M(z)Ψ +
(

Λ(z) + N
)
L[V](s), s > 0, ξ ∈ G.

where IsB , IsB−1 are diagonal matrices with diagonal entries sβ j , sβ j−1 j = 1, . . . , m, respec-
tively. The latter implies a system of algebraic equations with parameter z ∈ G :[

IsB −
(

Λ(z)− N
)]

L[V](s) = IsB−1M(z)Ψ. (114)

Let
Q0 = {z ∈ C : det

[
IsB −

(
Λ(z)− N

)]
= 0, ∀s > 0}. (115)

If G ∩ Q0 = ∅, then system (114) has a unique solution

L[V](s) = N (s, z)M(z)Ψ, (116)

where

N (s, z) =
[

IsB −
(

Λ(z)− N
)]−1

IsB−1. (117)
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This matrix has the block diagonal form

N (s, z) =


S1(s, z) 0 . . . 0

0 S2(s, z) . . . 0
. . . . . . . . . . . .
0 0 . . . SL(s, z)

,

with the blocks Sℓ(s, z), ℓ = 1, . . . , L, of size mℓ corresponding to the eigenvalue λℓ of
multiplicity mℓ :

Sℓ =


sβ−1

sβ−λℓ(z)
sβ−1

(sβ−λℓ(z))2 . . . sβ−1

(sβ−λℓ(z))
mℓ

0 sβ−1

sβ−λℓ(z)
. . . sβ−1

(sβ−λℓ(z))
mℓ−1

. . . . . . . . . . . .
0 0 . . . sβ−1

sβ−λℓ(z)

, ℓ = 1, . . . L.

Further, applying the inverse Laplace transform, taking into account (19) and (21),
and returning to U(t, z) = M(z)V(t, z), in accordance with Theorem 1, we have

U(t, z) = EB(ItBF (z))Φ = M(z)EB
((

Λ(z) + N
)
tB
)

M−1(z)Φ, t > 0, (118)

where EB
((

Λ(z) + N
)
tB
)

is the block diagonal matrix of the form

EB
((

Λ(z) + N
)
tB
)
=

Eβ(tβ J1(z)) . . . 0
. . . . . . . . .
0 . . . Eβ(tβ JL(z))

, (119)

with blocks

Eβ(tβ Jℓ(z)) =



Eβ(λℓ(z)tβ)
tβE′

β(λℓ(z)tβ)

1! . . .
t(mℓ−1)βE

(mℓ−1)
β (λℓ(z)tβ)

(mℓ−1)!

0 Eβ(λℓ(z)tβ) . . .
t(mℓ−2)βE

(mℓ−2)
β (λℓ(z)tβ)

(mℓ−2)!
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . 0 Eβ(λℓ(z)tβ)


, (120)

for ℓ = 1, . . . , L.
Thus, the solution of problem (105)-(106) has the representation

U(t) = S(t, A)Φ, t > 0, (121)

where S(t, A) is the solution matrix operator with the matrix symbol

S(t, z) = EB(ItBF (z)) = M(z) EB
(

tβ
(
Λ(z) + N

))
M−1(z), t > 0, z ∈ G. (122)

Now, let us consider the incommensurate case B = (β1, . . . , βm), with rational com-
ponents β j = qj/pj ∈ (0, 1), where pj, qj are positive co-prime integers. Let p be the
least common divisor of numbers p1, . . . , pm. Then, one can write β j as β j = nj/p, where
nj = (qj p)/pj is an integer. Therefore, the operator DB

∗ can be presented in the form

DB
∗ = (Dβ1

∗ , . . . , Dβm
∗ ) =

(
(D

1
p
∗ )

n1 , . . . , (D
1
p
∗ )

nm
)

.
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It follows that, for each j = 1, . . . , m, we have

D
β j
∗ uj = D

1
p
∗ ◦ · · · ◦︸ ︷︷ ︸

nj times

D
1
p
∗ uj.

Introduce a vector function U(t) of length N = n1 + · · ·+ nm :

U(t) = (u1(t), u1
1(t), . . . , un1−1

1 (t), . . . , um(t), u1
m(t), . . . , unm−1

m ),

where u1
j = D

1
p
∗ uj, . . . , u

nj
j = D

1
p
∗ u

nj−1
j , j = 1, . . . , m. Now, system (105) can be reduced to a

system of N equations with equal fractional-order 1/p derivatives on the left-hand side.
The reduced system has the form

D
1
p
∗ U(t) = F(A)U(t), (123)

where F(A) is the matrix operator with the matrix symbol

F(z) =


F11(z) F12(z) . . . F1m(z)
F21(z) F22(z) . . . F2m(z)

. . . . . . . . . . .
Fm1(z) Fm2(z) . . . Fmm(z)


whose diagonal block matrices are of sizes nj × nj

Fjj(z) =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

f jj(z) 0 0 . . . 0

, j = 1, . . . , m,

and non-diagonal block matrices are of sizes nj × nk

Fjk(z) =


0 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0

f jk(z) 0 0 . . . 0

, j, k = 1, . . . , m.

The initial condition for system (123) takes the form

U(0) = (φ1, 0, . . . , 0︸ ︷︷ ︸
n1−1 times

, φ2, 0, . . . , 0︸ ︷︷ ︸
n2−1 times

, . . . , φm, 0, . . . , 0︸ ︷︷ ︸
nm−1 times

). (124)

Now, we derive a representation formula for the solution of Cauchy problem (105),
(106). We notice that that the characteristic polynomial of F(z),

PN(λ, z) = det(Iλ − F(z)), λ ∈ C, z ∈ G,

and the function h(s, z) = det(IsB −F (z)) are connected through the relationship

h(s, z) = PN(s
1
p , z), z ∈ G. (125)
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Let λ1(z), . . . , λL(z) be eigenvalues of the matrix F(z) with respective multiplicities
µ1, . . . , µL. Then,

PN(λ, z) =
L

∏
ℓ=1

(λ − λℓ(z))µℓ ,

which implies

det
(

IsB −F (z)
)
=

L

∏
ℓ=1

(
s

1
p − λℓ(z)

)µℓ
.

Similarly, we can write the determinant of the matrix Fj(s, z), obtained by replacing
the j-th column of the matrix IsB −F (z) with the column vector IsB−1Φ, in the form

det(Fj(s, z)) =
m

∑
k=1

Pjk(s
1
p , z)sβk−1 φk,

where Pjk(λ, z) is a polynomial in the variable λ of order N − nj. Hence, for the j-th
component uj(t) of the Laplace transform of the solution vector U (t), we have

L[uj](s) =
det(Fj(s, z))

det
(

IsB −F (z)
)

=
m

∑
k=1

Pjk(s
1
p , z)

∏L
ℓ=1

(
s

1
p − λℓ(z)

)µℓ
sβk−1 φk, (126)

Further, using the partial fraction decomposition

Pjk(s
1
p , z)

∏L
ℓ=1

(
s

1
p − λℓ(z)

)µℓ
=

L

∑
ℓ=1

µℓ

∑
ν=1

Cjk
ℓν(z)(

s
1
p − λℓ(z)

)ν ,

where Cjk
ℓν(z) do not depend on s, Equation (126) can be expressed as

L[uj](s) =
m

∑
k=1

L

∑
ℓ=1

µL

∑
ν=1

Cjk
ℓν

sβk−1(
s

1
p − λℓ(z)

)ν φk.

Inverting the latter and using formula (20), we obtain

uj(t) =
m

∑
k=1

L

∑
ℓ=1

µL

∑
ν=1

Cjk
ℓν t

ν
p −βk

(ν − 1)!
E(ν−1)

1
p , 1

p −βk+1

(
t

1
p λℓ(z)

)
φk, j = 1, . . . , m.

It follows that the solution operator S(t, A) has the matrix symbol S(t, z), whose
entries are

sjk(t, z) =
L

∑
ℓ=1

µL

∑
ν=1

Cjk
ℓν t

ν
p −βk

(ν − 1)!
E(ν−1)

1
p , 1

p −βk+1

(
t

1
p λℓ(z)

)
, j, k = 1, . . . , m. (127)

Summarizing, we obtain the following theorem on formal representations of the
solutions.

Theorem 6. Let the eigenvalues λℓ(ξ), ℓ = 1, . . . , L, of the matrix symbol F (ξ) of the matrix-
valued operator F (A) in system (1) have respective multiplicities mℓ, ℓ = 1, . . . , L, where m1 +
· · ·+ mL = m. Then, the solution to system (1), (2) has the representation
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U (t) = S(t, A)Φ +
∫ t

0
S(t − τ, A)D1−B

+ H(τ)dτ

where S(t, A) is the matrix-valued solution operator with the matrix symbol S(t, z) defined

(a) in (122) if B = (β, . . . , β) with equal components β ∈ (0, 1], and
(b) in (127) if B = (β1, . . . , βm) with rational components β j = qj/pj ∈ (0, 1].

4. The Riemann–Liouville Case

Similar results hold in the case that the fractional derivatives in system (1) are in the
Riemann–Liouville sense. Therefore, below, we briefly formulate the corresponding asser-
tions.

Consider the initial value problem

DB
+U (t) = F (A)U (t) + H(t), t > 0, (128)

(J 1−BU )(0) = Φ, (129)

where DB
+U (t) = (Dβ1

+ u1(t), . . . , Dβm
+ um(t)), and the matrix operator F (A), vector-valued

elements H(t), and Φ are specified below. Using the same technique that was used in the
case of Caputo derivatives, one can show that, in the case of Riemann–Liouville derivatives,
the solution matrix operator S+(t, A) has the symbol

S+(t, z) = L−1
s→t

{[
IsB −F (z)

]−1
}

, t ≥ 0, z ∈ G ⊂ C. (130)

The following theorems hold.

Theorem 7. Let A be a closed operator defined on a Banach space X, and the set G satisfies the
condition G ∩ Q0 = ∅, where Q0 is defined in (115), Φ ∈ ExpA,G, and H(t) ∈ AC[R+; ExpA,G].

Then, for any T > 0, Cauchy problem (128) and (129) has a unique solution U(t) ∈
C∞[(0, T]; ExpA,G] ∩ C[[0, T]; ExpA,G], having the representation

U(t) = S+(t, A)Φ +

t∫
0

S+(t − τ, A)H(τ)dτ, t > 0, (131)

where S+(t, A) is the solution matrix operator with the matrix symbol S+(t, z) defined in (130).

Theorem 8. Let X be a reflexive Banach space with the conjugate X∗, A be a closed operator with
a domain D ⊂ X, and F (A) be a matrix operator with the symbol F (z) continuous on G and
satisfying condition G ∪ Q0 = ∅, where Q0 is defined in (115). Assume that Ψ ∈ E ′

A∗ ,G∗ , and
H(t) ∈ AC[R+; E ′

A∗ ,G∗ ].
Then, for any T > 0, Cauchy problem

DB
+V(t) = F (A∗)V(t) + H(t), t > 0, (132)

J 1−BV(0) = Ψ, (133)

has a unique solution V(t) ∈ C∞[(0, T]; E ′
A∗ ,G∗ ] ∩ C[[0, T]; E ′

A∗ ,G∗ ], having the representation

V(t) = S+(t, A∗)Ψ +

t∫
0

S+(t − τ, A∗)H(τ)dτ, t > 0, (134)

where S+(t, A∗) is the operator with the matrix symbol S+(t, z) defined in (130).
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Concerning representation formulas for the solution in the case of Riemann–Liouville
derivatives, their derivation is similar to the Caputo derivative case. Therefore, we demon-
strate the detailed derivation of the representation formula only in the case m = 2 with
arbitrary multi-order B and matrix symbol F (z), providing the final result for arbitrary
m ≥ 2.

4.1. The Case m = 2 and β1 ̸= β2

Consider the system
DB
+U (t) = F(A)U (t) +H(t), (135)

where B = (β1, β2), 0 < β1 < β2 ≤ 1, H(t) = (h1(t), h2(t)) is a given vector function, and

F(A) =

[
f11(A) f12(A)
f21(A) f22(A)

]
, (136)

with the initial condition
(J1−BU )(0) = Φ = (φ1, φ2), (137)

where Φ ∈ XA,G. We assume that G does not contain the roots of the equation

∆(z) = f11(z) f22(z)− f21(z) f12(z)) = 0.

To find entries of the solution operator S(t, z), we consider the homogeneous counter-
part of system (52), writing it in the explicit form{

Dβ1
∗ u1(t) = f11(A)u1(t) + f12(A)u2(t),

Dβ2
∗ u2(t) = f21(A)u1(t) + f22(A)u2(t).

Applying the Laplace transform and replacing A with the parameter z, we have{
(Isβ1 − f11(z))L[u1](s)− f12(z)L[u2](s) = φ1,
− f21(z)L[u1](s) + (Isβ2 − f22(z))L[u2](s) = φ2.

(138)

The solution of system (55) is

L[u1](s) =
1

Ψ(s, z)

(
p1(s, z)φ1 + q1(s, z)φ2

)
z ∈ G, s > r∗(z) (139)

L[u2](s) =
1

Ψ(s, z)

(
q2(s, z)φ1 + p2(s, z)φ2

)
, z ∈ G, s > r∗(z). (140)

where Ψ(s, z) is defined in (58) and

p1(s, z) = sβ2 − f22(z), q1(s, z) = f12(z), (141)

p2(s, z) = sβ1 − f11(z), q2(s, z) = f21(z), (142)

and r∗(z) is the real part of the roots of the equation Ψ(s, z) = 0. This solution is uniquely
defined, since, by assumption, G ∩ Q = ∅, where Q = {z : Ψ(s, z) = 0}.

Introduce ρjk = j(β2 − β1) + (k − j)β2. Obviously, ρ00 = 0 and ρjk > 0 if k > 0, 0 ≤
j ≤ k. The entries s+jl (t, z), j, l = 1, 2, of the matrix symbol S+(t, z) have representations

s+11(t, z) =
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k
Wβ1,β1(t, z), (143)
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s+12(t, z) = f12(z)
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k
Jβ2Wβ1,β1(t, z), (144)

s+21(t, z) = f21(z)
(

I − f22(z)Jβ2
) ∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k
Jβ2Wβ1,β1(t, z), (145)

s+22(t, z) =
∞

∑
k=0

(
f22(z)Jβ2−β1 − ∆(z)Jβ2

)k[
Wβ1,β2(t, z)− f11(z)Jβ2Wβ1,β1(t, z)

]
, (146)

where

Wβ1,β j(t, z) =
tkβi+β j−1

k!
E(k)

β1,β j
(tβ1 f11(z)), j = 1, 2.

Theorem 9. The solution to system (128), (129) has the representation

U (t) = S+(t, A)Φ +
∫ t

0
S+(t − τ, A)D1−B

+ H(τ)dτ

where S+(t, A) is the matrix-valued solution operator with the matrix symbol S+(t, z), the entries
of which are defined in (143)–(146).

Theorem 10. Let f12(z) = 0. Then, the symbol of the solution operator has entries

s+11(t, z) = tβ1−1Eβ1,β1(t
β1 f11(z)), S12(t, z) = 0, (147)

s+21(t, z) = f21(t, z)
(

tβ1−1Eβ1(t
β1 f11(z))

)
∗
(

tβ2−1Eβ2,β2(t
β2 f22(z))

)
, (148)

s+22(t, z) = tβ2−1Eβ2,β2(t
β2 f22(z)), (149)

where “∗” is the convolution operation.

The proof is similar to the proof of Theorem 3.

4.2. The Case m ≥ 2 and Arbitrary B
In the case of arbitrary m ≥ 2, following the same approach demonstrated in Section 3.2,

one can derive the representation formula. Namely, instead of Equation (76), one has

(IsB −F (z))L[U ](s) = Φ, (150)

and, therefore, instead of Equation (79), one obtains

S(t, z) = L−1
s→t

[
(IsB −F (z))−1

]
, (151)

the symbol of the solution operator. The entries of the latter are

sjl(t, z) =
∞

∑
k=0

∑
α

Rα,j,l,k(z)L−1
s→t

 1

sνα,j,l,k
(

sβ1 + g(z)
)k+1


=

∞

∑
k=0

∑
α

Rα,j,l,k(z)Jνα,j,l,k

[
tkβ1+β1−1

k!
E(k)

β1,β1

(
− tβ1 g(z)

)]
, j, l = 1, . . . , m, (152)

where Rα,j,l,k(z) are the sum and product combinations of the entries of F (z).
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4.3. The Case m ≥ 2 and B = (β, . . . , β)

If the components of B are equal, then, again, we can use the Jordan normal form to
derive a representation formula for the solution. In this case, following the method used
in Section 3.4, we consider the system of ordinary fractional-order differential equations
depending on the parameter z ∈ G

DB
+V(t, z) =

(
Λ(z) + N

)
V(t, z), t > 0, (153)

where the symbol Λ(z) + N of the matrix operator Λ(A) + N has a representation in the
Jordan block form (104). Then, for the Laplace transform of V(t), we obtain a linear system
of algebraic equations (

IsB − Λ(z)− N
)

L[V](s) = M−1Φ. (154)

If Q0 ∩ G = ∅, then the latter has a unique solution represented through the inverse

matrix N (s, z) =
(

IsB − Λ(z)− N
)−1

, which has the block diagonal form

S(s, z) =


S1(s, z) 0 . . . 0

0 S2(s, z) . . . 0
. . . . . . . . . . . .
0 0 . . . SL(s, z)

,

with the blocks Sℓ(s, z), ℓ = 1, . . . , L, of size mℓ corresponding to the eigenvalue λℓ of
multiplicity mℓ :

Sℓ =



1
sβ−λℓ(z)

1
(sβ−λℓ(z))2 . . . 1

(sβ−λℓ(z))
mℓ

0 1
sβ−λℓ(z)

. . . 1
(sβ−λℓ(z))

mℓ−1

. . . . . . . . . . . .
0 0 . . . 1

sβ−λℓ(z)

, ℓ = 1, . . . L.

Now, using formula (22), one can find the inverse Laplace transform of each entry of
matrices Sℓ, ℓ = 1, . . . , L. Hence, the solution matrix operator has the block
matrix representation

S(t, A) = M(A)GB
((

Λ(A) + N
)
tB
)

M−1(A),

where the block matrix operator GB
((

Λ(A) + N
)
tB
)

has the matrix symbol

GB
((

Λ(z) + N
)
tB
)
=

Gβ(tβ J1(z)) . . . 0
. . . . . . . . .
0 . . . Gβ(tβ JL(z))

, (155)

with blocks

Gβ(tβ Jℓ(z)) =



tβ−1Eβ,β(λℓ(z)tβ)
t2β−1E′

β,β(λℓ(z)tβ)

1! . . .
t(mℓ−1)β−1E

(mℓ−1)
β,β (λℓ(z)tβ)

(mℓ−1)!

0 tβ−1Eβ,β(λℓ(z)tβ) . . .
t(mℓ−2)β−1E

(mℓ−2)
β,β (λℓ(z)tβ)

(mℓ−2)!
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . 0 tβ−1Eβ,β(λℓ(z)tβ)


, (156)

for ℓ = 1, . . . , L.
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Concluding, the solution matrix operator has the representation

U(t) = S(t, A)Φ, t > 0, (157)

where S(t, A) is the solution matrix operator with the matrix symbol

S(t, z) = M(z) GB
((

Λ(z) + N
)
tB
)

M−1(z), t > 0, z ∈ G. (158)

5. Some Applications and Examples

Example 2. Time-fractional systems of ordinary differential equations.

Consider the following initial-value problem for a time-fractional system of ordinary
differential equations

DB
∗ U(t) = AU(t) + H(t), t > 0,

U(0) = U0,

where A is a (constant) m × m matrix, U0 = (u0
1, . . . , u0

m) ∈ Rm, and H(t) is an absolute
continuous vector function. The theorems obtained above are applicable to this case with
the proper interpretation.

Let B = (β1, . . . , βm), 0 < β j ≤ 1, be arbitrary numbers, ajk, j, k = 1, . . . , m, be entries
of the matrix A, and d = det(A). Suppose that β1 = min{β1, . . . , βm}. Consider first the
corresponding homogeneous system

DB
∗ U(t) = AU(t), U(0) = U0.

Define the function

Ψ(s) = det(Isβ − F) = sβ1+···+βm + gsβ2+···+βm + . . . .

The solution to the latter has the form U(t) = S(t)U0, where S(t), t ≥ 0, is the solution
matrix. The components of S(t) due to Theorem 4 have entries

sjl(t) =
∞

∑
k=0

∑
α

Qα,j,l,k Jνα,j,l,k

[
tkβ1

k!
E(k)

β1

(
− gtβ1

)]
, j, l = 1, . . . , m, (159)

where Qα,j,l,k are defined similarly to Qα,j,l,k(z) in (82), replacing fkj(z) with akj. In particular,
if m = 2, then

s11(t) =
(

I − a22 Jβ2
) ∞

∑
k=0

(
a22 Jβ2−β1 − dJβ2

)k[ tkβ1

k!
E(k)

β1
(a11tβ1)

]
,

s12(t) = a12

∞

∑
k=0

(
a22 Jβ2−β1 − dJβ2

)k
J
( tkβ1+β1−1

k!
E(k)

β1,β1
(a11tβ1)

)
,

s21(t) = a21

∞

∑
k=0

(
a22 Jβ2−β1 − dJβ2

)k
Jβ2

( tkβ1

k!
E(k)

β1
(a11tβ1)

)
,

s22(t) =
∞

∑
k=0

(
a22 Jβ2−β1 − dJβ2

)k[ tkβ1

k!
E(k)

β1
(a11tβ1)− a11 J

( tkβ1+β1−1

k!
E(k)

β1,β1
(tβ1 a11)

)]
.
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Additionally, if a12 = 0, then

s11(t) = Eβ1(a11tβ1), s12(t) = 0,

s21(t) = a21Eβ1(a11tβ1) ∗ (tβ2−1Eβ1,β2(a22tβ2)), s22 = Eβ2(a22tβ2).

Example 3. Blood alcohol level problem.

The authors of paper [38] considered the following blood alcohol problem using
fractional-order derivatives in the sense of Caputo–Djrbashian:{

Dα
∗A(t) = −κ1 A(t),

Dβ
∗B(t) = κ1 A(t)− κ2B(t),

(160)

where A represents the concentration of alcohol in the stomach and B is the concentration
of alcohol in the blood, and κ1, κ2 are some real constants, which indicate transition rates.
The initial conditions are given by

A(0) = A0, B(0) = B0. (B0 = 0 if initially there is no alcohol in the blood.)

This problem can be presented as DB
∗ U (t) = FU (t), where U (t) = (A(t), B(t)),

B = (α, β) and

F =

[
−κ1 0
κ1 −κ2

]
.

In accordance with Theorem 2, the solution U (t) has the representation

A(t) = A0Eα(−κ1tα), (161)

B(t) = κ1 A0

(
Eα(−κ1tα)

)
∗
(

tβ−1Eβ,β(−κ2tβ)
)
+ B0Eβ(−κ2tβ). (162)

We note that the authors of [38] found the solution in the form A(t) = A0Eα(−κ1tα)
and (with B0 = 0)

B(t) = β
∫ t

0
κ1 A0Eα(−κ1(t − s)α)sβ−1E′

β(−κ2sβ)ds,

which is the same as (161), (162), due to the equality βE′
β(z) = Eβ,β(z).

Example 4. Fractional-order systems for a relativistically free particle.

The wave function of a relativistically free particle of mass m is described by the
Klein–Gordon equation(

1
c2

∂2

∂t2 −∇2 +
m2c2

h̄2

)
Ψ(t, x) = 0, x ∈ R3,

where c is the speed of light, h̄ is Planck’s constant, and ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), the gradient
operator. Dirac’s equation for relativistically free particles, in fact, is a system of the form

ih̄
∂Ψ(x, t)

∂t
= (ich̄α · ∇+ βmc2)Ψ(x, t),
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where α and β are 4 × 4 matrices satisfying certain conditions, and Ψ(x, t) is a multi-
component wave function. Using the adopted units c = h̄ = 1, the latter can be written in
the explicit form [39]

i


∂ψ1
∂t

∂ψ2
∂t

∂ψ3
∂t

∂ψ4
∂t

 =


m 0 −i ∂

∂x3
i ∂

∂x1
+ ∂

∂x2

0 m −i ∂
∂x1

+ ∂
∂x2

∂
∂x3

−i ∂
∂x3

−i ∂
∂x1

− ∂
∂x2

−m 0
−i ∂

∂x1
+ ∂

∂x2
i ∂

∂x3
0 −m




ψ1
ψ2
ψ3
ψ4

 (163)

Multiplying this by −i, we can rewrite system (163) in the form (1)

∂Ψ(t, x)
∂t

= F (A)Ψ(t, x), t > 0, x ∈ R3, (164)

where F (A), A = −i∇ = −i( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), is the matrix-valued operator with the symbol

F (ξ) =


−im 0 ξ3 iξ1 + ξ2

0 −im −iξ1 + ξ2 ξ3
−iξ3 −iξ1 − ξ2 im 0

−iξ1 + ξ2 iξ3 0 im

, ξ = (ξ1, ξ2, ξ3) ∈ R3. (165)

Replacing ∂/∂t on the left of (164) with Dγ
∗ , we obtain a Dirac-like fractional-order

system. Note that some Dirac-like systems are considered in papers [27,28,40,41].
Thus, consider the system

Dγ
∗ Ψ(t, x) = F (−i∇)Ψ(t, x),

where 1/2 < γ ≤ 1 and F (−i∇) has the symbol F (ξ2, ξ2, ξ3) defined in (165). The matrix
F (z) has eigenvalues

λ1−4(ξ) = ±
√
−m2 ± i

√
(ξ2

1 + ξ2
2)

2 + ξ4
3.

If ξ ̸= 0, then all eigenvalues are of multiplicity one, and hence diagonalizable.
Consequently, there exists an invertible matrix M(ξ), such that F (ξ) = M(ξ)Λ(ξ)M−1(ξ),
with Λ(ξ) = diag(λ1(ξ), . . . , λ4(ξ)). Thus, in accordance with Theorem 6, the solution is
represented in the form Ψ(t, x) = S(t,−i∇)Ψ(0, x), where the solution pseudo-differential
operator S(t,−i∇) has the matrix symbol

S(t, ξ) = M(ξ)diag
(

Eγ(tγ)λ1(ξ)), . . . , Eγ(tγλ4(ξ))
)

M−1(ξ),

and components ψk(x), k = 1, . . . , 4, of Ψ(0, x) have Fourier transforms with compact
supports in G = R3 \ {0}.

Example 5. A commensurate system of pseudo-differential equations.

Let the matrix-valued operator F (A) be given by the matrix symbol

F (z) =
[
−|z|2 a2z̄

z −|z|2
]

, z ̸= 0.

Consider the system with the matrix-valued operator on the right corresponding to
the symbol F (z) :

DB
∗ U (t) =

[
−A2 a2 A∗

A −A2

]
U (t), t > 0, (166)
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with B = (β, β), 0 < β ≤ 1, A∗ as the adjoint of A, and the initial condition

U (0) = (φ1, φ2). (167)

Assume that a ̸= 0. Then, one can easily verify that the eigenvalues of F (z) are
λ(z) = |z|2 ± a|z|. Therefore, F (z) = M(z)Λ(z)M−1(z), where

Λ(z) =
[
|z|2 − a|z| 0

0 |z|2 + a|z|

]
, M(z) =

[
az̄ az̄
−|z| |z|

]
.

Then, due to Theorem 6, the solution operator S(t, A) has the matrix symbol

S(t, z) =
[

az̄ az̄
−|z| |z|

][
Eβ((−|z|2 − a|z|)tβ−1) 0

0 Eβ((−|z|2 + a|z|)tβ−1)

][ 1
2az̄ − 1

2|z|
1

2az̄
1

2|z|

]

=

 1
2

(
E−(z, t) + E+(z, t)

)
− az̄

2|z|

(
E−(z, t)− E+(z, t)

)
− |z|

2az̄

(
E−(z, t)− E+(z, t)

)
1
2

(
E−(z, t) + 1

2 E+(z, t)
) ,

where E±(z, t) = Eβ

(
(−|z|2 ± a|z|)tβ−1

)
.

Suppose that A =
√
−∆, where ∆ is the Laplace operator, with the domain

Dom(A) = H1(Rn) = { f ∈ L2(Rn) :
∫
Rn

(1 + |ξ|2)1/2|F[ f ](ξ)|2dξ < ∞}.

Here, F[ f ] is the Fourier transform of f (x). It is known that the spectrum of A is
the positive semi-axis, and hence we can accept G = [0, ∞). Then, the symbol S(t, z)
simplifies to

S(t, z) =

 1
2

(
E−(z, t) + E+(z, t)

)
− a

2

(
E−(z, t)− E+(z, t)

)
− 1

2a

(
E−(z, t)− E+(z, t)

)
1
2

(
E−(z, t) + 1

2 E+(z, t)
),

If a = 0, then F (z) has a double eigenvalue λ(z) = |z|2 and has the Jordan form

F (z) = M(z)
(

Λ(z) + N
)

M−1(z), where

Λ(z) =
[
|z|2 0

0 |z|2
]

, N(z) =
[

0 1
0 0

]
, M(z) =

[
0 1/z
1 1

]
.

Assume for simplicity that B = (1/2, 1/2). Then, in accordance with Theorem 6,
the solution operator S(t, A) has the matrix symbol

S(t, z) =
[

0 1/z
1 1

][
E1/2(−|z|2t1/2) t1/2E′

1/2(−|z|2t1/2)

0 E1/2(−|z|2t1/2)

][
−z 1
z 0

]
=

[
E1/2(−|z|2t1/2) 0

zt1/2E′
1/2(−|z|2t1/2) E1/2(−|z|2t1/2)

]
.

Thus, the solution U (t) has components

u1(t) = E1/2(t1/2∆)φ1, (168)

u2(t) = t1/2
√
−∆ E′

1/2(t
1/2∆)φ1 + E1/2(t1/2∆)φ2. (169)

Example 6. An incommensurate system of pseudo-differential equations.



Fractal Fract. 2024, 8, 254 35 of 37

Now, assume that B = (1/2, 1/3), A =
√
−∆, and F (z) is as in Example 5 with

a = 0. Then, since β1 = 1/2 and β2 = 1/3 are rational numbers, we can use the technique
described in Section 3.4 and reduce problem (166), (167) to a system of five equations with
equal orders β∗

j = 1/6, j = 1, . . . , 5. The reduced system has the form
D1/6
∗ U1(t, x)

D1/6
∗ U2(t, x)

D1/6
∗ U3(t, x)

D1/6
∗ U4(t, x)

D1/6
∗ U5(t, x)

 =


0 1 0 0 0
0 0 1 0 0
∆ 0 0 0 0
0 0 0 0 1√
−∆ 1 0 ∆ 0




U1(t, x)
U2(t, x)
U3(t, x)
U4(t, x)
U5(t, x)

, t > 0, x ∈ Rn, (170)

with the initial condition(
U1(0, x), U2(0, x), U3(0, x), U4(0, x), U5(0, x)

)
=

(
φ1(x), 0, 0, φ2(x), 0

)
.

The components U1(t, x) = u1(t, x) and U4(t, x) = u2(t, x) correspond to the solution
of (166), (167) with B = (1/2, 1/3). Applying the Fourier and Laplace transforms, we can
transform system (170) into the following algebraic equations:

s1/6L[F[U1]](s, z) = L[F[U2]](s, z) + s−5/6F[φ1](z),

s1/6L[F[U2]](s, z) = L[F[U3]](s, z),

s1/6L[F[U3]](s, z) = −|z|2L[F[U1]](s, z),

s1/6L[F[U4]](s, z) = L[F[U5]](s, z) + s−5/6F[φ2](z),

s1/6L[F[U5]](s, z) = zL[F[U1]](s, z)− |z|2L[F[U4]](s, z).

It follows that

L[F[U1]](s, z) =
s−1/2F[φ1](z)

s1/2 + |z|2
,

and

L[F[U4]](s, z) = z
s−1/2F[φ1](z)

(s1/2 + |z|2)(s1/3 + |z|2)
+

s−2/3F[φ2](z)
s1/3 + |z|2

.

Thus, the solution U (t, x) of problem (166), (167) in accordance with Theorem 6 has
the following components:

u1(t, x) = E1/2(∆t1/2)φ1(x),

u2(t, x) =
√
−∆

(
E1/2(∆t1/2) ∗ t−2/3E1/3,1/3(∆t1/3)

)
φ1(x) + E1/3(∆t1/3)φ2(x).

Note that Theorem 3 is applicable to this problem as well, resulting in the same solution.

6. Discussion

In this paper, the representation formula for the solution of the Cauchy problem for
arbitrary time-fractional multi-order linear systems of differential-operator equations is
obtained. Heretofore, the representation formulas were known in particular cases of com-
mensurate multi-order and in incommensurate multi-order cases with rational components.
The latter can be reduced to the former. The results obtained in this paper are new, even in
the case of linear time-fractional multi-order ordinary differential equations with a constant
matrix. The existence of a solution and its uniqueness is proven in some appropriate
topological vector spaces. Examples illustrating the obtained results are provided.
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