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Abstract: In the present research, we consider a biological model of serum hepatitis disease. We
carry out a detailed analysis of the mentioned model along with a class with asymptomatic carriers
to explore its theoretical and numerical aspects. We initiate the study by using the piecewise
fractal–fractional derivative (FFD) by which the crossover effects within the model are examined.
We split the time interval into subintervals. In one subinterval, FFD with a power law kernel is
taken, while in the second one, FFD with an exponential decay kernel of the proposed model
is considered. This model is then studied for its disease-free equilibrium point, existence, and
Hyers–Ulam (H-U) stability results. For numerical results of the model and a visual presentation,
we apply the Lagrange interpolation method and an extended Adams–Bashforth–Moulton (ABM)
method, respectively.

Keywords: serum hepatitis disease; piecewise fractal–fractional derivative; stability; simulation; fixed
point results; approximate solution

1. Introduction

Serum hepatitis, also known as Hepatitis B, is a serious disease that causes liver
infection. This disease is caused by the Hepatitis B virus (HBV) and poses a significant
health challenge worldwide. It can lead to both acute (short-term) and chronic (long-term)
illnesses. Initially, it may be transmitted to a child from an infected mother before his/her
birth (pregnancy period) and during delivery or childbirth. Its spread also takes place from
an infected individual via sexual contact, through contact with the blood of an infected
individual, or through unsafe injections. Its transmission may take place via contact with
poisonous or polluted medical equipment or other objects. Similarly, injection practices
can be a reason for its transmission. As claimed by the World Health Organization (WHO),
about 296 million individuals globally are living with chronic infection. It is reported that in
2019, around 820,000 people died from this infection, with the majority of deaths attributed
to cirrhosis and hepatocellular carcinoma (primary liver cancer). Moreover, 22% of the
diagnosed population, which is almost 6.6 million individuals, were medically treated.
This number makes up almost 10% of infected people.

The WHO reported a significant decline in the spread of chronic infection among
children under five years of age. During the pre-vaccination period from the 1980s to the
2000s, the estimated rate was about 5%, whereas in 2019, it was less than 1%. However, we
should note that the WHO predicts almost 1.5 million new cases of this serious disease every
year. Preventive measures include antiviral prophylaxis during pregnancy, as well as safe
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and effective vaccinations. These interventions are of great importance in the prevention
and control of Hepatitis B. The HBV models studied in the sense of classical derivatives
are unable to capture memory and genetic characteristics, which can be observed in non-
integer-order models.

Researchers and mathematicians have focused on fractional calculus due to its effective
use in the modeling of various mathematical problems in many real-world situations. More
specifically, researchers working in applied mathematics have taken an interest in non-
integer-order derivatives to achieve higher accuracy in mathematical modeling (see [1–7]).
Fractional calculus [8,9] is continuously being developed to more deeply and accurately
understand the properties of real-world problems. It allows researchers in this field to
analyze and explore phenomena that cannot be described accurately by integer-order
calculus. Complex systems and phenomena can be better understood by using fractional
derivatives and integrals. The advancements in fractional order calculus offer opportunities
to enhance our understanding of real-world problems. In recent literature, various types of
non-integer-order differential operators, along with their associated integral operators, have
been explored. Caputo and Fabrizio [10] investigated non-integer-order derivatives with the
exponential kernel. In [11], authors investigated properties of the new fractional derivative
without singular kernel. Atangana and Baleanu [12] formulated fractional derivatives and
integrals with Mittag-Leffler kernels and extended them to higher arbitrary orders.

In some real-world phenomena, transitions are observed when they shift from power
law to exponential decay, or from deterministic to stochastic randomness. Atangana and
Araz [13] proposed a new concept of piecewise differential and integral operators, which are
effective for modeling and solving such phenomena. This approach is not like conventional
methods, which do not exhibit crossover behavior due to their lack of abrupt changes.
Additionally, the time interval is split into two subintervals at the point of discontinuity.
In contrast to the usual fractional derivatives, the piecewise concept is useful in describing
these crossover effects among various forms (see [14]).

On the other hand, researchers have focused on fractal–fractional calculus due to its
significant use in real-world problems. The idea of fractal–fractional was formally started a
few years ago when the author of reference [15] published the first work about this. The
concept of fractals is as old as fractional calculus. Researchers have used the applications
of fractal–fractional to investigate various problems in physical sciences. For instance,
see [16,17]. For more applications, see [18,19].

Gul et al.[20] considered the HBV model. They studied the dynamics of the Caputo
fractional order HBV model with asymptomatic carriers. They studied the existence, sta-
bility results, and numerical solution of the considered model and simulated the results.
In [21], the authors investigated this model under the piecewise Atangana Baleanu deriva-
tive and derived the aforementioned results. In both research studies, the authors made
significant efforts toward accurate modeling of the disease; however, these models lack
a memory effect. As with many real-world problems, it is necessary to know how much
information a system carries. In such a situation, the concept of a fractal–fractional deriva-
tive is beneficial. In our research paper, we reformulate the HBV model in the sense of the
piecewise fractal–fractional order derivative, which incorporates the additional property
of memory and manages the crossover effect. In this sense, our proposed model is more
informative. Moreover, typically in a piecewise derivative, a classical derivative is taken
in the first subinterval of the time domain with the concerned fractional derivative in the
second subinterval. In our paper, we consider an FFD with a power law kernel in the first
subinterval and an FFD with an exponential decay kernel in the second subinterval. This
makes the results more interesting and different.

The innovations and objectives of this research are as follows:

• To define a piecewise Caputo FFD by combining the FFD with the power law kernel
and FFD with the exponential decay-type kernel.

• To reformulate serum hepatitis disease in the sense of piecewise Caputo FFD.
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• To study the existence and H-U type stability results for the proposed model under
piecewise Caputo FFD.

• To find the numerical solution of the proposed model under piecewise Caputo FFD by
applying the Lagrange interpolation method and the extended ABM method.

• To visually present our results.

The rest of the manuscript is structured as follows: In Section 2, we present the basic
definitions and preliminary results. In Section 3, the proposed mathematical model and its
formulation are presented. Section 4 is allocated to the derivation of the basic reproduction
number of the concerned model. In Section 5, we analyze the fractional order system, derive
the main results of existence, and present the uniqueness of the solution along with their
stability results based on H-U’s concept of stability. In Section 6, the computational results
along with graphical representations of the proposed model are presented. In Section 7, we
present the conclusion of the main work with some future work directions.

2. Basic Results

Definitions 1 and 2 are adopted from [13]. In the upcoming definitions, ς denotes the
fractional order derivative while η denotes the fractal dimension.

Definition 1. For y ∈ C[0, T] and 0 < ς, η ≤ 1, the piecewise Caputo-fractal–fractional derivative
is defined by

PCFFDς,ηy(t) =

{CFFDς,η
p y(t), t ∈ [0, t1],

CFFDς,η
e y(t), t ∈ (t1, T],

(1)

where the notion CFFDς,η
p y(t) represents FFD with the power law kernel while the notion CFFDς,η

e y(t)
represents FFD with the exponential decay-type kernel.

Definition 2. Let y ∈ C(0, T). Then, we define the ςth order piecewise fractal–fractional integral
(FFI) of y(t) as follows:

PFF Iς,ηy(t) =

{FF Iς,η
p y(t), t ∈ [0, t1],

FF Iς,η
e y(t), t ∈ (t1, T];

(2)

FF Iς,η
p y(t) and FF Iς,η

e y(t) are defined bellow.

Definition 3 ([15]). Let y ∈ C(0, T). Then, the FFI of y associated with the power law kernel is
defined as follows:

FF Iς,η
p y(t) =

η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1y(v)dv. (3)

Definition 4 ([15]). Let y ∈ C(0, T). Then, the FFI of y(t) associated with the exponential decay
kernel is defined as follows:

FF
0 Iς,η

e y(t) =
η(1 − ς)tη−1y(t)

B(ς)
+

ςη

B(ς)

∫ t

a
vς−1y(v)dv. (4)

Definition 5 ([15]). For y ∈ C[0, T] and 0 < ς, η ≤ 1, if y is fractal-differentiable on (a, b) with
the order of η, then FFD with the power law kernel is defined as follows:

CFFDς,η
p y(t) =

1
Γ(1 − ς)

d
dtη

∫ t

0
(t − v)−ςdv. (5)



Fractal Fract. 2024, 8, 260 4 of 24

Definition 6 ([15]). For 0 ≤ ς, η ≤ 1, the FFD of y with the exponential decay kernel is given by
the following:

CFF
0 Dς,η

e y(t) =
B(ς)
1 − ς

d
dtη

∫ t

a
exp

(
−ς(t − v)α−ς−1

1 − ς

)
y(z)dv,

where M(0) = M(1) = 1.

Theorem 1. If Q1,Q2 are two operators such that the first is a contraction and the second is
completely continuous over a closed bounded subset H of a Banach space J, then the operator
equation QF +Q2F = F has at least one solution.

Definition 7. The formula used for the Adams–Bashforth method of ordinary problems is given by
the following:

ym+1 = ym + h
r

∑
i=1

bi f (xm + ih, ym + ih),

where

• ym is the approximate solution at time xm.
• h is the step size.
• f (y, x) is the ODE.
• bi are coefficients that depend on the order of the method.

3. Mathematical Model and Its Formulation

This section is subdivided into two subsections, where the mathematical model and
its formulation are presented, respectively.

3.1. Mathematical Model

We generalize the HBV model [20] in the sense of the piecewise FFD with the power
law kernel and the exponential law kernel as follows:

PCFFDς,η
t X(t) =

{
ϱ − ϑ(A + ω1Ac + ℘1C)X − ξX,

X(0) > 0,

PCFFDς,η
t E(t) =

{
ϑ(A + ω1Ac + ℘1C)X − (ξ + ψ1)E,

E(0) > 0,
PCFFDς,η

t A(t) =
{

ψ1nE − (ξ + µ + ρ1 + η1)A,
A(0) > 0,

PCFFDς,η
t Ac(t) =

{
ψ1(1 − n)E − (ξ + x1 + λ)Ac,

Ac(0) > 0,
PCFFDς,η

t C(t) =
{

ρ1A + x1Ac − (ξ + δ + v1)C,
C(0) > 0,

PCFFDς,η
t Rp(t) =

{
η1A + v1C + λAc − ξRp,

Rp(0) > 0;

(6)

ϱ is the susceptible birth rate, and ϑ and ξ denote the effective contact rate and natural
fatality rate, respectively. ψ1(1 − n) is the infection rate of the exposed population, with a
portion of ψ1(1 − n), shifting to class A at a rate of ψ1n. Class Ac is used for symptomat-
ically infected individuals. ρ1 and x1 denote the rates at which individuals of acute and
asymptomatic classes become carriers, respectively. η1, λ, and v1 denote the recovery rates
for acute, asymptomatic, and carrier individuals, respectively. µ and δ denote the death
rates in the acute and chronic classes due to disease, respectively. ω1 and ℘1 denote the
coefficients of asymptomatic and carrier individuals, respectively.
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3.2. Model Formulation

In deriving the integer-order model of serum hepatitis disease, we take the total human pop-
ulation, N(t) as a sum of six classes; that is, N(t) = X(t) + E(t) + A(t) + Ac(t) + C(t) + Rp(t),
where the parameters are defined in Table 1.

Table 1. Parameters for system (6).

Parameters Parameter Definition

X(t) Susceptible class of individuals.
E(t) Exposed class of population.
A(t) Acute class of infected individuals.
Ac(t) Asymptomatic carrier.
C(t) Chronic class of infected individuals.

Rp(t) Recovered class of individuals.

Susceptible class: The class X(t) is recruited at the rate ϱ and decreased due to the
natural fatality (death) rate ξ. Also, this class diminishes as a proportion of the population
becomes infected after contact with either Class A of acutely infected individuals or the
asymptomatic carrier and chronic class C(t) of infected individuals, at rates of ω1 and ℘1,
respectively. Therefore, we formulated the dynamics of the susceptible class of individuals,
as follows:

dX(t)
dt

= ϱ − ϑ(A + ω1Ac + ℘1C)X − ξX.

Exposed class: Class E(t) increases at the rate ϑ, which represents the proportion of
the population becoming newly infected through previously described contacts. This class
decreases due to the natural fatality rate, ξ, and by the rate at which the exposed population
becomes acutely infected. Therefore, we formulate the dynamics of the exposed class of the
population as follows:

dE(t)
dt

= ϑ(A + ω1Ac + ℘1C)X − (ξ + ψ1)E.

Acute class: Class A(t) is recruited at the rate ψ1n of the exposed population. This
class decreases at the natural fatality rate, ξ, by the death rate, µ, due to disease in the acute
class. This class also decreases by the rate ρ1, at which the individuals of the class go to
the asymptomatic carrier, and by the rate η1, at which the individuals of the class recover.
Therefore, we formulate the dynamics of the acute class of the population as follows:

dA(t)
dt

= ψ1nE − (ξ + µ + ρ1 + η1)A.

Asymptomatic carrier: Class Ac(t) is recruited from the exposed class at the rate
ψ1 and decreases at the rate ψ1n, which represents the transition of individuals from the
exposed to the acute class. This class decreases due to the natural fatality rate ξ, the rate, x1,
at which members transition to the chronic class of infected individuals. Also, it decreases
at the rate λ, at which members of the class recover. Therefore, we formulate the dynamics
of the asymptomatic carrier as follows:

dAc(t)
dt

= ψ1(1 − n)E − (ξ + x1 + λ)Ac.

Chronic class of infected individuals: Class C(t) is recruited at the rates of ρ1 and x1
of the acute class of infected individuals and asymptomatic carriers, respectively. The class
is reduced by the natural fatality rate, ξ, as well as the δ fatality rate, due to disease. The
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class also reduces by the rate, v1, at which the individuals in the class recover. Therefore,
we formulate the dynamics of the chronic class of infected individuals as follows:

dC(t)
dt

= ρ1A + x1Ac − (ξ + δ + v1)C.

Recovered class of individuals: Class Rp(t) grows at rates η1, v1, and λ, where the
individuals of the aforementioned classes recover and decrease at a natural fatality rate, ξ.
Therefore, we formulate the dynamics of a recovered class of individuals as follows:

dRp(t)
dt

= η1A + v1C + λAc − ξRp.

As a result of the above derivations of the aforementioned classes, the integer-order
model of serum hepatitis disease with a class of asymptomatic carriers is presented as follows:

dX(t)
dt =

{
ϱ − ϑ(A + ω1Ac + ℘1C)X − ξX,

X(0) > 0,

dE(t)
dt =

{
ϑ(A + ω1Ac + ℘1C)X − (ξ + ψ1)E,

E(0) > 0,
dA(t)

dt =

{
ψ1nE − (ξ + µ + ρ1 + η1)A,

A(0) > 0,
dAc(t)

dt =

{
ψ1(1 − n)E − (ξ + x1 + λ)Ac,

Ac(0) > 0,
dC(t)

dt =

{
ρ1A + x1Ac − (ξ + δ + v1)C,

C(0) > 0,
dRp(t)

dt =

{
η1A + v1C + λAc − ξRp,

Rp(0) > 0.

(7)

We extend the integer-order model presented in (7) to a piecewise fractal–fractional order
model with power law and exponential law kernels as given in (6).

4. Equilibrium Point and Basic Reproduction Number

For disease-free equilibrium point Θ0, we have the following:

ϱ − ϑ(A + ω1Ac + ℘1C)X − ξX = 0
ϑ(A + ω1Ac + ℘1C)X − (ξ + ψ1)E = 0

ψ1nE − (ξ + µ + ρ1 + η1)A = 0
ψ1(1 − n)E − (ξ + x1 + λ)Ac = 0
ρ1A + x1Ac − (ξ + δ + v1)C = 0

η1A + v1C + λAc − ξRp = 0.

And is provided as follows:

Θ0 =

(
ϱ

ξ
, 0, 0, 0, 0, 0

)
;

ϱ is the birth rate of the affected population and ξ denotes the natural dying rate, respec-
tively. From [22], the basic reproduction number, R0, for model (6) is given by the following:

R0 =
ϑϱnψ1

ξθ2θ1
+

ϑω1ϱψ1(1 − n)
ξθ3θ1

+
ϑ℘1ϱρ1nψ1

ξθ4θ1θ2
+

ϑx1ϱψ1℘1(1 − n)
ξθ4θ3θ1

,

where

θ1 = (ξ + ψ1), θ2 = (ξ + µ + ρ1 + η1),

θ3 = (ξ + x1 + λ), θ4 = (ξ + δ + v1).
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Significance of the Basic Reproduction Number

The basic reproduction number is the average number of infected contacts per sick
individual. It is a dimensionless number rather than a rate. Therefore, R0 is the number
of secondary infections produced by a single typical infection in a rarefied population. It
plays an important role in predicting the infection in society. If there are no environmental
changes or outside factors that intervene, a virus will continue to spread among susceptible
hosts at the population level if R0 is greater than 1.

5. Existence and Stability Analysis of the Piecewise Fractal–Fractional Model 6

In this section, the main results, such as the existence, uniqueness, and stability of the
solution of the proposed model (6), are established. Let I = [0, T]. We define a Banach space
as follows: J = C(I, R+) × C(I,R+) × C(I,R+) × C(I,R+) × C(I,R+) × C(I,R+) under
the given norm, as follows:

∥s∥ = sup{|X(t)|+ |E(t)|+ |A(t)|+ |Ac(t)|+ |C(t)|+ |RP(t)|};

X, E, A, Ac, C, RP ∈ J.

Lemma 1. The piecewise-fractal–fractional problem is as follows:
CFFDς,η

p s(t) =
{

φ(t), 0 < ς, η ≤ 1, if t ∈ [0, t1],
s(0) = s0,

CFFDς,η
e s(t) =

{
φ(t), 0 < ς, η ≤ 1, if t ∈ (t1, T],

s(t1) = s1,

(8)

has the following solution:

s(t) =

{
s0 +

η
Γ(ς)

∫ t1
0 vη−1(x − v)ς−1 φ(v)dv, if t ∈ [0, t1],

s(t1) +
(1−ς)
B(ς) ηtη−1 φ(t) + ςη

B(ς)

∫ t
t1

vη−1 φ(v)dv, if t ∈ (t1, T].

We reformulate model (6) as follows:

PCFFDς,ηX(t) = Φ1(t, s(t)),
PCFFDς,ηE(t) = Φ2(t, s(t)),
PCFFDς,ηA(t) = Φ3(t, s(t)),

PCFFDς,ηAC(t) = Φ4(t, s(t)),
PCFFDς,ηC(t) = Φ5(t, s(t)),

PCFFDς,ηRp(t) = Φ6(t, s(t)),

(9)

where 

Φ1(t, s(t)) = ϱ − ϑ(A + ω1Ac + ℘1C)X − ξX,
Φ2(t, s(t)) = ϑ(A + ω1Ac + ℘1C)X − (ξ + ψ1)E,

Φ3(t, s(t)) = ψ1nE − (ξ + µ + ρ1 + η1)A,
Φ4(t, s(t)) = ψ1(1 − n)E − (ξ + x1 + λ)Ac,
Φ5(t, s(t)) = ρ1A + x1Ac − (ξ + δ + v1)C,

Φ6(t, s(t)) = η1A + v1C + λAc − ξRp.

We take our model as follows:{ PCFFDς,ηs(t) = F (t, s(t)),
s(0) = s0 > 0.

(10)
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In view of Definitions 2 and 3 and Lemma 1, the equivalent form of model (10) is given by
the following:

s(t) =

{
s0 +

η
Γ(ς)

∫ t
0 vη−1(t − v)ς−1F (v, s(v))dv, if t ∈ [0, t1],

s(t1) +
(1−ς)
B(ς) ηtη−1F (t, s(t)) + ςη

B(ς)

∫ t
t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].
(11)

where

s(t) =



X(t)
E(t)
A(t)
Ac(t)
C(t)
Rp(t)

, s(0) =



X0
E0
A0
Ac
C0
Rp0

, s(t1) =



Xt1

Et1

At1

Ac
Ct1

Rpt1

.

and

F (t, s(t)) =



Φ1(t, s(t))
Φ2(t, s(t))
Φ3(t, s(t))
Φ4(t, s(t))
Φ5(t, s(t))
Φ6(t, s(t))

.

Now, we define an operator W : J → J by the following:

W(s(t)) =

{
s0 +

η
Γ(ς)

∫ t
0 vη−1(t − v)ς−1F (v, s(v))dv, if t ∈ [0, t1],

s(t1) +
(1−ς)
B(ς) ηtη−1F (t, s(t)) + ςη

B(ς)

∫ t
t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].

The following assumptions are necessary for the analysis of existence and uniqueness.

Hypothesis 1 (H1). F : J × J → R is continuous and there exist two constants k, q > 0, such
that we have the following:

|F (t, s(t))| ≤ k+ |s(t)|q, for v ∈ J and Y ∈ J.

Hypothesis 2 (H2). Assume that the real number L > 0 satisfies the following:

|F (t, s1(t))−F (t, s2(t))| ≤ L|s1(t)− s2(t)|, for t ∈ J and s1, s2 ∈ J.

Theorem 2. Under assumptions (H1)–(H2), system (9) has at least one solution with the follow-
ing condition:

0 < max
{

ηLβ(η, ς)t1
η+ς−1

Γ(ς)
,
(

1 − (1 − ς)

B(ς)
ηtη−1L

)}
< 1. (12)

Proof. We are transforming the fractional system (9) into a fixed point problem as the
following equation:

s = W(s(t)), s ∈ J.

where the operator W : J → J is defined by the following:

W(s(t)) =

{
s0 +

η
Γ(ς)

∫ t
0 vη−1(t − v)ς−1F (v, s(v))dv, if t ∈ [0, t1],

s(t1) +
(1−ς)
B(ς) ηtη−1F (t, s(t)) + ςη

B(ς)

∫ t
t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].
(13)
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Let Λζ = {s ∈ J : ∥s∥ ≤ ζ} be a closed ball with the following:

ζ ≥


∥s(0)∥+ ηkt1

η+ς−1

Γ(ς) β(η,ς)

1− ηqt1
η+ς−1

Γ(ς) β(η,ς)
, if t ∈ [0, t1],

|s(t1)|+
(
(1−ς)
B(ς) ηtη−1+ ςTς

B(ς)

)
k

1−
(
(1−ς)
B(ς) ηtη−1+ ςTς

B(ς)

)
q

, if t ∈ (t1, T].

Define the operators W1 and W2, such that W = W1 + W2, as follows:

W1s(t) =

{
s0 +

η
Γ(ς)

∫ t
0 vη−1(t − v)ς−1F (v, s(v))dv, if t ∈ [0, t1],

s(t1) +
(1−ς)
B(ς) ηtη−1F (t, s(t)), if t ∈ (t1, T].

and

W2s(t) =

{
0, if t ∈ [0, t1],

ςη
B(ς)

∫ t
t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].

Now, we will divide the proof into several steps, as follows:
Step 1: W1s(t) + W2s(t) ∈ Λζ . If t ∈ [0, t1], s ∈ Λζ , with (H1), we have the following:

|W1s(t) + W2s(t)| =
∣∣∣∣s0 +

η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1F (v, s(v))dv

∣∣∣∣
≤ |s0|+

η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1|F (v, s(v))|dv.

(14)

Consider the integral
∫ t

0 vη−1(t − v)ς−1dv. Let v = t1u. This implies that dv = t1du. If v = 0
then u = 0 and if v = t1 then u = 1. Thus,∫ t

0
vη−1(t − v)ς−1dv = t1

η+ς−1
∫ 1

0
ρη−1(1 − ρ)ς−1dv. (15)

Hence, from (14), we obtain the following:

∥W1s + W2s∥ ≤ ∥s(0)∥+ η(k+ ζq)t1
η+ς−1

Γ(ς)

∫ 1

0
ρη−1(1 − ρ)ς−1dv

≤ ∥s(0)∥+ η(k+ ζq)t1
η+ς−1

Γ(ς)
β(η, ς) ≤ ζ,

(16)

where β(η, ς) is the well-known beta function, which is defined by β(η, ς) =
∫ 1

0 ρη−1(1− ρ)ς−1dv.
For t ∈ (t1, T], s ∈ Λζ , with (H1), we have the following:

|W1s(t) + W2s(t)| =

∣∣∣∣s(t1) +
(1 − ς)

B(ς)
ηtη−1F (t, s(t)) +

ςη

B(ς)

∫ t

t1

vη−1F (v, s(v))dv
∣∣∣∣

≤ |s(t1)|+
(1 − ς)

B(ς)
ηtη−1|F (t, s(t))|+ ςη

B(ς)

∫ t

t1

vη−1|F (v, s(v))|dv

≤ |s(t1)|+
(1 − ς)

B(ς)
ηtη−1(k+ |s(t)|q) + ςη

B(ς)

∫ t

t1

vη−1(k+ |s(v)|q)dv.
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Hence,

∥W1s + W2s∥ ≤ |s(t1)|+
(
(1 − ς)

B(ς)
ηtη−1 +

ςTς

B(ς)

)
(k+ ∥s∥q)

≤ |s(t1)|+
(
(1 − ς)

B(ς)
ηtη−1 +

ςTς

B(ς)

)
k

+

(
(1 − ς)

B(ς)
ηtη−1 +

ςTς

B(ς)

)
qζ

≤ ζ.

This demonstrates that W1s(t) + W2s(t) ∈ Λζ .
Step 2: W1 is the contraction.
For t ∈ [0, t1], s1, s2 ∈ Λζ . Then,

|W1s1(t)− W1s2(t)| ≤ sup
t∈[0,t1]

η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1|F (v, s1(v))−F (v, s2(v))|dv.

Using the transformation given in (15) and assumption (H2), we have the following:

|W1s1(t)− W1s2(t)| ≤ sup
t∈[0,t1]

η

Γ(ς)
t1

η+ς−1
∫ 1

0
ρη−1(1 − ρ)ς−1|F (v, s1(v))−F (v, s2(v))|dv

≤ ηLβ(η, ς)t1
η+ς−1

Γ(ς)
∥s1 − s2∥.

For t ∈ (t1, T], s1, s2 ∈ Λζ . Then, via (H2), we obtain the following:

|W1s1(t)− W1s2(t)| ≤ sup
t∈(t1,T]

(
|s1(t1)− s2(t1)|+

∣∣∣∣ (1 − ς)

B(ς)
ηtη−1|F (t, s1(t))−F (t, s2(t))|

∣∣∣∣)
≤ ∥s1 − s2∥+

(1 − ς)

B(ς)
ηtη−1L∥s1 − s2∥

=

(
1 − (1 − ς)

B(ς)
ηtη−1L

)
∥s1 − s2∥.

Hence,

∥W1s1 − W1s2∥ ≤
(

1 − (1 − ς)

B(ς)
ηtη−1L

)
∥s1 − s2∥.

From (12), we see that W1 is the contraction.
Step 3: Relative compactness of W2.
Part (1): W2 is continuous.
Since F (t, s(t)) is continuous, then W2 is continuous.
Part (2): W2 is uniformly bounded on Λζ .
For t ∈ [0, t1], s ∈ Λζ , the result can be obtained immediately.
For t ∈ (t1, T], s ∈ Λζ , we have the following:

|W2s(t)| ≤ sup
t∈(t1,T]

ςη

B(ς)

∫ t

t1

vη−1|F (v, s(v))|dv

≤ sup
t∈(t1,T]

ςη

B(ς)

∫ t

t1

vη−1(k+ |s(v)|q)dv.

Hence,

∥W2s∥ ≤ ςTη

B(ς)
(k+ ζq).

Hence, W2 is uniformly bounded on Λζ .
Part (3): W2 is equicontinuous. We discuss two cases as follows:
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Case (1). For s ∈ Λζ and ta, tb ∈ (0, t1] with the condition ta < tb, we have the following:

∥W2s(tb)− W2s(ta)∥ = 0.

Case (2) For any ta, tb ∈ (t1, T], ta < tb and s ∈ Λζ , we have(k+ |s(t)|q))

∥W2s(tb)− W2s(ta)∥ ≤ ςη

B(ς)

∫ tb

t1

vη−1|F (v, s(v))|dv

− ςη

B(ς)

∫ ta

t1

vη−1|F (v, s(v))|dv

≤ ςη

B(ς)

( ∫ tb

t1

vη−1|F (v, s(v))|dv −
∫ ta

t1

vη−1|F (v, s(v))|dv
)

=
ς

B(ς)

(
(tb − t1)

η − (ta − t1)
η

)
(k+ ζq)

→ 0 as tb → ta.

Thus, W2 is equicontinuous. In view of the Arzelá–Ascoli theorem, together with the above
steps, W turns relatively compact and, hence, it is completely continuous. Therefore,
Theorem 1 guarantees at least one solution for problem (9).

Theorem 3. Assuming that (H2), together with the condition

0 < max
[

ηLβ(η, ς)t1
η+ς−1

Γ(ς)
,
(

1 +
L

B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
))]

< 1

hold, then problem (9) has a unique result.

Proof. For t ∈ [0, t1], s1, s2 ∈ Λζ with (H2), we have the following:

|Ws1(t)− Ws2(t)| ≤ sup
t∈[0,t1]

η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1|F (v, s1(v))−F (v, s2(v))|dv.

Using the transformation given in (15) and assumption (H2), we have the following:

|Ws1(t)− Ws2(t)| ≤ sup
t∈[0,t1]

η

Γ(ς)
t1

η+ς−1
∫ 1

0
ρη−1(1 − ρ)ς−1|F (v, s1(v))−F (v, s2(v))|dv

≤ ηLβ(η, ς)t1
η+ς−1

Γ(ς)
∥s1 − s2∥.

Thus,

∥Ws1 − Ws2∥ ≤ ηLβ(η, ς)t1
η+ς−1

Γ(ς)
∥s1 − s2∥.

For t ∈ (t1, T], s1, s2 ∈ Λζ with (H2), we have the following:

|Ws1(t)− Ws2(t)| ≤ |s1(t1)− s2(t1)|+ sup
t∈(t1,T]

[
(1 − ς)

B(ς)
ηtη−1|F (t, s1(t))−F (t, s2(t))|

+
ςη

B(ς)

∫ t

t1

vη−1|F (v, s1(v))−F (v, s2(v))|dv
]

≤ |s1(t)− s2(t)|+ sup
t∈(t1,T]

[
(1 − ς)L

B(ς)
ηtη−1|s1(t)− s2(t)|

+
ςL(Tη − tη

1)

B(ς)
|s1(t)− s2(t)|

]
.
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Hence,

∥Ws1 − Ws2∥ ≤
(

1 +
L

B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
))

∥s1 − s2∥.

This shows that W is a contraction. Which guarantees the unique solution of model (9).

Hyers–Ulam (H-U) Stability

Definition 8. Model (9) is H-U stable if there exists a real number:

M = max{M1,M2,M3,M4,M5,M6} > 0,

such that for each ϵ = max{ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6} > 0, and for any solution s̃ ∈ J of inequality, we
have the following: ∣∣∣PCFFDς,η s̃(t)−F (t, s̃(t))

∣∣∣ ≤ ϵ, t ∈ I,

there exists a unique solution s ∈ J of model (9), which satisfies the inequality given as follows:

∥s̃ − s∥ ≤ Mϵ, t ∈ I,

where

ŝ(t) =



X̂(t)
Ê(t)
Â(t)
Âc(t)
Ĉ(t)
R̂p(t)


, ŝ(0) =



X̂(0)
Ê(0)
Â(0)
Âc(0)
Ĉ(0)
R̂p(0)


,F (t, ŝ(t)) =



Φ1(t, ŝ(t))
Φ2(t, ŝ(t))
Φ3(t, ŝ(t))
Φ4(t, ŝ(t))
Φ5(t, ŝ(t))
Φ6(t, ŝ(t))

.

Remark 1. Let there exist a small perturbation Ψ ∈ J, such that
(i) |Ψ(t)| ≤ ϵ, t ∈ J;
(ii) PCFFDς,η ŝ(t) = F (t, ŝ(t)) + Ψ(t), t ∈ J, where

Ψ(t) = (t, Ψ1(t), Ψ2(t), Ψ3(t), Ψ4(t), Ψ5(t), Ψ6(t)).

A problem with a small perturbation function is obtained by Remark 1:{ PCFFDς,η ŝ(t) = F (t, ŝ(t)) + Ψ(t),
ŝ(0) = ŝ0 > 0.

(17)

Lemma 2. The solution of the above problem with a given small perturbation function is given by
the following:

ŝ(t) =


ŝ0 +

η
Γ(ς)

∫ t
0 vη−1(t − v)ς−1(F (v, ŝ(v)) + Ψ(v))dv, if t ∈ [0, t1],

ŝ(t1) +
(1−ς)
B(ς) ηtη−1(F (v, ŝ(v)) + Ψ(v)) + ςη

B(ς)

∫ t
t1

vη−1(F (v, ŝ(v)) + Ψ(v))dv,
if t ∈ (t1, T].

(18)

Proof. The proof is adopted from Equation (11).

Theorem 4. Let conditions of Theorem 3 hold. Model (9) is H-U stable with the following condition:

0 < max
[

ηLβ(η,ς)t1
η+ς−1

Γ(ς) ,
(

1 + L
B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
))]

< 1.

Proof. Let ϵ = max{ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6} > 0 and ŝ ∈ J be a function satisfying the follow-
ing inequality: ∣∣∣PCFFDς,η ŝ(t)−F (t, ŝ(t))

∣∣∣ ≤ ϵ,
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and let s ∈ J be the unique solution of model (9). For t ∈ [0, t1], we have the following:

|ŝ(t)− s(t)| ≤ sup
t∈(t1,T]

[
η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1|F (v, ŝ(v))−F (v, s(v))|dv

+
η

Γ(ς)

∫ t

0
vη−1(t − v)ς−1|Ψ(v))|dv

]
≤ sup

t∈[0,t1]

[
ηLβ(η, ς)tη+ς−1

Γ(ς)
|ŝ(t)− s(t)|+ ηβ(η, ς)tη+ς−1

Γ(ς)
ϵ

]
.

Hence,

∥ŝ − s∥ ≤
ηβ(η,ς)t1

η+ς−1

Γ(ς)

1 − ηLβ(η,ς)t1
η+ς−1

Γ(ς)

ϵ.

For t ∈ (t1, T], consider

|ŝ(t)− s(t)| ≤ |ŝ(t1)− s(t1)|+ sup
t∈(t1,T]

[
(1 − ς)

B(ς)
ηtη−1|F (v, ŝ(v))−F (v, s(v))|

+
(1 − ς)

B(ς)
ηtη−1|Ψ(v)|

+
ςη

B(ς)

∫ t

t1

vη−1|F (v, ŝ(v))−F (v, s(v))|+ ςη

B(ς)

∫ t

t1

vη−1|Ψ(v)|dv
]

≤ |s1(t)− s2(t)|+ sup
t∈(t1,T]

[
(1 − ς)L

B(ς)
ηtη−1|s1(t)− s2(t)|

+
ςL(Tη − tη

1)

B(ς)
|s1(t)− s2(t)|+

(1 − ς)

B(ς)
ηtη−1|Ψ(v)|+ ςη

B(ς)

∫ t

t1

vη−1|Ψ(v)|dv
]

≤
(

1 +
L

B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
))

∥ŝ − s∥

+
1

B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
)

ϵ.

Thus,

∥ŝ − s∥ ≤
1

B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
)

1 −
(

1 + L
B(ς)

(
η(1 − ς)t1

η−1 + ς(Tη − tη
1)
)) ϵ. (19)

Since 0 < Lt1 < 1, and 0 < L
B(ς)

(
(1 − ς) + (T−t1)

ς

Γ(ς)

)
< 1. Then, by choosing M > 0,

such that

M =


ηβ(η,ς)t1

η+ς−1

Γ(ς)

1− ηLβ(η,ς)t1
η+ς−1

Γ(ς)

, if t ∈ [0, t1],

1
B(ς) (η(1−ς)t1

η−1+ς(Tη−tη
1 ))

1−
(

1+ L
B(ς) (η(1−ς)t1

η−1+ς(Tη−tη
1 ))

) , ift ∈ (t1, T],

from (19), we have the following:

∥ŝ − s∥ ≤ Mϵ.

Therefore, the solution of problem (9) is U-H stable. Consequently, the solution of the
proposed model is U-H stable.
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6. Computational Results

From the solution of (10), we have the following integral equation at t = tm+1 by using
(11) with h = ti − ti−1

s(tm+1) =



s0 +
η

Γ(ς)

∫ tm+1

0
vη−1(tm+1 − v)ς−1F (v, s(v))dv, if tm+1 ∈ [0, t1],

s(t1) +
(1 − ς)

B(ς)
ηtη−1

m+1F (tm+1, s(tm+1))−
(1 − ς)

B(ς)
ηtη−1

m−1F (tm−1, s(tm−1))

+
ςη

B(ς)

∫ tm+1

t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].

(20)

We can further write (20) as follows:

s(tm+1) =



s0 +
η

Γ(ς)

m

∑
ℓ=0

∫ tℓ+1

tℓ
vη−1(tℓ+1 − v)ς−1F (v, s(v))dv, if tℓ+1 ∈ [0, t1],

s(t1) +
(1 − ς)

B(ς)
ηtη−1

m+1F (tm+1, s(tm+1))−
(1 − ς)

B(ς)
ηtη−1

m−1F (tm−1, s(tm−1))

+
ςη

B(ς)

∫ tm+1

t1

vη−1F (v, s(v))dv, if t ∈ (t1, T].

(21)

We write (21) on using the Lagrange interpolation as follows:

s(tm+1) =



s0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ F (tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1F (tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

s(t1) +
(1 − ς)

B(ς)
ηtη−1

m+1F (tm+1, s(tm+1))−
(1 − ς)

B(ς)
ηtη−1

m−1F (tm−1, s(tm−1))

+
ςη

B(ς)

[
3htη−1

m
2

F (tm, s(tm))−
htη−1

m−1
2

F (tm−1, s(tm−1)), if t ∈ (t1, T],

which, in the most compact form, can be written as follows:

s(tm+1) =



s0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ F (tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1F (tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

s(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
F (tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
F (tm−1, s(tm−1)), if t ∈ (t1, T].

(22)
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To deduce the numerical scheme for the proposed model (6), consider s =
(
X, E, A, Ac, C, Rp

)
,

and we write the right side of the proposed model (6) as follows:

PCFFDς,η
t X(t) = Φ1(t, s(t)),

PCFFDς,η
t E(t) = Φ2(t, s(t)),

PCFFDς,η
t A(t) = Φ3(t, s(t)),

PCFFDς,η
t Ac(t) = Φ4(t, s(t)),

PCFFDς,η
t C(t) = Φ5(t, s(t)),

PCFFDς,η
t Rp(t) = Φ6(t, s(t)).

(23)

Now, in view of (22), the numerical scheme for system (23) can be written as follows:

X(tm+1) =



X0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ1(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ1(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

X(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ1(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ1(tm−1, s(tm−1)), if t ∈ (t1, T],

E(tm+1) =



E0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ2(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ2(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

E(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ2(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ2(tm−1, s(tm−1)), if t ∈ (t1, T],

A(tm+1) =



A0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ3(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ3(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

A(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ3(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ3(tm−1, s(tm−1)), if t ∈ (t1, T],
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Ac(tm+1) =



Ac,0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ4(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ4(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

Ac(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ4(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ4(tm−1, s(tm−1)), if t ∈ (t1, T],

C(tm+1) =



C0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ5(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ5(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

C(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ5(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ5(tm−1, s(tm−1)), if t ∈ (t1, T],

and

Rp(tm+1) =



Rp,0 +
ηhς

Γ(ς + 2)

m

∑
ℓ=1

[
tη−1
ℓ Φ6(tℓ, s(tℓ))

(
(m + 1 − ℓ)ς(m − ℓ+ 2 + ς)

− (m − ℓ)ς(m − ℓ+ 2 + 2ς)

)
− tη−1

ℓ−1 Φ6(tℓ−1, s(tℓ1))

(
(m − ℓ+ 1)ς−1

− (m − ℓ)ς(m − ℓ+ 1 + ς)

)]
, if tℓ+1 ∈ [0, t1],

Rp(t1) + ηtη−1
m+1

[
(1 − ς)

U(ς)
+

3ςh
U(ς)

]
Φ6(tm, s(tm))

− ηtη−1
m−1

[
(1 − ς)

U(ς)
+

ςh
U(ς)

]
Φ6(tm−1, s(tm−1)), if t ∈ (t1, T].

Simulations and Explanation

In view of the numerical scheme given above, we simulate our results by taking the pa-
rameter values as used by [20] in the numerical analysis: ϱ = 2, ξ = 1

67.7 , ϑ = 0.042,
ω1 = ℘1 = 0.002, ψ1 = 0.004, n = 0.6, µ = 0.001, ρ1 = η1 = x1 = 0.02, λ = 0.1,
δ = 0.003, z1 = 0.01, and v1 = 0.2. Also, the initial data are taken as follows:(

X0, E0, A0, Ac, C0, Rp0
)
= (60, 40, 3, 0.25, 0.1, 0).

Consider three sets of fractal–fractional orders as X1 = [0, 0.60], X2 = [0.60, 0.95], X3 = [0.90, 1.0].
Different graphical presentations are given here to simulate our results. First, we consider
the fractal–fractional order values in the first set X1, as presented in Figures 1–6.
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Figure 1. Numerical interpretation of various values of fractal–fractional orders in the set X1 for the
affected class.
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Figure 2. Numerical interpretation of various values of fractal–fractional orders in the set X1 for the
exposed class.
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Figure 3. Numerical interpretation of various values of fractal–fractional orders in the set X1 for the
acutely infected class.
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Figure 4. Numerical interpretation of various values of fractal–fractional orders in the set X1 for the
asymptomatic carrier class.
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Figure 5. Numerical interpretation of various values of fractal–fractional orders in the set X1 for
chronically infected individuals.
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Figure 6. Numerical interpretation of various values of fractal–fractional orders in the set X1 for
recovered individuals.

In addition, we present the results for another set of fractal–fractional orders in
Figures 7–11, respectively.
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Figure 7. Numerical interpretation of various values of fractal–fractional orders in the set X1 for the
exposed class.
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Figure 8. Numerical interpretation of various values of fractal–fractional orders in the set X2 for the
acutely infected class.
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Figure 9. Numerical interpretation of various values of fractal–fractional orders in the set X2 for the
asymptomatic carrier class.
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Figure 10. Numerical interpretation of various values of fractal–fractional orders in the set X2 for
chronically infected individuals.
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Figure 11. Numerical interpretation of various values of fractal–fractional orders in the set X2 for
recovered individuals.

In addition, we graphically present the results for another set of fractal–fractional
orders in Figures 12–17, respectively.
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Figure 12. Numerical interpretation of various values of fractal–fractional orders in the set X3 for the
affected class.



Fractal Fract. 2024, 8, 260 21 of 24

t
0 50 100 150 200 250 300

 E
xp

os
ed

 p
op

ul
at

io
n

0

20

40

60

80
(0.92,0.70)
(0.95,0.80)
(0.97, 0.90)
(0.99,1.00)

Figure 13. Numerical interpretation of various values of fractal–fractional orders in the set X3 for the
exposed class.
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Figure 14. Numerical interpretation of various values of fractal–fractional orders in the set X3 for the
acutely infected class.
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Figure 15. Numerical interpretation of various values of fractal–fractional orders in the set X3 for the
asymptomatic carrier class.
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Figure 16. Numerical interpretation of various values of fractal–fractional orders in the set X3 for
chronically infected individuals.
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Figure 17. Numerical interpretation of various values of fractal–fractional orders in the set X3 for
recovered individuals.

We used various fractal–fractional order values to interpret the results graphically
in Figures 1–17, respectively. From the numerical presentation, we observe the crossover
behaviors of each compartment near the point t1 = 50. The corresponding decline in
the affected class is shown in Figures 1 and 12 for different fractal–fractional orders. The
exposed class initially grows but then declines, which is different at different values of
fractal–fractional orders. The aforementioned dynamics for the exposed class are shown in
Figures 2, 7, and 13, respectively. From Figures 3, 8, and 14, we observe a decline in the
population with a crossover effect near the point t1 = 50 using different fractal–fractional
order values. Also, the class of asymptomatic carriers is presented graphically using
different fractal–fractional order values in Figures 4, 9, and 15, respectively, for numerous
values of fractal–fractional orders. This class exhibits growth for the first 50 days and then
shows a decline. The population of the model classes, representing exposed, asymptomatic
carriers, and chronically infected individuals, grows and peaks at t1 = 25; however, it begins
to decline in the second sub-interval. These graphical presentations clearly demonstrate
the crossover behavior in each class near the point t1 = 25. The class of chronically infected
individuals shows growth for the first 100 days and then starts to decline, as depicted in
Figures 5, 10, and 16. The recovered class shows growth for the initial 100 days, as presented
in Figures 6, 11, and 17, respectively, for different values of fractal–fractional orders.
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7. Conclusions

In this research work, we conducted a detailed and comprehensive analysis of the
Hepatitis B mathematical model using piecewise fractal–fractional analysis. We introduced
piecewise fractal–fractional differential operators, which have not previously been con-
sidered in the literature. While the available literature contains many results on various
piecewise fractional derivatives, models with piecewise fractal-fractional derivatives are
rarely studied. We considered our piecewise derivative in a different pattern than the
previous concept of piecewise derivatives and integrals. We divided the time interval into
two subintervals. In the first one, we considered an FFD with a power law kernel, and in
the second one, we considered an FFD with an exponential decay kernel. The disease-free
equilibrium point of the proposed model was presented as well. In the main results, we
examined the existence and stability of the proposed model. For the numerical results of the
model and visual presentation, we used the Lagrange interpolation method and extended
the ABM method, respectively. Upon using the said numerical scheme, we presented our
results for different values of fractal–fractional orders. Also, we presented results for three
different sets of fractal–fractional order values. The concerned dynamics with the crossover
effect were presented graphically for each component of the proposed model. In the future,
the piecewise fractal–fractional concept could be extended to other dynamical problems.

Author Contributions: Conceptualization, Z.A.K. and A.A.; Methodology, Z.A.K.; Validation,
A.U.R.I.; Formal analysis, A.U.R.I.; Investigation, B.O.; Data curation, B.O.; Writing—original draft,
A.A.; Writing— review & editing, H.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University grant number
PNURSP2024R8.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers supporting project
number (PNURSP2024R8). Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
A.U. Rehman Irshad and B. Ozdemir are thankful to Prince Sultan University for APC and support
through the TAS research lab.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Volterra, V. Théorie mathématique de la lutte pour la vie; Gauthier-Villars: Paris, France, 1931.
2. Lotka, A.J. Elements of Physical Biology; Williams & Wilkins: Baltimore, MD, USA, 1925.
3. Kolmogoroff, A.N. Sulla theoria di Volterra della lotta per l’esistenza. G. Ist. Ital. Attuari 1936, 7, 74–80.
4. Kostitzin, V.A. Mathematical Biology; Harrap: Bromley, UK, 1939.
5. Smith, M. Models in Ecology; Cambridge University Press: Cambridge, UK, 1974.
6. Murray, J. Mathematical Biology; Springer: Berlin, Germany, 1989.
7. Svirezhev, Y.M. Nonlinearities in mathematical ecology: Phenomena and models, would we live in Volterra’s world. Ecol. Model.

2008, 216, 89–101. [CrossRef]
8. Kilbas, A.A.; Shrivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006.
9. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
10. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85.
11. Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92.
12. Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 757–763.

[CrossRef]
13. Atangana, A.; Araz, S.İ. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals

2021, 145, 110638. [CrossRef]
14. Atangana, A.; Araz, S.I. Piecewise derivatives versus short memory concept: Analysis and application. AIMs Math. 2022, 19, 8601–8620.
15. Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict

complex system. Chaos Solitons Fractals 2017, 102, 396–406. [CrossRef]
16. Shah, K.; Abdeljawad, T. Study of radioactive decay process of uranium atoms via fractals-fractional analysis. S. Afr. J. Chem. Eng.

2024, 48, 63–70. [CrossRef]

http://doi.org/10.1016/j.ecolmodel.2008.03.028
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1016/j.chaos.2020.110638
http://dx.doi.org/10.1016/j.chaos.2017.04.027
http://dx.doi.org/10.1016/j.sajce.2024.01.003


Fractal Fract. 2024, 8, 260 24 of 24

17. Khan, H.; Aslam, M.; Rajpar, A.H.; Chu, Y.M.; Etemad, S.; Rezapour, S.; Ahmad, H. A new fractal-fractional hybrid model for
studying climate change on coastal ecosystems from the mathematical point of view. Fractals 2024, 32, 2440015. [CrossRef]

18. Khan, H.; Alzabut, J.; Shah, A.; He, Z,Y.; Etemad, S.; Rezapour, S.; Zada, A. On fractal-fractional waterborne disease model: A
study on theoretical and numerical aspects of solutions via simulations. Fractals 2023, 31, 2340055. [CrossRef]

19. Shah, A.; Khan, H.; De la Sen, M.; Alzabut, J.; Etemad, S.; Deressa, C.T.; Rezapour, S. On non-symmetric fractal-fractional
modeling for ice smoking: Mathematical analysis of solutions. Symmetry 2022, 15, 87. [CrossRef]

20. Gul, N.; Bilal, R.; Algehyne, E.A.; Alshehri, M.G.; Khan, M.A.; Chu, Y.M.; Islam, S. The dynamics of fractional order Hepatitis B
virus model with asymptomatic carriers. Alex. Eng. J. 2021, 60, 3945–3955. [CrossRef]

21. Aldwoah, K.A.; Almalahi, M.A.; Shah, K. Theoretical and Numerical Simulations on the Hepatitis B Virus Model through a
Piecewise Fractional Order. Fractal Fract. 2023, 7, 844. 10.3390/fractalfract7120844. [CrossRef]

22. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0218348X24400152
http://dx.doi.org/10.1142/S0218348X23400558
http://dx.doi.org/10.3390/sym15010087
http://dx.doi.org/10.1016/j.aej.2021.02.057
http://dx.doi.org/10.3390/fractalfract7120844
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ncbi.nlm.nih.gov/pubmed/12387915

	Introduction
	Basic Results
	Mathematical Model and Its Formulation
	Mathematical Model
	Model Formulation

	Equilibrium Point and Basic Reproduction Number
	Existence and Stability Analysis of the Piecewise Fractal–Fractional Model ??
	Computational Results
	Conclusions
	References

