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Abstract: In this research, the adaptive event-triggered neural network controller design problem
is investigated for a class of state-constrained pure-feedback fractional-order nonlinear systems
(FONSs) with external disturbances, unknown actuator saturation, and input delay. An auxiliary
compensation function based on the integral function of the input signal is presented to handle input
delay. The barrier Lyapunov function (BLF) is utilized to deal with state constraints, and the event-
triggered strategy is applied to overcome the communication burden from the limited communication
resources. By the utilization of a backstepping scheme and radial basis function neural network, an
adaptive event-triggered neural state-feedback stabilization controller is constructed, in which the
fractional-order dynamic surface filters are employed to reduce the computational burden from the
recursive procedure. It is proven that with the fractional-order Lyapunov analysis, all the solutions
of the closed-loop system are bounded, and the tracking error can converge to a small interval
around the zero, while the state constraint is satisfied and the Zeno behavior can be strictly ruled out.
Two examples are finally given to show the effectiveness of the proposed control strategy.

Keywords: nonlinear system; event-triggered control; BLF; constraints; input delay

1. Introduction

Fractional-order dynamical behavior has been found in many practical systems [1,2],
which can achieve more precise representations for complex physical systems with infinite
memory and genetic characteristics. Based on this fact, fractional-order nonlinear systems
(FONSs) offer an effective way to model the physical system [3,4], which can be applied in
lots of areas [5-9]. Moreover, the nonlinear controller design problem for FONSs has received
a lot of attention, and many controller design approaches have been investigated [10-15],
in which the approximation performance of fuzzy logic systems (FLSs) or neural networks
(NNs) can be used to deal with nonlinear unknown function in FONSs to achieve stability.
In [16], an adaptive controller by using the property of NNs is considered for FONSs with
actuator fault. In [17], a fuzzy controller is designed for nonstrict-feedback FONSs. In [18], a
distributed backstepping control for nonaffine FONSs with unknown dynamics is presented,
and the stability is accomplished. For fractional-order tumor systems with chemotherapy
in [19], a finite-time fuzzy controller is developed under Lyapunov theory. It is worth noting
that the influence of full state constraints on FONSs has not been taken into account in the
above-mentioned literature and achievements.

System constraints often appear in many real industrial processes and practical systems
unavoidably, which is the main factor limiting system performance, leading to instability of
the system. To settle such system constraints, a crucial problem for FONSs, the barrier Lya-
punov function (BLF) has become one of the most powerful tools to prevent transgression of
state constraints, and many constraint control strategies have been designed [20-23]. In [21],
an observer-based adaptive NN controller is proposed for nonstrict-feedback FONSs with
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an output constraint, where the tracking error satisfying constraints can be guaranteed.
In [22], a distributed adaptive controller is designed for multiple FONSs with constraints,
and the BLF is applied to restrict the output in the preset range. In [23], an adaptive
dynamic surface controller for FONSs with asymmetric state constraints is designed by
using an asymmetric BLE. Nevertheless, it is important that the characteristics of the control
input signal should not be ignored.

It is inevitable that the input saturation is the important non-smooth nonlinearity in
many practical engineering systems due to the physical characteristics of the actuator. Once
the control input exceeds the upper, it may not work properly and can unquestionably limit
its control performance. Then, it is important to take the effect of actuator saturation into
consideration during the process of the design and analysis of FONSs [24-26]. The author
in [24] introduced the fractional-order finite-time adaptive fault-tolerant control for an un-
manned aerial vehicle with the saturated actuator, wherein the input saturation function is
approximated using the smooth function. In [26], the flexible spacecraft attitude adjustment
with input torque saturation is considered, and a fractional-order multi-objective controller
is presented. For a vertical takeoff vertical landing reusable launch vehicle subjected to
input saturation constraints, a fractional-order fixed-time sliding mode controller with state
observer is designed in [25]. However, in the above-mentioned research for FONSs, the
issue of the widely existing input delay is ignored.

In the control process for real engineering applications, it takes time to send signals to
actuators causing the input delays of the system, and is the major factor in deteriorating the
system performance. To deal with the input delay, many effective methods are developed
for FONSs in [27-30]. In [27], a feedback controller for a fractional-order system under input
delay is designed by using the Smith predictor. In [28], an augmented adaptive controller
based on the function approximation technique is developed for FONSs with input delay.
In [29], a command-filter-based adaptive controller for FONSs with input delay is designed
by using the fractional integral. In [30], an adaptive NN control method for FONSs with input
delay is developed by using the auxiliary system. However, no results about the adaptive
control strategy of state-constrained FONSs with input delay and actuator saturation can
be found.

Motivated by the above-mentioned discussions, the adaptive neural network event-
triggered control (ETC) for state-constrained pure-feedback FONSs with input delay and
unknown actuator saturation will be investigated. The highlighted innovations of this
article are as follows:

(1) Compared with fractional-order controller results [31-33], the full-state constraints,
input delay, and unknown actuator saturation are investigated simultaneously in
this article, and the BLFs and neural network are introduced into the design process
of the backstepping technique, which can ensure that state convergence without
contravening state constraints can be guaranteed, and the boundedness of all the
closed-loop system signals can be accomplished.

(2) Compared with controller designed for FONSs subject to input delay in [27-30,34],
the event-triggered mechanism is designed to reduce the communications constraints
of network resources, and the fractional-order dynamic surface filter is presented to
remove the explosion of differentiation from the recursive procedure, which effectively
makes the proposed controller more suitable for practical engineering.

The rest of this paper is organized as follows. The preliminaries and problem formula-
tion are presented in Sections 2 and 3, respectively. Then, the proposed adaptive control
scheme for FONSs with input delay is provided in Section 4. The simulation studies are
given in Section 5 to show the effectiveness. Section 6 concludes this paper.
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2. Preliminaries
The ath Caputo fractional derivative of f(t) is defined as [35,36]:

AP S N 10
Dtof(t) - F(Tl _ 0() /fo (t _ )tx+lfndT

T

where n — 1 < a < n,n is the positive integer, T'(x) = [~ e~'t*~!dt is the Euler Gamma
function, and ng can be abbreviated as D%, when t, = 0.

Lemma 1 ([35]). If ¢ € (&, rta), then 3B > 0, such that

[Eay (O] < v < larg(Q)] < 7, |¢] = 0

1+(¢]

where Ey o (0) = ¥ r(aiik—y) is the one-parameter Mittag—Leffler function, { is a complex number,
k=0
and a,~y > 0. Note that Ey1({) = Eq({) and E11({) = €.

Lemma 2 ([37,38]). Let x(t) € R" be a differentiable function. Then, D*(xT(t)Px(t)) <
2xT(t)PD*(x(t)) holds for Vt > to, where P = PT > 0.

Lemma 3 ([39]). Let hy(-), ho(-) € R be smooth functions. If hy (hy) is convex (i.e., 9*hy (hy) /oh3 > 0),
then, D*hy (hz) < adh (hQ)/ahz - D*hy for ¥t > 0.

Lemma 4 ([40]). Let the function V (t) : RT™ — R satisfying D*V (t) + nV (t) < u, whereny > 0,
and p > 0. Then, V(t) < V(0)E (1) (—nt*) + ”70, where 9 = max{1, B} and B is defined in
Lemma 1.

Lemma 5 ([41,42]). For Yk, > O, the following inequality holds

2
ln kbo < gz(t)
B~ &, — ¢

0

iflo(t)] < kg,
Lemma 6 ([43]). For Ve* > 0and s € R, it holds |s| — stanh () < 0.2785¢*.

Lemma 7 ([44]). Let h(x) be a continuous function. For Ve > 0, there is a radial basis function NN

(RBENN) WT¥ (x) satisfying h(x) = WT¥(x) +¢& where W = ((wy wp -+ wy )T, € is

an approximation error. ¥ (x) = ( 1(x) Pa(x) -+ Pn(x) )T/Zf\il Pi(x) eRN, N > 1

denotes node number, ;(x) = exp(—(x — 1) (x — li)/)(iT)(Z), Li=(ln lp - I )T,
T

ﬂ”d?ci:()(ﬂ Xi2 = Xin ) .

3. System Descriptions and Problem Formulation

A class of pure-feedback FONSs with input delay and unknown actuator saturation is
considered as follows:

D*x; = fi(x;, Xiy1) +di(8),i=1,2,...,n—1
{ Dy = () + u(v(t— 1)) +du(?) 1)
y=x

wherea € (0,1], %; = ( X1 X ... Xj )T € R’ denotes the system state, y € R denotes
the output, f;(-) denotes an unknown smooth function, and d;(t) denotes bounded distur-
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bance, i =1,2,...,n. T € R represents input delay, v denotes the controller input to be
designed, and u(v) denotes the systems input with saturation defined as:

Umax, V = Umax
Ll(l/) = v, Umin < V < Umax (2)
Umin, V < Umin

where upmax > 0 and upmin < 0 are unknown constants. Saturation (2) can be denoted
as [45,46]:
u(v) =h(v)+Av)

where A(v) = u(v) —h(v), |A(v)| < max{umax(1 — tanh(1)), timin (tanh(1) — 1)} = D, and

v v
ellmax —e Umax
——r——, v2>0

Umax * e
eTmax +¢  Tmax
h(v) = = -
e¥min — ¢ H“min
Umin * v —, V< 0

e ¥min —+ 67 Umin
There is a constant 1,0 < p < 1, and we obtain /(v) = hy,v when selecting vy = 0, and

u(v) = hy,v+AW)

where 0 < Jimin < |h,

assumed that h,,y > 0.

In fact, many physical systems can be modeled by pure-feedback FONSs with input de-
lay and actuator saturation, such as rotational mechanical system [47], power systems [48],
single-machine-infinite bus system [49], and Chua-Hartley’s system [50].

The control goal is to develop an adaptive event-triggered neural network controller
for (2) s.t.: (1) y can track the desired y,(t); (2) All the states are constrained in a compact
set, i.e., x; € {xi||xi| < kc,-rkci > 0}.

Since f;(X;, x;11) is an unknown smooth function, the partial derivative g;(%;, x;11) =
afi(X;, xi11) / dx;y1 is continuous, i = 1,2,...,n — 1. According to the mean-value theo-
rem [51], 3y; € (0,1), such that

<1, hpin is an unknown constant. Without loss of generality;, it is

fi(xi, xit1) = fi(%i,0) + &i(%i, mixiy1)Xis1 3)
i=1,2,...,.n—1

Assumption 1. There are unknown constants 0 < gimin < Simax < &, S.f. 0 < Gimin <
19i (%, 1ixix1)] < Qimax | = 1,2,...,n — 1. Without loss of generality, it is assumed that
0 < gimin < gi(fifﬂixintl) <gimaxi=12,...,n—1

Assumption 2. The disturbance d;(t) is bounded, and satisfies |d;(t)| < d; with d; > 0.

Assumption 3. For Vk¢, > 0, there are positive constants Ay, A1, and Ay, such that |y,| < Ag <
ke, [D%.(t)] < Ay, and D™y (t)] < A, There is a compact

Q, = {(w D% DXy )'|yE+ (D) + (D)’ <66, >0}, st
( Yy szyr DZayr )T c ny‘

4. Control Scheme Design and Stability Analysis
4.1. Control Design

In this section, the adaptive neural network control method will be given for the
systems (2) by combining the backstepping technology with a fractional-order dynamic
surface filter, and the block diagram is shown in Figure 1. The detailed design process will
be given in the following steps.
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First, define the coordinate transformations as:
Xl = ]/ - ]/r/Xi - xi - ai.l/X?’l = xn - a}’l.l + uS(t)/i = 2/3/' o n = 1 (4)
where 1(t) is the fractional-order differential and integral signal defined as
t
us(t) le"‘/ u(v(z))dz )
t—1
yr (@)
ul1—7 X
) » Plant (FONS) Y (S
Saturation v
7\ Auxiliary Signal 1
W(i-7) ‘ RBFNN
i ug(n =D f u(v(2)dz I
-7
Time Delay
Parameter
1 v (1) Adaptive Laws
Y Y
9,‘ wi

<
<
<
<

Event-Trigger
O (1) . V1 € [fg, Txs1)

Adaptive Controller

Figure 1. The block diagram of the proposed controller.

The above auxiliary signal us(t) is employed to handle the input delay, and it is natural
to assume that u5(t) bounded by |us(t)| < i, ils > 0 is an unknown constant.
The fractional-order dynamic surface filter is designed as

x;D%a;; = —a;; +a;-1,a;1(0) = a;_1(0). (6)

where g;_; is the virtual controller, and «; is a constant. Define filter output error as
Gi=aj—a;i1,i=23,...,n
Step 1: From (1), (3), and (4), the Caputo fractional derivative of x1 can be presented as

D*x1 = fi(%1,x2) +di(t) — D"y, (t)
= f1(%1,0) + g1 (%1, m1x2) (X2 + 2 + a1) +d1(t) — D*y,(t)

where the function F(X7) = f1(%1,0) + g1(%1, 71x2) x2 — D*y,(t) is unknown, X; = (%, yr).
The RBFNN W;}T‘I’Xl (X1) is utilized to approximate F(X;) by using Lemma 7, and W,

is the optimal parameter vector. Then, for Vé; > 0, it holds F;(X;) = W)*(T‘I’X] (Xy) +
€1(X1), [e1(X1)| < €. Then, one can obtain

D%y = w;g‘lfxl(xl) +e1(X1)

+ g1(X1, mx2) (G2 + a1) + di(t) )

K2 o L
The candidate function is chosen as V; = %]nﬁ + g%,’;‘lm 9% + %g‘lm (D%, where
b M

ky, = k¢; — Ao- 711 > 0and ¢1 > 0 are the design parameters. 6, = 0] — 01 is the parameter
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estimation error with the estimate 0; of the parameter 0] = HW?*(1 S1min- @1 = @] — @1 is

estimation error with the upper bound @} = &+42, and @ is the parameter estimation of @;.
According to (7), Assumption 1, Lemma 2, and Lemma 3, we obtain

D'V, = e X D" - Ll;;m‘ §,D"9; — 372‘1‘1“@@%1
l

g - (le'i’xl(xl) +e1(Xa) +81(%1,mx2) (G2 +a1)) (8)
l

Xl 81 min 5 o glmm ~ Q
+ dq(t) — <iming peg, @, D@,
kp, — X3 1(8) Mmoo ¢1

X1

The Young’s inequality is used, and we obtain:

2 2
g e (X < 0t (X 5 ©)
& 23 (K2, —23)
5242 2
2 X—lXZ e1(X1) < fln;mslxlz 7+ ngl : (10)
b X 28 (k2 ~13) min
_ glminx% 5%g1max 2
[ 7X281(X1,771x2)éz < — 5+ i 2 (11)
n X 263 (K2, —X1>
72,2 2
L) < Stmnh2_ G (12)
A )

where ¢1,¢1,01 > 0.
Substituting (9)—(12) into (8) with Assumption 1 yields

2
= 1minX 2
D*vy < pEa—1 Xjngl(xlﬂhxz)ﬂﬁr%ﬁ||'YX1(X1)H
b 1 2cq (kb] — )(1)
glminwik)(% g% glminx% 1gl max

+

2§2<k2 _Xz)z +g1min 252(k2 _ ) Zglmm
15, — X1 ,

_glminélD,xG glmm ~ DD‘CD + 1
T G1 2

&

X1 = 81 minXq
< X1,1M1x2)a +79 Yy, (X
Ty 81(%1,mx2)ay (kz ) ¥, (X))

X1 81 minX1 S1minX1 (13)
k2 2(12 2 @1+ 52(12 2
261 ( _Xl) 26 (k, 13
+C%+ é% + 1g1max€2
2 g1 min 2glmm
2
2
%H‘P&(xl)ﬂ
2(12 _ 2
2C1( by X1)

~ 1
—81minb1 | —D%01 —
T

1 X
—81min@1 | —D%@; — L

| 232(12 ~2)’
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The virtual controller and adaptive laws are designed as

2
ay = —bix1 — meﬂ“f'&(?{l)”

X1 (Ol X1 (14)

S 288, )

TXE
23 (k2 —3)
c1x3
—L gy (16)
283 (12 - 13)

where by > 0,91 > 0,61 > 0,¢1 > 0and ¢; > 0.
Substituting (14)—(16) into (13), D*V] is represented as:

D0, = S, (X)) = 9164 (15)

Da(ﬂlz

bigiminX ¢ | &
2 A2 2 .
U Stmin 17)
+ lglmax
2glmin

D"V, < —
, 1 1 )
05+ —81min®10101+—81 min 10101
" 61
Step i(i = 2,3,...,n — 2): Taking the Caputo fractional derivative of x; yields
D%xi = fi(%i,0) 4 d;(t) — D"aj;
+ 8i(%i, ixi1) (Xie1 + Giv1 + ai)

Using Lemma 7, the unknown nonlinear function F;(X;) = f;(%;,0) + &; (X, 1iXi+1) Xi+1 —
D*a;; is approximated by RBFNN W}*(iT‘I’XI,(XZ-), and Wy is the optimal parameter vector.
Then, F(X;) = W)*(iT‘I’XZ,(XZ-) +¢€;(X;), |ei(X;)| < &;, where & > 0, and one can obtain

D%x; = Wil ¥x, (X)) + &:(X;)
. (18)
+ 8i(%i, ixig1) (Giga +a;) +di(t)

K2 o o
Select the Lyapunov function candidate V; = V;_; + %ln 2 ilxz + g’z‘;“_" 91.2 + g’z‘é‘f“ 6012 +
b; A ! !

%g%, where k, > 0 and its definition will be obtained later. 7; > 0 and ¢; > 0 are the
design parameters. 0; = 07 — 0; is the parameter estimation error with the estimate 60; of

2
the parameter 67 = HW;Q / Simin- @; = @] — @; is the parameter estimation error with

the upper bound @} = £2+d?, and @; is the parameter estimation of @} .
Similar to the analysis in Step 1 using Young’s inequalityyields:

2 2
kz ?EXZ W;F(ITTXi(Xi) < zgl;nm 12 Zei HTX,»(Xi)H + EI (19)
b; i 2c: (kb[ —)(1.)
) 82,2 2

2 7E Xzei(Xi) < glmzm i 5 2;1 : (20)

L ap (g ) 2

2 2.2
2 )ﬁXz’gi(xi/Uixm)CiH < Simindi 4 % 3imax i (21)

2 .o
b~ A 22 (K~ x2)”  Himin
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Xi gpy < Simindix] N &

i >~
kii — X7 2¢2 (kii _ X;?.>2 28imin

where ¢;, §;,0; > 0.
From (19) to (22) with Assumption 1, one can obtain

D"V; < D"V, + k2 {X2g1(xzr771xz+l)

1

A2 . @¥y2
+&$Xzzgi ¥, (X;) H2+glL1X12
23(k, - 22) 2 (K, ~ )
a2 2 F2 5292
fo Simindi G G O 8imax )
25.2<k§ — 2)2 2 " Gimin | 28imin T

i i

_gimingiDtxg gz;nm = Da@l +§1D“C1

i i

Design virtual controller 4; and adaptive laws as

a;j = —bixi — #HTX,‘(XZ')HZ@

2c; (kii N XlZ)

_ Xi @ — Xi
23k -x2)  202(K - 3)

2
Dawl —_ GZXZ _ ngch

2
267 (k%’_ N Xlz)
where b; > 0,9; > 0,6; > 0,¢; > 0, and ¢; > 0 are the tunable parameters.
Based on (24)—(26), (23) is described as

glmmb1X CZ g
D*V: < D*V;_4 — 71 + _|_ 4+ zmax€
l . k2 2 gl min 231 min

+gij;‘i“ $:0:6; gl;_“m golco @; + ;D"

1

n—1 n—1 2 n—1 .2 152
< L B R e,
i=1 k - 1 &imin i=1 2gzmm

n—1 .
+) gm@‘i’i@i@i + Z Simin o &0, + Z GiD"g;
i-1 7 i-1 Gi i=2

1

Step i = n — 1: Taking the Caputo fractional derivative of x,_ yields

Daanl = fnfl (fnflr 0) + dnfl(t) - Daanfl.l
+9n-1 (fn—l/ Wn—lxn)()(n +Cn+a,_1— us<t))

(22)

(23)

(24)

(25)

(26)

(27)

Using Lemma 7, the unknown nonlinear function F,_1(X,_1) = fy—1(%,-1,0) +

Sn-1(Fn—1,Mn-1%n)Xn — D“a,_1; is approximated by RBFNN W;(I_ITXn—l

*

and Wy . is the optimal parameter vector,

(Xn—l)/

then

Fn—l(Xn—l) = W)*(:l;_len_l (Xn—l) + en—l(Xn—l); |€n—1(Xn—l)‘ < E&,-1, where g >0, and

one can obtain

D*xp-1 = W;*(}:_l‘fxn_l (Xp—1) + €n—1(Xp-1)
+ 8n-1 (fi’l—lr Wn—lxn)(én + Ap—1— ”s(t)) + dn—l(t)

(28)
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k. o
Select the Lyapunov function candidate V; = V;_; + 5 ln P + gl i 92 g"é‘f“ @? +

307, where k, > 0 and its definition will be obtained later. Yn—1 > 0and g,—1 > 0
are the design parameters. 0,1 = 0y _1 — 0,1 is the parameter estimation error with the

n—1min- Dn-1 = ‘9;—1 — @,,_1 is the

estimate 6,_; of the parameter 0 _; = HW}*(”_1

parameter estimation error with the upper bound (D;_l = 531714—11_,2171, and @,,_1 is the
parameter estimation of @;,_;.
Similar to the analysis in Step 1 using Young’s inequalityyields:

Xn—1
K2 ”_ XZ WXn 11PXn71 (anl)
bnfl n—1

2
g AminXo_ 2 c. (29)
= i me nzl 6;—1”‘{,&171(){”*1)” + nzl
2ci, 1(k X 1)
2 2 2
_ 8n—1min€y_1Xj— -
kzxnflz&qfl(xnfl) < o mmnelinel g 23 S (30)
N 2 (6, ) B
2 Xn—1 Sn—1(Xn—1,Mn-1Xn)Cn
bn—l T An-1
gn—lminX%_l 55—1gi—lmax 2 (31)
= 2 2 1mi
2‘5571(%",1_7(%71) S tmin
AXn—1 8n— 1m1nd 1?( 1 2—1
a () < IR T (32)
I 22 (8 —a3,) nimn

where ¢,, 1,841,041 > 0.
Note that the term u(t) can be viewed as a bounded signal according to (5). Therefore,
the following inequality can be obtained

_ﬁgrz 1(xn 1, Mn— 1xn)us(t)
b, n—1
2 2 2
< 8n—1minXj_1 5n71gn71maxﬂ2 (33)
— 2 .
22, (8  ~x2,) e
From (29) to (33) with Assumption 1, one can obtain
D*V, 1 < D"V, >+ #&171 (%n—1,Mn—1%n)an—1
&n—1mi XA e 2
n—1lmin
b S ()|
2Cn— ( _Xn 1)
2
8n— 1m1nwn_1Xn 1 En—1minX};_1 34
+ = + Y (34)
g ( -1 o X” 1) ( n 1 _Xn_l)
2
+ n 1 + 31—1 571 gn 1max€ %—1gn—1max1/—l2
. nt - s
2 8n—1min Zgn 1 min Zgn 1 min

_Mén,lD“Gnq—M@w D* @y 1+€n 1D gn 1
’)/n_l gn—l
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Design virtual controller a,,_; and adaptive laws as
_ 2
ap1 = —by_1Xn-1— Xn1 HTXH,] (anl)H 0n—1
2¢2 (k%ﬂi1 - 7(%71)

Xn—1 @y 1 — Xn—1 (35)

n—

200 (kin_l - X%zfl) 51 (kin_l - X%zfl)
2
Tn—1Xp— 2

D*0,_1 = ; n2 - 12 5 ¥, 1 (Xu-1)||” = Pn—164—1 (36)

26,1 (kbn,l - anl)

Cn1X;
D@, 1 = E n-l — Pn—1Wn-1 (37)

ZC ( n 1 Xn 1)

where b,,_1 > 0,7,-1 > 0,6,-1 > 0,¢,,—1 > 0and ¢,_1 > 0 are the tunable parameters.
Based on (35)—(37), (34) can be described as

2 2

Sn—1minbn—1X co

D*V, 4 < D"V, 5 — "kzmm_” Ly
n 1 Xn 1

g
_|_ —13n— 1max€% 8n— 1m1n¢n 19n 19n 1+€n 1D Cn 1
Zgn 1min Tn-1

_gn—lmm §0n716@n71@n71 + ‘:nfl nflgnflmax L_lg
gnfl In—1min 2gn 1 min
< _ i bzgzmm)(, +nil 62 +nz 1g1max€ (38)
I k Xz i— 1 8imin ;= 2¢imin i1
n—1 gi Qimi
+) lmm‘l’ieiei + Z SRR ;D@
i-1 i i-1 i
n—1 n—1 CZ (52 1gZ )
+ ZgiDa€i+ Z 71_’_ n—16n— maxﬁg
i— i— 2 2¢1—1min
Step n: T derivative of x, is derived as
D*xn = D%*xn — D%a,; +u(v(t)) —u(v(t — 1)) (39)

— ful®a) = Dy + v+ A@W) +du (2)

where F,(X,,) = fu(Xn) — D*a,,; is approximated via the RBFNN W)*(E‘I’Xn (Xn), and W
is the optimal parameter vector satisfying F,(X,) = W)*(E‘I’Xn (Xn) + €n(Xy). Assume that
J&, > 0 such that |e,(Xy)| < & Then, (39) can be described as
D*xn = Wi ¥x, (Xn) + €n(Xn) + by, v+ A(v) + dn(t).

2
Select the Lyapunov candidate function V,, = V,,_1 + 3 In 7ot 3 m“‘ 92 mm c@% +

kbn
%@n, where khn > 0 and its definition will be obtained later. 7, > 0 and ¢n > 0 are the

design parameters. 0, = 0 — 0, is the parameter estimation error with the estimate 6, of

2
the parameter §;, = H W}*(n hmin. @n = @;; — @, is the parameter estimation error with

the upper bound @}, = &2 +d2 + D?, and @, is the parameter estimation of ;. Compute
the fractional-order derivative of V,,

D"V, = D*V,_4 + Xn (W;(ZTX,, (Xn) + Sn(Xn))

kzzjn - Xn
k2 Xi (h v—l—A(v)—l—dn(t)) (40)

Y min g g, — hg‘m @nD*@p + {nD*Cp
n n
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By employing Young's inequality with Assumption 1, one has
Xn Homin X7 . 2, G
2 — W ‘Pxn (X”) = zen”len(Xﬂ)H + ? (41)
by~ X 2c2 (k%” - x%)
B 8242 2
kz X_ﬂ zgn(Xn) S min€uXn 5 + 2;1:;’71 (42)
I
Xn A(V) < hmmDan + C% (43)
K, = Xa T o212 —42)° 2hmin
: 28 (% - 13)
k2 - XZ ! B 2 (12 2 2 2hmin
" 205 (kbn - Xn)
where ¢y, &y, 05 > 0.
Substituting (41)—(44) into (40) yields
DDCV” S Dlxvn_l + kz — Xn hyy
—e Hinin@;i X2
A g [, ()| e
263 (K2, — x2) 28k~ 23)
hmin A hmm &, DY n CZ 36%1
- 0,D"6, — Dco,ﬁ—gann—i—?—f—h‘
n n min
2
S DaVn—l - hmm (f)n Da@n - —Qn?(n 2
o (8, - 13) (45)
+k2 Xn . hv,ﬂ/ I hmianQn!TXn (Xn)”Z n hmizn)(n@n
b, X 233 (k -x) a8 -x)
Ni 2
TG, | Dy — TR [, (X |
' 22 (K3, — 13)
% 2 36%
+0nD" G + 205 + 7=
min
Design the fractional-order adaptive laws as
771)(2 2
D% = —— 5 ¥, (Xu) I = Pubn (46)
2¢2 (kﬁn — X%)
Gn i
D*®@, = % — PnWny (47)
28 (2~ x2)
where v, > 0,6, > 0,¢, > 0and ¢, > 0 are the tunable parameters.
Design event-triggered controller as
o(t) = O(t), Vi € [t tri1) (48)
- A%
O(t) = —(1+A}) | aptanh | — 2% ) 4 X tanh | — 224 (49)
(8 - x3) (8 - x3)
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an = buxn + ;L @On

28 (2 —x3)
Xn
+z@@2—xQ9'T”Q“”

(50)

where b, > 0 and «* > 0 are the tunable parameters. The sampling instants are determined

by the following triggering condition

trar = inf{ £ € RI[Y(8)[ = Atfo(f)] + A2}

(51)

where t;(k € Z") is the controller update time. A} € (0,1),A5 > % and A; > 0 are

known parameters.
Define event sampling error Y(t) = ©O(t) — v(t), together with (51), we have

O(t) = (1 + A1 ())v(t) + A2Aa(H)
where |[A1(t)] < 1and [Ay(t)] < 1. Inview of [A1(t)| < 1and |A;(t)| < 1, we obtain

O(t)xn < O(t)xn
T+ATM(E) = 1+ A7

MAa(h) | M
1—1—2»1%1(1?) 1=\
Substituting (46)—(53) into (45), we obtain
. B, Xn o(t) By, Xn  A5Aa(t)
3 3 [ #
DV”SDV”’1+k2 — 2 T+ A M) k2 — 2 1+ A ()
Xn Panin Xn 2 man
+ Oul¥x, (X)I” + —7 =
kz _X% (ZCZ <k2 7)021) g 7)(»1
+ "““‘P”e O+ —— 0 Fanin @1 @n@n + {uD G + 205 + h
n hv ; min
< DaVn71 _ }’X /\ZAZ( )

R =31+ AM()
1+77) hya
o ( +* 1) " "szz tanh AnXn
T+ A0 kG — X3 K*(kin—xﬁ)

1475 hy,Aj As
. ( "‘* 1) : ZX; tanh 2Xn
O R, - "\ (- )

n
Onl[¥x, (X0)1* +

hmian

(i, - ) w)

Hmin®n = h 3¢2
+%¢”9nen ‘“;““””wnwﬁgnmgﬁzcﬁ o

n hmin

+ Xn Ftmin Xn
k%n - Xa 2c2 (k2 - )(2)

n

2
< D,y minbg g, 4 it o o, 1 g,Drg, 2] 4 o

n n hmin

Hioni Hioni
g |+ sy, (X)X,
bn Xn Ci (kb” - Xn) én (kb” - Xn)

Simin , 5 hmin . 5 nl Simin _ ~
+ Z SR 0,060+ P06y + ) S i
i-1 i Tn i-1 i

h . _ n
+?(pnwnwn + Y §iD"Z;i 4+ 0.557x*
n i=2
ni zgl mleZ hminbnxﬁ nl 26;2

2 - 2
- k 1 k Xn —1 glmm
2 n
36 1g1max€' n 1gn 1 max —2
1t
hmm i= =1 i+ 2gn 1min s

+ Z glﬂd’:ﬁieﬁ- 0 B + Z §imin o 5,0,
i—-1 i Yn Gi

i-1 i

S_

hmin ~ L *
+—g Pn@n@n + Y (iD*T; 4 0.557x
n i=2

(52)

(53)

(54)
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4.2. Stability Analysis

Theorem 1. Considering the pure-feedback FONSs (2) under Assumptions 1-3, virtual control func-
tions (14), (24) and (35), fractional-order adaptive laws (15), (16), (25), (26), (36), (37), (46) and (47),
and the event-triggered adaptive controller presented in (48)—(51), the following holds (The proof of
Theorem 1 see Appendix A):

(i) All system signals are bounded, and error signal x; will stay around the compact set

Q= {;m xil < ky, \/1 — eV OE @ (—pt)=2MI/p i q n} (55)

(i)  All system states can not transgress the sets.
(iii) The Zeno behavior can be avoided.

5. Simulation
5.1. Example 1

A two-order pure-feedback FONS with full state constraints is described as

D%6x; = —0.5x% 4+ x, + 0.01 sin(¢)
DOby, — 203 u(v(t — 7)) +0.05cos(t)
27 Tyosd T2 :
—0.3x3 .
where fi(x1,x2) = —0.5x2 + x2, fo(x1,x2) = 36124_0'53211 —xp, T = 0.01, d1(t) = 0.01sin(¢)

and d(t) = 0.05cos(t). x; and x; are the system states, which are confined as |x1| < k., =0.8
and |xp| < ke, = 0.6, respectively, and y,(f) = 0.5sin(t). v and u(v) are the saturation input
and output, and the saturation parameters are u#max= 0.8 and umin= —0.5.

Using the adaptive controller (14) and (48)~(51) with parameter-updated laws (15), (16),
(46) and (47), the design parameters are chosen as by = 25,bp = 8,¢c1 = 11,0 = 113,
o1 = ¢ =101, 94 = 1001, 9 = 1101, ¢ =11, = 1111, 6 =11, @1 = @2 = g1 =
6o = 11, x5 = 0.06, x* = 0.01, A} = 0.001,A5 = 0.1 and 7\5 = 0.2001. Meanwhile, the initial
values are selected as x1(0) = x(0) =0, 61(0) = 6,(0) = 0and @;(0) = @,(0) = 0.

The simulation results are shown by Figures 2-8. Figure 2 displays output tracking
trajectories between the system output y and the reference signal y,. Figure 3 shows the
system states xp. It is clear from these figures the full state constraints are not violated.
The control input signals u shown in Figure 4, adaptive estimation for 6; and 6, shown in
Figure 5, and @, and @; shown in Figure 6 are all bounded. Figure 7 lists the sequence of
steps of event-triggered sampling to demonstrate the time interval results of the triggering
events, and Figure 8 shows the number of accumulated events according to the event-
triggered sampling in Figure 7, which can display that the proposed event-triggered
controller can reduce the computational burden.
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0 1 1 1 1
0 500 1000 1500 2000 2500

Number of events

Figure 8. Cumulative number of events.

5.2. Example 2

In this example, the fractional-order Chua—-Hartley system as a practical example is
presented as follows [50]:

D%x1 = g (x1 — x?) + xp 4+ dy (t)

D%xy = 10x1 — xp + x3 + dz(t)

D*x3 = — 0% +u(v(t — 1)) + ds(t)
where a = 0.98, f1(x1,%2) = X2 + 2 (x1 — x3), fo(%p, x3) = 10x1 — X2 + X3, f5(%3) = — Py,
and T = 0.005. di(t) = 0.05cos(t),dx(t) = 0.1sin(t), and d3(t) = 0.01(sin(f) 4 cos(t))
are the external disturbances. xj,xp, and x3 are the system states, which are confined as
lx1| < k=09, |x2| < ke,=1.6, and |x3| < k¢, = 16, respectively, and the desired signal is
taken as y(t) = 0.8 sin(f). The saturation parameters are #max=200 and #min= —210.

The design parameters are chosen as by = 16.1, b = 31.1, b3 = 71.1,¢; = 1.1,
g =c3 = 1018, ¢1 = ¢ = ¢3 = 101,71 = 72 = 73 = 0.001,¢ = 11.1,
G =8 = 101101 = & =1L, ¢1 = ¢ = ¢3 = 1L, g1 = ¢ = ¢z = 001,
Ky = k3 = 0.01, «* = 0.01, A] = 0.001,A; = 1.1, and A; = 1.2011. Meanwhile, the
initial values are selected as x1(0) = x2(0) = x3(0) = 0, 6;(0) = 62(0) = 65(0) = 0O,
and @1(0) = @(0) = @3(0) = 0.

To show the advantages of the proposed controller, a robust adaptive backstepping
controller (RABC) in [52] is employed. Figure 9 shows the position relationship of y and y;,
in which the constraints are not violated. State x; is shown in Figures 10 and 11, and x3 is
displayed in Figures 12 and 13 by RABC and the proposed scheme, respectively. It is clear that
the system states x, and x3 by the proposed scheme satisfy the constraints xp < 1.6 and x3 < 16.
However, the system state x, and x3 by the RABC violate the preset state constraints. The
control input signals u shown in Figure 14, adaptive estimation for 6, 6,, and 63 shown in
Figure 15, and @, @, and @3 shown in Figure 16 are all bounded. Figures 17 and 18 show
the sequence of steps of event-triggered sampling and the number of accumulated events to
demonstrate the effectiveness of the computational burden reduction.
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Based on the above simulation results, it can be observed by the proposed scheme
that the tracking objective and the stability can be obtained, and reducing communication
burden and meeting preset state limits can also be achieved.

6. Conclusions

An adaptive event-triggered controller approach for state-constrained pure-feedback
FONSs with input delay, unknown actuator saturation, and external disturbances has been
proposed. By employing the BLFs, backstepping technique, and auxiliary compensation
system to handle input delay, the constraints are not violated. The fractional-order dynamic
surface filters are used to deal with the complexity of the recursive procedure. The ETC
strategy is applied to overcome the communication burden from the limited communication
resources. The effectiveness can be verified by the simulation results. In the future, the
controller design issue for time-delay switching FONSs will be considered, and the fractional-
order circuit system will be built to verify the effectiveness of the proposed algorithm.
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Appendix A
Proof of Theorem 1. (1) The proof of Theorem 1-(i): It is true that
w @l .
D*C; = D*a;; — D*a;_1 = H;(-),i=2,3,...,n
where

! alll 1 oa; 1 811;1
——D%x - D*W; 1 — ——D"a;_
]21 Bx] A IW;_1 i1 0a;_1 4i-11

1=23,...,n

For  constants  Jy
Qy, =

> 0 and © > 0, the set
. 6
{(yr DYy, D¥y, )'|y?+ (D) + (D*y,)* <4, }  and

Z— T+ Z‘, ; WTW —|—2 Z ]+1 < ®(5} are compact. Then, Q,, x Q); is

b ; j

Qi:{ zln
j= j

compact, and thereisa &; > 0, s.t. ‘H]| <

kZ
. Therefore, the following inequality holds:

gZ =2 gi
7iH;: 2T + 17
’ ] ’ 17] 2

where g; > 0.
Based on error 6; = 0 — 0, and @; = @; — @, it holds

j Lo 1m
0,0; < 591* — 591-
~ 1 2 ]. ,_,2
@;w; < ico;* — 5@
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Then, we can obtain

n—1 bioi . 2 . 2 n—1 2
i&iminX; hminbnx G
D“Vng—zkz_;—kz_;+ -
i=1 Xi b Xn i—1 8imin
glmm hmin gz mln
+
121 Z’Yn ; 2%
Z gzmm hmln §0n 1 Z gzzmm 4)1 2
i=1 i=1 gl
h 'n lgz 1 max 1 2
_|_ _
g Zé( 2g1 1mm 2% g
362 2 111 n 1gn 1max -2
+ + A len—lmax g
thm E Z 2¢1—1min )

. Nimin g2 5575+
2 9nl + 0557
< —an +M

where , .
P min{szgzmmr mlnbn;¢z/ @z/E'/l - ]-/ .- .,1’1 - 1/] = 2/ .. .,Tl}

n—1 2 n—1
R L

i 1g1m1n i—1 2¢;
dimin *2 hmin %2 Bmin %2
0; 0: @;
+2(2%"” 27, 10 ) 26, V"
+ 18}’[ 1 max 2 i +0557K
Zgn lmm i

i=2 —
] 1g] Imax 1 i
28; 1min Kj 2’7]

According to Lemma 4, it is easily to obtain

Ej =

Vn(t) < Vn(O)E( )( pta) + 1\;[)19

Based on Lemma 1, it holds that

v, < 1\/:9,1‘ oo (A1)

According to the inequality (A1), one can obtain the boundedness of In k%i / (k%i - )(12) ,
thus | )(1-| remains in the set | )(l-| < kb,-' Also, it holds that 6;, @;, and Cj are bounded.
Since §; = 07 —0; and &; = @; — @;, one can obtain that 6; and @; are bounded. Due
to x1 and y,(f) are bounded, x; is bounded. Due to (14), a1 is bounded and satisfies
|a1| < a1 max, @1 max > 0. Using x2 = xo — ap; and {p = ap; — a3 < v/2V,, one can obtain
that a,; and x; are bounded. Similarly, based on the boundedness of u;(t) from (5), the
boundedness of states x;,i = 3,...,n and virtual controllers 4;,i = 2,...,n are obtained.

From (A1), it holds that %In ki/ (k%i - )(12) < Vi(0)Eq 1y (—pt*) + M3 /p, which implies

that |xi| <k, \/1 — o 2VnOEn (=pt)=2ME/0 Thatis x; € Qi = 1,2,...,n
(2) The proof of Theorem 1-(ii): Based on x1 = x1 + y,(t) and |y, (t)| < Ap from Assump-
tion 3, one has |x1| < |x1] + [yr(t)| < kp, + Ag. Define k;, = k¢, — Ap, one obtain
1
|x1| < ke, Dueto xa = xa + 2 + a1 and [ (o] < \@(Vn(O)E(a,l)(—Pt“) +M19/P) ¥ <
Ar, Ay > 0, yielding |x2| < |X2| + ‘€2| + |El]| < kbz + Ay 4+ a1 max- Let khz = kCZ —
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Ay — a1 max, ONe can obtain x| < k¢,. Similarly, one can in turn obtain |x;| < k,,
i=3,...,n
(3) The proof of Theorem 1-(iii): From the sampling error Y(t) = O(t) — v(t), one can
obtain D*|Y(t)| = sign(Y(t))D*Y(t) < |D*®(t)|. Due to (49), D*©O(t) is bounded,
and 3¢ > 0 satisfying |D*@(t)| < {. According to Y(#;) = 0 and tli{n Y(t) = A3,
et

one can obtain f;;1 — f > A3/, avoiding the Zeno phenomenon.

O]
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