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Abstract: This paper deals with the constrained state regulation problem (CSRP) of descriptor
fractional-order linear continuous-time systems (DFOLCS) with order 0 < α < 1. The objective
is to establish the existence of conditions for a linear feedback control law within state constraints
and to propose a method for solving the CSRP of DFOLCS. First, based on the decomposition and
separation method and coordinate transformation, the DFOLCS can be transformed into an equivalent
fractional-order reduced system; hence, the CSRP of the DFOLCS is equivalent to the CSRP of the
reduced system. By means of positive invariant sets theory, Lyapunov stability theory, and some
mathematical techniques, necessary and sufficient conditions for the polyhedral positive invariant set
of the equivalent reduced system are presented. Models and corresponding algorithms for solving
the CSRP of a linear feedback controller are also presented by the obtained conditions. Under the
condition that the resulting closed system is positive, the given model of the CSRP in this paper for
the DFOLCS is formulated as nonlinear programming with a linear objective function and quadratic
mixed constraints. Two numerical examples illustrate the proposed method.

Keywords: descriptor fractional-order system; positive system; constrained state regulation; positively
invariant set; nonlinear programming

1. Introduction

Descriptor systems can be considered a powerful modeling tool since they can describe
processes governed by differential and algebraic equations [1]. They play an important
role in the field of system control theory because of their extensive practical background,
such as in chemistry, robotics, and circuit systems [2–4]. CSRP is a basic problem in control
systems in that there are always hard constraints on states and control inputs in practical
engineering problems. When addressing constraints problems, an effective and generic
approach relies on the invariance of polyhedral sets, an aspect thoroughly explored in [5–9].
In [10,11], the CSRP of descriptor integer order linear continuous-time systems has been
discussed by reformulating the descriptor systems into equivalent state-space systems, and
solutions are obtained by using the invariant sets methods.

Compared to integer-order differential equations, fractional-order differential equa-
tions can more accurately describe system behavior, especially in systems with memory
effects and long-range dependencies. Due to the memory effects of fractional-order deriva-
tives, they can better reflect the influence of the system’s historical states on its current state.
Therefore, the theory and methods of fractional-order systems have wide applications in
various fields such as control theory, signal processing, biomedical engineering, economics,
physics, and more [12,13]. Researchers have conducted extensive studies on fractional-
order systems, including stability [14], synchronization [15], and state estimation [16].
Moreover, in [17–20], the basic problems of stability and reachability of fractional-order
positive systems are studied. Descriptor systems provide a more precise description of
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system non-linearity and complexity, thus offering better adaptability and performance in
handling complex real-world problems. These advantages give descriptor systems an im-
portant position and promising prospects in scientific research and engineering applications.
Hence, there are also many research results on descriptor fractional-order systems. The
basic theory and application of the descriptor fractional-order system are studied in [21–23].
However, there are few studies on the CSRP of descriptor fractional-order systems. For
example, in [24], a class of decentralized controllers for descriptor fractional-order positive
systems stabilization is designed, and the solution of the controller gain matrix is given.
However, state and control constraints were not considered in the above research. In prac-
tical engineering problems with state constraints, the stability of the system is a premise
condition of the normal operation of the control system [25,26]. Because of the particularity
of fractional calculus, methods of the integer order system cannot be directly applied to
the fractional-order system with state constraints, which makes it necessary to study the
constrained state regulation of DFOLCS.

Based on above reasons, the purpose of this work is to design the linear state feedback
controller for the DFOLCS. We address the CSRP of DFOLCS by virtue of positively
invariant set (PIS) theory in this paper. The necessary and sufficient conditions for the
existence of a polyhedral PIS of the equivalent reduced system is presented, and models
and corresponding algorithms for solving the CSRP of a linear feedback controller are also
proposed by the obtained conditions. Under mild conditions where the resulting closed
system is positive, the given model of the CSRP in this paper for the DFOLCS is formulated
as nonlinear programming with a linear objective function and quadratic mixed constraints.
Numerical examples illustrate the proposed method. The contributions highlighted in this
paper are as follows:

(1) An equivalent fractional-order reduced system is obtained via the decomposition
and separation method and coordinate transformation.

(2) A necessary and sufficient condition for the existence of polyhedral PIS in the
equivalent reduced system is proposed based on PISs theory, Lyapunov stability theory,
and some mathematical techniques.

(3) Two-controller design algorithm for the CSRP of generic DFOLCS is presented.
Under the condition that the reduced system is positive, a nonlinear programming model
is proposed, which is easily performed from a point of computational view.

The remainder of the paper is organized as following: Section 2 presents some prelimi-
naries and formulation of the CSRP for the DFOLCS. In Section 3, an equivalent reduced
system is derived by using coordinate transformation, the necessary and sufficient condi-
tion for the positive invariance of polyhedron for DFOLCS is proposed. Section 4 proposes
two models and corresponding algorithms of CSRP. Section 5 concludes with illustrative
examples. The paper ends with concluding remarks in Section 6.

Notations: Rn, Rn
+, and Rn×n represent the n dimensional space of real vectors, the n

dimensional space of positive real vectors, and the space of n × n matrices with real entries,
respectively. C is the complex number set and for any z ∈ C; Re(z) denotes the real part of
complex number z. Iq and I(i) represent the q × q identity matrix and the ith row vector of
the identity matrix Iq, respectively. A(i) denotes the ith row vector of matrix A. For σ ∈ Rr

+

means all components of σ are nonnegative. rank(E) is the rank of matrix E. Mn is Metzler
matrix with off-diagonal elements are nonnegative. P ≻ 0(P ≺ 0) means that P is positive
definite (negative definite).

2. Preliminaries and Problem Formulation
2.1. Descriptor Fractional-Order Linear Continuous-Time Systems

Consider the DFOLCS{
Ec

0Dα
t η(t) = Aη(t) + Bu(t), t > 0,

η(t) = η0, −∞ < t ≤ 0,
(1)
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and the standard fractional-order linear continuous-time systems (SFOLCS){ c
0Dα

t η(t) = Aη(t) + Bu(t), t > 0,
η(t) = η0, −∞ < t ≤ 0,

(2)

where 0 < α < 1, η(0) = η0, η(t) ∈ Rn , u(t) ∈ Rm is the state and control input,
E ∈ Rn×n and rank(E) = n1 < n, i.e., E is a rank-deficient matri, A ∈ Rn×n , B ∈ Rn×m .
The SFOLCS (2) (or DFOLCS (1)) is called (internally) positive if η(t) ∈ Rn

+, t ≥ 0 for all
initial conditions η(0) ∈ Rn

+ and every u(t) ∈ Rm
+, t ≥ 0.

Definition 1 ([27]). The Caputo fractional-order derivative c
0Dα

t η(t) is defined as

c
0Dα

t η(t) =
1

Γ(1 − α)
(
∫ t

0

dη(τ)
dτ

(t − τ)α
dτ),

where 0 < α < 1 and
Γ(z) =

∫ ∞

0
e−ttz−1dt, Re(z) ∈ R+.

The initial information about η(t) lacks adequacy for forecasting the system’s future
behavior. Consequently, the depiction of Equation (2) does not precisely qualify as a state-
space representation and is termed a “pseudo state-space”. Assuming η(t) = φ(t) for
t ∈ (−∞, 0], the solution to system (2) is expressed as:

η(t) = −
∫ t

0
eA(t−τ)

α ψ(η, α,−∞, 0, τ)dτ.

If system (2) with constant history, in other words, η(t) = η0 for t ∈ (−∞, 0], the initializa-
tion function is given by

ψ(η, α,−∞, 0, τ) = − η0t−α

Γ(1 − α)
,

thus, one has

η(t) = −
∫ t

0
eA(t−τ)

α (− η0t−α

Γ(1 − α)
)dτ = Eα(Atα)η0 =

∞

∑
k=0

(Atα)k

Γ(kα + 1)
η0,

where Eα(·) is the Mittag-Leffler function, which is defined as follows: Eα(z) =
∞
∑

k=0

zk

Γ(kα+1) ,

α ∈ R+, z ∈ C.

Definition 2. Set P is the PIS of the dynamical system (1) (or (2)) if and only if η0 ∈ P =⇒
η(t; t0, η0) ∈ P, (t ≥ t0) where η(t; t0, η0) is the trajectory of (t0, η0).

2.2. Problem Formulation

For DFOLCS (1), the state constraints polyhedral set is defined by

Ω(G, σ, σ) = {η(t) ∈ Rn
+ : σ ≤ Gη(t) ≤ σ}, (3)

where G ∈ Rr×n with rank(G) = r, and σ ∈ Rr
+, σ ∈ Rr

+.
The CSRP of DFOLCS (1) is to be studied. The objective is to find controller

u(t) = Kη(t) such that for all initial states η0 ∈ Ω(G, σ, σ), the corresponding trajectory
η(t) will be asymptotically stable to the origin without violating the constraints (3).

3. Positively Invariant Conditions for Equivalent Reduced Systems

Motivated by the idea of the decomposition and separation method in integer order
descriptor systems, we deal with the CSRP of DFOLCS (1) in the same way.
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3.1. Equivalent Reduced System

Throughout the paper, we investigate DFOLCS (1) and have the following assumption:
(A): system (1) is regular, which means that there exists at least some s ∈ C such that

the determinant det(sE − A) ̸= 0.
The regularity assumption (A) of system (1) guarantees the existence and uniqueness

of the solution to system (1) [28].
Under the assumptions (A), for the DFOLCS (1), there must exist two nonsingular

matrices P1 ∈ Rn×n and P2 ∈ Rn×n (P1 and P2 can be obtained by preforming the elementary
row and column transformations on the identity matrix In) such that

P1EP2(P−1
2

c
0Dα

t η(t)) = P1 AP2(P−1
2 η(t)) + P1Bu(t), (4)

where

P1EP2 =

(
In1 0
0 0

)
, Ã = P1 AP2 =

(
A1 A2
A3 A4

)
, B̃ = P1B =

(
B̃1
B̃2

)
,

B̃1 ∈ Rn1×m, B̃2 ∈ Rn2×m, n2 = n − n1.

Define the new state vector η̃(t) = P−1
2 η(t) =

(
η̃1(t)
η̃2(t)

)
, η̃1(t) ∈ Rn1

+ ,

η̃2(t) ∈ Rn2
+ . We have

c
0Dα

t η̃1(t) = A1η̃1(t) + A2η̃2(t) + B̃1u(t),

0 = A3η̃1(t) + A4η̃2(t) + B̃2u(t).

Since the DFOLCS (1) is not necessarily impulse-free, A4 is not necessarily invertible.
The impulse elimination algorithm based on dynamic decomposition is presented below.

Step 1: Perform decomposition procedure (4) for the DFOLCS (1).
Step 2: Find a matrix K12 satisfying det(A4 + B̃2K12) ̸= 0, suppose A4 + B̃2K12 = In−rank(E).

Under the assumption of impulse controllability, rank[A4 B̃2] = n − rank(E), such a K12
is solvable.

Step 3: Find a K11 ∈ Rm×n1 makes K1 = [K11 K12].

Remark 1. The impulsive behavior that appears in the response of the DFOLCS is due to the
singularity of matrix A4. If the descriptor system is completely controllable (at its finite and infinite
modes), the matrix (A4 B̃2) has a full row rank, and there exists a state feedback law such that the
closed loop system does not exhibit impulsive modes and has pre-specified finite modes [10].

By the impulse elimination algorithm based on dynamic decomposition and
Remark 1, system (1) is completely controllable if there exists a feedback control

u(t) = Kη(t) = K1η(t) + v(t) = K1η(t) + K2η̃1(t), (5)

where K1 = [K11 K12] such that the matrix A4 + B̃2K12 is invertible and K2η̃1(t) is the
feedback control law for the reduced system. The aim of this step is to separate the feedback
control law of the reduced system. By substituting u(t) in system (1) with (5), we have:

Ec
0Dα

t η(t) = (A + BK1)η(t) + Bv(t)
= (A + BK1)η(t) + BK2η̃1(t),

(6)

from (4), there always exists two nonsingular matrices P1 ∈ Rn×n and P2 ∈ Rn×n such that

P1EP2(P−1
2

c
0Dα

t η(t)) = P1(A + BK1)P2(P−1
2 η(t)) + P1BK2η̃1(t). (7)
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Let P−1
2 η(t) =

(
η̃1(t)
η̃2(t)

)
, coordinate transformation

η(t) = P2

(
η̃1(t)
η̃2(t)

)
, η̃1(t) ∈ Rn1

+ , η̃2(t) ∈ Rn2
+ , (8)

thus,

P1EP2(P−1
2

c
0Dα

t P2

(
η̃1(t)
η̃2(t)

)
)

= P1(A + BK1)P2(P−1
2 P2

(
η̃1(t)
η̃2(t)

)
) +

(
B̃1
B̃2

)
K2η̃1(t)

= P1(A + BK1)P2

(
η̃1(t)
η̃2(t)

)
+

(
B̃1
B̃2

)
K2η̃1(t).

(9)

From Remark 1 and assumptions A, system (6) is regular and does not exhibit impul-
sive modes if there exist two nonsingular matrices P1 and P2(P1 and P2 can be obtained
by performing the elementary row and column transformations on the identity matrix In),
such that [28]:

P1EP2 =

(
In1 0
0 0

)
, P1(A + BK1)P2 =

(
A1 0
0 In2

)
, P1B =

(
B̃1
B̃2

)
, (10)

substituting (9) with (10), the system (6) is transformed into(
In1 0
0 0

)( c
0Dα

t η̃1(t)
c
0Dα

t η̃2(t)

)
=

(
A1 0
0 In2

)(
η̃1(t)
η̃2(t)

)
+

(
B̃1
B̃2

)
K2η̃1(t), (11)

the DFOLCS (1) is transformed into

c
0Dα

t η̃1(t) = A1η̃1(t) + B̃1K2η̃1(t), (12)

0 = η̃2(t) + B̃2K2η̃1(t). (13)

By choosing the state feedback law v(t) = K2η̃1 with K2 ∈ Rm×n1 , system (12) is an
equivalent reduced system:

c
0Dα

t η̃1(t) = (A1 + B̃1K2)η̃1(t). (14)

Lemma 1 ([18]). The equivalent reduced system (14) is positive if and only if (A1 + B̃1K2) ∈ Mn1 .

Proof. (Sufficiency) Obviously, η(t) > 0 when A1 + B̃1K2 is a Metzler matrix, and the

solution of Equation (14), i.e., η(t) =
∞
∑

k=0

[(A1+B̃1K2)tα ]k

Γ(kα+1) η0 > 0, for η0 > 0. Thus, we obtain

that system (14) is a positive matrix.

(Necessity) For η0 = ei (the i-th column of the identity matrix IN), the trajectory of
the system does not leave the orthant Rn

+ only if ηα
0 = (A1 + B̃1K2)ei > 0, which implies

(A1 + B̃1K2)ij > 0 for i ̸= j. The matrix A1 + B̃1K2 has to be a Metzler matrix.
From (8), (3) can be rewritten as:

Ω(G, σ, σ) =

{ (
η̃1(t)
η̃2(t)

)
∈ Rn

+ : σ ≤ GP2

(
η̃1(t)
η̃2(t)

)
≤ σ

}
, (15)
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from (13), η̃2(t) = −B̃2v(t), by choosing the state feedback control v(t) = K2η̃1(t) with
K2 = Rm×n1 , we have

Ω(G, σ, σ) =

 η̃1(t) : σ ≤ GP2

(
In1

−B̃2K2

)
η̃1(t) ≤ σ

η̃2(t) : η̃2 = −B̃2K2η̃1(t)

,

and G = GP2

(
In1

−B̃2K2

)
, the polyhedral set (3) becomes the following form:

Ω(G, σ, σ) =

{
η̃1(t) ∈ Rn1

+ : σ ≤ Gη̃1 ≤ σ

η̃2(t) ∈ Rn2
+ : η̃2 = −B̃2v(t)

}
, (16)

Hence, a consequence of the above result is the following Proposition:

Proposition 1. The polyhedral set Ω(G, σ, σ) is PIS of DFOLCS (1) if and only if the polyhedral
set Ω(G, σ, σ) is PIS of the reduced system (14).

Proof. Assume that Ω(G, σ, σ) is PIS of DFOLCS (1); we have σ ≤ Gη0 ≤ σ =⇒ σ ≤
Gη(t) ≤ σ; the polyhedral set Ω(G, σ, σ) is PIS of the reduced system (14), and we have
σ ≤ Gη̃1(0) ≤ σ =⇒ σ ≤ Gη̃1(t) ≤ σ.

By lemma 1 in [10], σ ≤ Gη0 ≤ σ =⇒ σ ≤ Gη(t) ≤ σ if and only if σ ≤ Gη̃1(0) ≤
σ =⇒ σ ≤ Gη̃1(t) ≤ σ.

Next, we provide the necessary and sufficient condition for the fractional-order poly-
hedral set to be a PIS.

3.2. Positive Invariance of Fractional Order Polyhedral Sets

Let A = A1 + B̃1K2, a condition that the polyhedron is PISs of the equivalent reduced
system (14) will be discussed in the sequel.

Proposition 2 ([29,30]). (P1): Hypothetical existence of Lyapunov function V(η̃1(t)) and class-κ
functions βi, i = 1, 2, 3 satisfy:{

β1(∥ η̃1(t) ∥) ≤ V(η̃1(t)) ≤ β2(∥ η̃1(t) ∥),
c
0Dα

t V(η̃1(t)) ≤ −β3(∥ η̃1(t) ∥),
(17)

where α ∈ (0, 1), then system (14) is asymptotically stable.
(P2): system (14) is asymptotically stable if and only if

|arg(λi(A))| > απ

2
, i = 1, 2, · · · , n1,

where λi(A) is the ith eigenvalue of matrix A.
(P3): system (14) is asymptotically stable if there exist a matrix P ≻ 0, P ∈ Rn1×n1 , such that

(A
1
α )T P + P(A

1
α ) ≺ 0.

Theorem 1. The polyhedral set,

Ω(G, σ) = {η̃1(t) ∈ Rn1
+ : Gη̃1(t) ≤ σ},

with G ∈ Rr×n1 , σ ∈ Rr
+ is a PIS of system (14) if and only if

v(η̃1(t)) = max
1,··· ,r

{max(
(Gη̃1(t))1

σ1
, 0), · · · , max(

(Gη̃1(t))r

σr
, 0)}
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is not increasing along the trajectory of system (14).

Proof. If η̃1(t) ∈ Ω(G, σ), v(η̃1(t)) = ( (Gη̃1(t))i
σi

), then 0 ≤ v(η̃1(t)) ≤ 1 because
Ω(G, σ) = {η̃1(t) ∈ Rn1

+ : Gη̃1(t) ≤ σ} is a positively invariant. By Proposition 2, the
c
0Dα

t v(η̃1(t)) is negative definite; hence,

c
0Dα

t v(η̃1(t)) =
G(i)

c
0Dα

t (η̃1(t))
σi

=
G(i)Aη̃1(t)

σi
< 0. (18)

Hence,

v(η̃1(t)) = max
1,··· ,r

{max(
(Gη̃1(t))1

σ1
, 0), · · · , max(

(Gη̃1(t))r

σr
, 0)}

is not increasing along the trajectory of system (14).

By v(η̃1(t)), one has
Gη̃1(t) ≤ v(η̃1(t))σ,

the initial condition η̃1(0) satisfies Gη̃1(0) ≤ σ, then v(η̃1(0)) = Gη̃1(0)
σ ≤ 1 and

v(η̃1(t)) ≤ v(η̃1(0)), since v(η̃1(t)) is not increasing along the trajectory of system (14). In
the sequel,

Gη̃1(t) ≤ v(η̃1(t))σ ≤ v(η̃1(0))σ ≤ σ,

so the polyhedral set Ω(G, σ) = {η̃1(t) ∈ Rn1
+ : Gη̃1(t) ≤ σ} is a PIS of system (14).

It is known that for integer order systems, if A ∈ Mn1 and ∃σ > 0, such that Aσ ≤ 0,
then the equilibrium η = 0 of system (14) is stable in the sense of Lyapunov [29]. In the
following proposition, we will show that these conditions also imply the positive invariance
of the set Ω(In1 , σ) for the positive fractional-order system.

When the matrix G degenerates into the identity matrix In1 , we have the follow-
ing proposition:

Proposition 3 ([2]). The polyhedral set

Ω(In1 , σ) = {η̃1(t) ∈ Rn1
+ : η̃1(t) ≤ σ},

is a PIS of system (14) if and only if
A ∈ Mn1 ,

and
Aσ ≤ 0.

To obtain the algebraic conditions for the polyhedral set Ω(G, σ) to be a PIS, the
following propositions are proposed:

Proposition 4 ([31]). Let A ∈ Rn1×n1 and α > 0. Then,

Eα(Atα)− I =
∫ t

0
AeAτ

α dτ,

where eAt
α =

∞
∑

k=0

Aktαk

Γ(kα+α)
· tα−1.

From Proposition 4, Proposition 5 can be obtained.

Proposition 5. The polyhedral set Ω(G, σ) = {η̃1(t) ∈ Rn1
+ : Gη̃1(t) ≤ σ} is a PIS of

system (14), then,
Gη̃1(t) = 0 =⇒ G Aη̃1(t) = 0.
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Proof. Ω(G, σ) is a PIS of system (14), by Theorem 1, v(η1(t)) = max
1≤i≤r

{max( (Gη̃1(t)1
σ1

, 0), · · · ,

max( (Gη̃1(t)r
σr

, 0)} is not increasing along the trajectory of system (14).

If Gη̃1(t0) = 0, then ∀t > t0, v(η̃1(t; t0, η0)) ≤ v(η̃1(t0)) = 0, then

max
i

{max(
[GEα(A(t − t0)

α)η̃1(t0)]i
σi

, 0)} ≤ 0, (19)

by Proposition 4, one has

[GEα(A(t − t0)
α)η̃1(t0)]i = [G(I +

∫ t
t0

AeAτ
α dτ)η̃1(t0)]i ≤ 0. (20)

Since
I +

∫ t
t0

AeAτ
α dτ = I +

∫ t
t0

∞
∑

k=0

(t−τ)(k+1)α−1

Γ(kα+α)
· Ak+1

= I +
∞
∑

k=1
Ak (t−t0)

kα

Γ(kα+1) ,
(21)

then substitute (20) with (21), ∃t > t0, Gη̃1(t0)+
(t−t0)

α

Γ(α+1) ·G Aη̃1(t0) ≤ 0. Then G Aη̃1(t0) ≤ 0,

because (t−t0)
α

Γ(α+1) > 0 and Gη̃1(t0) = 0.

For the initial state −η̃1(t0), G(−η̃1(t0)) = 0 implies G A(η̃1(t0)) ≥ 0. By the arbitrari-
ness of η̃1(t0), Gη̃1(t) = 0 =⇒ G Aη̃1(t) = 0.

The following result will also be used in the sequel.

Proposition 6 ([5]). If A ∈ Rn1×n1 , G ∈ Rr×n1 , rank(G) = r and Gη̃1(t) = 0 implies
G Aη̃1(t) = 0 for η̃1(t) ∈ Rn1 , then there exists a matrix H ∈ Rr×r, such that G A − HG = 0.

Proof. The row rectors G(i) and (G A)(i) of the matrices G and (G A) belong to the same
r-dimensional subspace of Rn1 that is orthogonal to the n1 − r-dimensional null space of
the matrix G, according to lemma 2 in [5]; by rank(G) = r, we obtain there exists a matrix
H ∈ Rr×r, such that G A − HG = 0.

An algebraic condition for a polyhedral set Ω(G, σ) to be a positive invariant for
system (14) is presented in Theorem 2.

Theorem 2. The polyhedral set,

Ω(G, σ) = {η̃1(t) ∈ Rn1
+ : Gη̃1(t) ≤ σ},

with G ∈ Rr×n1 , σ ∈ Rr
+ is a PIS of system (14) if and only if there exists a matrix H ∈ Mr

such that
G A − HG = 0, (22)

and
Hσ ≤ 0. (23)

Proof. Necessity. Ω(G, σ) is a positively invariant, by Proposition 5, it yields

Gη̃1(t) = 0 =⇒ G Aη̃1(t) = 0,

from Proposition 6, one has

∃H ∈ Rr×r, G A − HG = 0 =⇒ G A = HG.

Thus, one can obtain

c
0Dα

t η̃1(t) = AEα(Atα)η̃1(0) = Aη̃1(t),
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and
c
0Dα

t (Gη̃1(t)) = Gc
0Dα

t η̃1(t) = G Aη̃1(t) = HGη̃1(t). (24)

If z(t) = Gη̃1(t), then, from (24), it yields c
0Dα

t z(t) = Hz(t). Hence,

z0 ≤ σ =⇒ z(t; t0, z0) ≤ σ,

since Gη̃1(0) ≤ σ =⇒ Gη̃1(t; t0, η0) ≤ σ.
Therefore, the polyhedral set Ω(Ir, σ) = {z(t) ∈ Rr

+ : z(t) ≤ σ} is a PIS of system
c
0Dα

t (z(t)) = Hz(t). From Proposition 3, H ∈ Mr and Hσ ≤ 0.
Sufficiency. Because c

0Dα
t η̃1(t) = Aη̃1(t), according to (22), if z(t) = Gη̃1(t), then,

c
0Dα

t z(t) = Gc
0Dα

t η̃1(t) = G Aη̃1(t) = HGη̃1(t) = Hz(t).

Thus, H ∈ Mr and Hσ ≤ 0, By Proposition 3, one can obtain

z0 ≤ σ =⇒ z(t; t0, z0) ≤ σ,

one has Gη̃1(0) ≤ σ =⇒ Gη̃1(t; t0, η0) ≤ σ.
Hence, the polyhedral set Ω(G, σ) is a PIS of system (14).
Next, the polyhedral set Ω(G, σ, σ) is proven to be a PIS for system (14) in Theorem 3.

Theorem 3. The polyhedral set

Ω(G, σ, σ) = {η̃1(t) ∈ Rn1
+ : σ ≤ Gη̃1(t) ≤ σ}

with G ∈ Rr×n1 , σ ∈ Rr, σ ∈ Rr
+ is a PIS of system (14) if and only if there exists a matrix H

such that
G A − HG = 0, (25)

and
Ĥσ̂ ≤ 0. (26)

with Ĥ =

(
H+ H−

H− H+

)
, σ̂ =

(
σ
−σ

)
, and

H+
ij =

{
hij, f or i = j,
max(Hij, 0), f or i ̸= j,

H−
ij =

{
0, f or i = j,
max(−Hij, 0), f or i ̸= j.

(27)

Proof. By (27), we have
H = H+ − H−. (28)

Substitute (25) with (28); it yields(
G
−G

)
A =

(
H+ H−

H− H+

)(
G
−G

)
, (29)

by (26), one has (
H+ H−

H− H+

)(
σ
−σ

)
≤ 0. (30)

Let Ĝ =

(
G
−G

)
, σ̂ =

(
σ
−σ

)
, and by (29) and (30), one can obtain

Ĝ A = ĤĜ , Ĥσ̂ ≤ 0,
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by Theorem 2, the polyhedral set Ω(Ĝ, σ̂) = {η̃1(t) ∈ Rn1
+ : Ĝη̃1(t) ≤ σ̂} is a PIS of

system (14); thus, Ω(G, σ, σ) is a PIS of system (14). From (28) and (29), Ĝ A = ĤĜ if and
only if G A = HG; therefore, Ω(G, σ, σ) is a PIS of system (14) if and only if there exists a
matrix H, such that G A − HG = 0 and Ĥσ̂ ≤ 0.

If the reduced system (14) is a standard fractional-order positive linear continuous-
time system, the following lemma gives the asymptotical stability conditions of the
system (14).

Lemma 2 ([18]). The system (14) remaining positive is asymptotically stable if there exists a vector
λ ∈ Rn, λ > 0 such that Aλ < 0.

4. The Controller Design Algorithm

It is obvious that the control law u(t) = Kη(t) is a solution to the CSRP if and only if
system (1) is completely controllable (that is does not exhibit impulsive modes) and for all
initial states η0, which satisfies inequalities (3), the corresponding trajectory asymptotically
stable to the origin and without violating the constraints (3).

This condition can also be expressed by the following Theorem 4.

Theorem 4. The control law u(t) = Kη(t) is a solution to the CSRP for system (1) if and only if
the following conditions are satisfied:

(i) There exists an equivalent reduced system (14);
(ii) The equivalent reduced system (14) is asymptotically stable, and the polyhedral set

Ω(G, σ, σ) is PIS of system (14).

Proof. The system (1) is completely controllable (that is does not exhibit impulsive modes)
if and only if there exists an equivalent reduced system (14); all initial states η0 which
satisfying inequalities (3), the corresponding trajectory is asymptotically stable to the
origin and without violating the constraints (3) if and only if the equivalence reduced
system (14) asymptotically stable, and the polyhedral set Ω(G, σ, σ) is PIS of system (14).
Thus, satisfying conditions (i) and (ii), the control law u(t) = Kη(t) is a solution to the
CSRP for system (1).

Case 1: If equivalent reduced system (14) is a SFOLCS. For system (1), from
Theorems 3 and 4 and Proposition 2, the control law u(t) = Kη(t) is a solution of the
CSRP, which can be solved by the following methods.

Step 1: Find an equivalent reduced system (14) of system (1).
Step 2: Establish the objective function

S(K2, H, ε) = ε. (31)

The constraints 
|arg(λi(A))| > απ

2 , i = 1, 2, · · · , n1,
G(A1 + B̃1K2) = HG,

Ĥσ̂ ≤ −εσ̂,
(32)

or 
(A

1
α )T P + P(A

1
α ) ≺ 0,

G(A1 + B̃1K2) = HG,
Ĥσ̂ ≤ −εσ̂,

(33)

where G = GP2

(
In1

−B̃2K2

)
. The first inequalities in (32) and (33) ensure the asymptotical

stability of system (14); the second and third equalities ensure the polyhedron Ω(G, σ, σ) is
positively invariant to system (14); ε is the rate of convergence. But it is difficult to find a
feasible solution of (32) because of the angle constraints. For (33), it can be formulated as a
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linear matrix inequality (LMI) problem, which can be solved by software such as Yalmip,
CVX, and so on. But if the dimension is high, it is also not easy to find the solution.

Case 2: In Case 1, if the control law v(t) = K2η̃1(t) make A1 + B̃1K2 ∈ Mn1 , accord-
ing to Lemma 1, the equivalent reduced system (14) is a fractional order positive linear
continuous-time system, from Theorems 3 and 4 and Lemma 2, the control law u(t) = Kη(t)
is a solution of the CSRP, which can be solved by the following nonlinear programming (35).

Step 1: Find an equivalent reduced system (14) of system (1).
Step 2: Establish the objective function

S(K2, H, ε) = ε. (34)

The constraints 

(A1 + B̃1K2)ij > 0, i ̸= j,
(A1 + B̃1K2)λ < 0,

λ > 0,
G(A1 + B̃1K2) = HG,

Ĥσ̂ ≤ −εσ̂,

(35)

where G = GP2

(
In1

−B̃2K2

)
. The first inequalities in (35) ensure the system (14) is positive;

the second and third inequalities in (35) ensure asymptotic stability of system (14); and
the fourth and fifth inequalities ensure the polyhedron Ω(G, σ, σ) is positively invariant to
system (14). ε is the rate of convergence and maximizes of ε increases the rate of convergence
to equilibrium.

Remark 2. With fixed system parameters A1 and B̃1 as well as constraint parameters G and σ̂.
It becomes evident from (35) that the parameter ε holds a significant correlation with the rate of
convergence. Specifically, when 0 < ε < 1, the largest possible value of ε guarantees the fastest
convergence rate towards the equilibrium.

5. Numerical Examples

We illustrate our method with the following examples.

Example 1. Consider the descriptor fractional order linear continuous-time system
Ec

0Dα
t η1(t) = −2η1(t) + η2(t)− 4η3(t) + u1(t),

Ec
0Dα

t η2(t) = 3η1(t)− η2(t) + 2η3(t) + η4(t) + u2(t),
0 = −8η1(t) + 5η2(t) + 3u1(t) + u2(t),
0 = η1(t)− 3η2(t)− u1(t) + 2u2(t),
η(0) = η0,

(36)

where α = 0.7, E, A and B are as follows

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, A =


−2 1 −4 0
3 −1 2 1
−8 5 0 0
1 −3 0 0

, B =


1 0
0 1
3 1
−1 2

.

It is easy to verify that det(sE − A) is not identically zero, so system (36) is regular.
The constraints on the state is given by (3) with

G =

(
−0.9 −3.5 −11.9 −1.5
−2.7 −4.7 −1.5 −0.5

)
, σ =

(
1
2

)
, σ =

(
2
4

)
.

For system (36), from Theorems 3 and 4, and Lemma 2, the feedback control u(t) = Kη(t) is a
solution to the CSRP, which can be solved by nonlinear programming.
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Step 1: Find an equivalent reduced system.
By the impulse elimination algorithm based on dynamic decomposition, system (36)

is impulse controllable if rank[A4 B̃2] = n − rank(E) = 2, according to A4 + B̃2K12 = I2;

we obtain K12 =

(
0.2857 −0.1429
0.1429 0.4286

)
; then the impulsive behavior can be eliminated,

and the corresponding gain matrix is K1 = [K11 K12] with choose K11 =

(
0 0
0 0

)
and

K12 =

(
0.2857 −0.1429
0.1429 0.4286

)
.

P1 and P2 can be obtained by performing the elementary row and column transforma-

tions on the identity matrix In. From P1(A + BK1)P2 =

(
A1 0
0 I2

)
, matrices P1 and P2 are

given by:

P1 =


1 0 3.714 0.1429
0 1 −2.1429 −1.4286
0 0 1 0
0 0 0 1

, P2 =


1 0 0 0
0 1 0 0
8 −5 1 0
−1 3 0 1

,

then, from (10) and (11), the matrices A1, B̃1 and B̃2 can be obtained

A1 =

(
−31.5714 19.1429
18.7143 −7.4286

)
, B̃1 =

(
12 4
−5 −4

)
, B̃2 =

(
3 1
−1 2

)
.

by the controller v(t) = K2η̃1(t) make the equivalent reduced system can be converted to

c
0Dα

t η̃1(t) = A1η̃1(t) + B̃1v(t)

=

[(
−31.5714 19.1429
18.7143 −7.4286

)
+

(
12 4
−5 −4

)
K2

]
η̃1(t),

(37)

where η̃1(t) = (P−1
2 η(t))1 =

(
η̃11(t)
η̃12(t)

)
∈ R2.

Step 2: Establish the objective function

S(K2, H, ε) = ε.

Maximize the objective function with constraints

(A1 + B̃1K2)ij > 0, i ̸= j
(A1 + B̃1K2)λ < 0,

λ > 0,
G(A1 + B̃1K2) = HG,

Ĥσ̂ ≤ −εσ̂,

(38)

where G = GP2

(
In1

−B̃2K2

)
. The third Equation in (38) is quadratic since K2 in G is

unknown, which makes (38) nonlinear.
The solution of (38) gives ε = 1,

K2 =

(
1.5678 −1.9511
2.6130 1.5214

)
, H =

(
−4.11 0.43
0.33 −1.96

)
,

and λ =

(
1.8938
2.1707

)
such that (A1 + B̃1K2)λ =

(
−0.4273
−7.3566

)
< 0.

The result shows that there exists a linear state feedback controller v(t) = K2η̃1(t),
such that all initial states that satisfy state constraints {η̃1(t) ∈ Rn1

+ : σ ≤ Gη̃1(t) ≤ σ}
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(G =

(
−2.051 7.444
−1.255 −2.629

)
) and the corresponding trajectory of (37) is asymptotically stable

and converges to the origin in the interval t ∈ [0, 30], which is shown in Figure 1.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

(1.19,0.1926)
(0.6,0.3)
(0.653,0.449)

Figure 1. The state trajectory of the system (37).

In Figure 2, the trajectories originating from the initial state η̃1(0) = [0.6 0.3]T are
depicted, all residing within the designated constraint region.
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Figure 2. The trajectory emanating from the initial state.

The above results also indicate that there exists an equivalent reduced system of (37),
which is asymptotically stable, and the polyhedral Ω(G, σ, σ) is PIS of system (37), from
Theorem 4 and (6), the control law

u(t) = Kη(t) = K1η(t) + v(t) = K1η(t) + K2η̃1(t)

=

(
0 0 0.2857 −0.1429
0 0 0.1429 0.4286

)
η(t)

+

(
1.5678 −1.9511
2.6130 1.5214

)
η̃1(t)

=

(
1.5678 −1.9511 0.2857 −0.1429
2.6130 1.5214 0.1429 0.4286

)
η(t),

where η̃1(t) = (P−1
2 η(t))1 =

(
η̃11(t)
η̃12(t)

)
∈ R2.

Hence, K =

(
1.5678 −1.9511 0.2857 −0.1429
2.6130 1.5214 0.1429 0.4286

)
is a solution to the CSRP of the

DFOLCS (36).
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Remark 3. The reduced system (37) is not a positive system in that B̃1 =

(
12 4
−5 −4

)
is

not a nonnegative matrix, i.e., B̃1 /∈ R2×2
+ , but by the controller v(t) = K2η̃1(t), which makes

A1 + B̃1K2 a Metzler matrix, the resulting system becomes positive system. By Lemma 1, we can
guarantee the asymptotic stability and positivity of the closed loop from Lemma 2; hence, Theorem 4
is also valid.

Example 2. We modify the state constraints in Example 1 with the state constraints in the form
of (3) being given by

G =

(
11 0.2 5 3
3 2.6 4 1.6

)
, σ =

(
1
2

)
, σ =

(
2
4

)
.

For system (36), by Theorems 3 and 4 and Lemma 2, the feedback control
u = Kη(t) is a solution to the CSRP, which can be obtained by the following algorithm that
can be solved by nonlinear programming.

Step 1: Find an equivalent reduced system.
By the controller v(t) = K2η̃1(t), the equivalent reduced system can be transformed into

c
0Dα

t η1(t) = A1η1(t) + B̃1v(t)

=

[(
−31.5714 19.1429
18.7143 −7.4286

)
+

(
12 4
−5 −4

)
K2

]
η̃1(t),

(39)

where η̃1(t) = (P−1
2 η(t))1 =

(
η̃11(t)
η̃12(t)

)
∈ R2.

Step 2: Establish the objective function

S(K2, H, ε) = ε. (40)

Maximize the object function with constraints

(A1 + B̃1K2)ij > 0, i ̸= j,
(A1 + B̃1K2)λ < 0,

λ > 0,
G(A1 + B̃1K2) = HG,

Ĥσ̂ ≤ −εσ̂,

(41)

where G = GP2

(
In1

−B̃2K2

)
.

The solution of (40) gives ε = 0.7855,

K2 =

(
1.7527 −1.8216
2.4190 0.7040

)
, H =

(
−1 0.2
0.23 −1

)
,

and λ =

(
0.7855
1.2143

)
such that (A1 + B̃1K2)λ =

(
−0.5574
−1.1640

)
< 0.

The result in Figure 3 shows that there exists a linear state feedback controller
v(t) = K2η̃1(t) such that all initial states that satisfy state constraints {η̃1(t) ∈ Rn1

+ :

σ ≤ Gη̃1(t) ≤ σ} (G =

(
0.2743 −1.6913
−2.1377 1.2908

)
) are asymptotically stable and converge to

the origin in the interval t ∈ [0, 30].
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Figure 3. The state trajectory of the system (39).

In Figure 4, trajectories emanating from the initial state η̃1(0) = [1.25 0.79]T are
shown; they are also in the constraint region.
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Figure 4. The trajectory emanating from the initial state.

The above result indicates that there exists an equivalent reduced system of (39),
which is asymptotically stable and converges to the equilibrium point with the polyhedral
Ω(G, σ, σ) is a PIS of system (39), from Theorem 4 and (6), the control law

u(t) = Kη(t) = K1η(t) + v(t) = K1η(t) + K2η̃1(t)

=

(
0 0 0.2857 −0.1429
0 0 0.1429 0.4286

)
η(t)

+

(
1.5678 −1.9511
2.6130 1.5214

)
η̃1(t)

=

(
1.7527 −1.8216 0.2857 −0.1429
2.4190 0.7040 0.1429 0.4286

)
η(t),

where η̃1(t) = (P−1
2 η(t))1 =

(
η̃11(t)
η̃12(t)

)
∈ R2.

Hence, K =

(
1.7527 −1.8216 0.2857 −0.1429
2.4190 0.7040 0.1429 0.4286

)
is a solution to the CSRP of

DFOLCS (36).
To demonstrate the universality of the controller design scheme, we will discuss an

example where E is a full-row rank matrix, meaning that the scheme remains feasible even
when the DFOLCS degenerates into the SFOLCS.
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Example 3. Consider SFOLCS with

A =

[
−2.5 0.8
−0.85 1.4

]
and B =

[
1

0.5

]
and the state constraints in the form of (3) being given by

G =

 0 2
1 2

−0.5 4

, σ =

 0
0

−1.8

, σ =

0.8
2.4
0

.

By Theorems 3 and 4 and Lemma 2, the feedback control u = Kη(t) is a solution to the
CSRP, which can be obtained by the following algorithm that can be solved by nonlinear
programming (34) and (35).

The solution of (40) gives ε = 0.2, K =
(
1.5 −4

)
, and λ =

(
1.4
0.2

)
such that

(A + BK)λ =

(
−2.04
−0.26

)
< 0.

Obviously, there exists a linear state feedback controller v(t) = Kη(t) such that all
initial states that satisfy state constraints {η(t) ∈ Rn1

+ : σ ≤ Gη(t) ≤ σ} are asymptotically
stable and converge to the origin. Hence, u = 1.5x1 − 4x2 is a solution to the CSRP
of SFOLCS.

Remark 4. In practical engineering applications, state variables usually cannot be measured
because of the varied and complicated work conditions, which makes state feedback impossible while
dynamical output feedback can avoid the drawbacks [32,33], hence the output feedback of CSRP for
DFOLCS will be an interesting topic in future research.

6. Conclusions

In this paper, the CSRP of DFOLCS is studied when 0 < α < 1. To obtain an equivalent
reduced system, the decomposition and separation method and coordinate transformation
are proposed. To find the necessary and sufficient conditions of positive invariance for the
reduced system, the PISs theory, the Lyapunov stability theory, and some mathematical
techniques are utilized. We also propose optimization models and a corresponding algo-
rithm for finding the linear state feedback controller design of CSRP for DFOLCS. The CSRP
is transformed into nonlinear programming with a linear objective function and quadratic
mixed constraints. Our algorithm stands out for its ease of implementation compared to
other methods. This is because the nonlinear optimization problem can be readily solved
using any off-the-shelf mathematical software. Numerical examples further demonstrate
the effectiveness of the proposed algorithm. An interesting question in this paper is the op-
timization problem (32). How to find the solution to (32) is our forthcoming research topic.
The method proposed in this paper for solving CSRP is also attractive, and studying time
delay and randomness helps us gain a deeper understanding of the behavior of complex
systems, improve the performance and stability of systems, and optimize decision-making
processes. Hence, another interesting research problem is to extend this method to delayed
fractional order linear continuous-time systems and observer-based controller designs of
stochastic systems [34].
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