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Abstract: In this paper, we provide a collocation spectral scheme for systems of nonlinear Ca-
puto-Hadamard differential equations. Since the Caputo-Hadamard operators contain logarithmic
kernels, their solutions can not be well approximated using the usual spectral methods that are
classical polynomial-based schemes. Hence, we construct a non-polynomial spectral collocation
scheme, describe its effective implementation, and derive its convergence analysis in both L2 and L*.

In addition, we provide numerical results to support our theoretical analysis.
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were investigated in [9,10]. The modified Laplace transform and its inverse were used
in [11] to construct the mild solutions of the Hadamard-type fractional Fokker—Planck
equation. Ou et al. [12] adopted the modified Laplace transform and the well-known finite
Fourier sine transform to obtain the analytical solution of C-H fractional diffusion-wave
equations with initial singularity. Muthaiah et al. [13] studied the existence, uniqueness,
and Hyers—Ulam stability of nonlinear systems of C-H fractional differential equations
with nonlocal integral and multipoint boundary conditions.

All of the above-mentioned studies are concerned with theoretical aspects of C-H
fractional equations. However, studies on numerical methods for nonlinear C-H fractional
differential equations are still in their early stages. As a result, we study the following
nonlinear system of C-H differential equations:

SHDFe1(t) = g1t @1(t), -, om(t)), p <t <L,

SHDF (1) = ga(t, @1(t), .., om(t), p <t < L,

: 1)
sTDfoum(t) = gm(t o1(t),- .., om(1), p <t <L,

¢i(p) = @ip, i=1,2,..., M, pe€(0t),xe(0,1),

where g; : [0, L] x RM — R are given continuous functions, and the C-H derivative EH Df
of order 0 < x < 1is given by (3).

Because fractional derivatives have a complex form, it is sometimes necessary to
establish an appropriate numerical scheme to approximate them [14-16], which consider-
ably enhances the efficiency of the actual calculation process. In this paper, we provide a
collocation spectral scheme for systems of nonlinear C-H differential equations. Since the
C-H operators contain logarithmic kernels, their solutions can not be well approximated
using the usual spectral methods that are classical polynomial-based methods. Hence, our
contribution in this paper is to construct a non-polynomial spectral collocation scheme,
describe its effective implementation, and derive its convergence analysis for solving sys-
tems of nonlinear C-H differential equations. In addition, we provide numerical results to
support our theoretical analysis.

The outline of this paper is as follows: In Section 2, we introduce some necessary
definitions and preliminary concepts. In Section 3, we construct the spectral collocation
scheme. In Section 4, we provide some auxiliary lemmas. In Section 5, we discuss the
convergence and provide some numerical results. In Section 6, we introduce two numerical
examples. In Section 7, we summarize the conclusions.

2. Preliminaries

In this section, some relevant properties of the C-H fractional calculus and the loga-
rithmic Jacobi (log J) approximation are presented.

Definition 1. The C-H fractional integral with order x > 0 is defined as [17]

19 = i | B Ewe) 2> p >0 ®
plz® = F(K) o ,B ,W)Q w’ 1Y ,
where B(z,w) = log(%).
Definition 2. The C-H fractional differential operator of order 0 < x < 1 is given as [18]
CH _ # /z —K !
o Dig(z)= T1—x) Jp B (z,w) ¢’ (w)dw. 3)

Definition 3. Let x,;7 > —1,1 := [p,pe], and p > 0. The log | functions of order p are given
by [19]
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%;rﬂrp(z) — L@;"] <ﬁ2(z,p) — 1), n,xk>-1,p>0 Vzel

_ Tp+x+1) & p\Tlp+k+x+y+1) . @
_P!F(p+1<+11+1)k;)<k> Therry PP

where %, (z) is the Jacobi polynomial defined as

B () = T(p+x+1) i(p)T(p+k+K+U+1)<z—l>k
P T(p+1+x+n)p!t Z\ k T(k+x+1) 2 '

We define the space of logarithmic functions of order s by

PE¥(Q) = span{1,B(z,0), Bz, )2, ... B(z.0)*},

where Q) = [p, +c0), p > 0. Let

X1(z) =271 B(z,0)" (1 - Blz,p))" ()

We denote by L)ZCK,,,,,O(I ) the weighted L? space with the following inner product
and norm,

(@ 9) s = [ @@z gl ene = (0,901 ©

One of the most important properties of the log | polynomials is that they are mutually
orthogonal in Lff"’”’” (I), that is,

(1 (z),%}"”'P(z))XK/nrp —0 Vj#m,

- T(j+x+ 1 +5+1) (7)

;""" : . o .
HJ (2) P Qj+x+n+1)j'T(i+x+n+1)

We define the following first-order differential operator:

d

Dlloggb(z) = W(I)(Z) = Z‘P/(Z)r 8)
and an induction leads to
k
Dig$(2) = Diyg - Diyy - - Diog $(2). )

We also define the non-uniformly weighted log | Sobolev space as

Biy(1) = {9 : Doy € L0y, (1), 0<j <}, €N,

with
i

k k 1/2
o= Z (Dlog#)' Dlog(P)XK*kr’lJrk/Pr ||¢|| BirP] = ((P; (P)Bz//p ’
k=0 &

i
[ 1

¥.9),

|4) | B:(/F’)’I = H D{Og(l) ||XK+i,i7+i,p .
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For the usual shifted—weighted Jacobi Sobolev space, we define
Biy(A)i={g:olpelr,, ;(A),0<j<i}, €N,

where 1 = (—z+ 1)*z" with z € A = [0, 1] is the classical Jacobi weight function.

Assume that xp < x1 > - < Xp—1 < xp in I are the roots of ‘%)szl( x). Letz(x) =

logp Then, z; := z(xj) = log >, 0 <j < Mare zeros of ,%’MH( ), and {x;}M, are the
Correspondmg we1ghts
The log [-Gauss quadrature enjoys the exactness

M
1
Jo@x @z =Y gl Vo) € Pt (10)
i=0
Hence,
e k11,0 A0 .
Y 2" (2) B (2 = 07605, VO<g+j<2M+ L (11)

k=0

For any ¢(pe*) € C(I), the log J-Gauss interpolation operator IZ’Z/EP :C(I) — Pll\ig is
determined uniquely by

LV o(zg) = p(z;)  0<g<M. (12)

From the above condition, we have IZ’X/}pgo =g¢forall ¢ € P}\(/}g. On the other hand,

since I 10 M P E P g, we can write

M
_ oy 1, I
L o(x) Z oA (%), 9" = = Y () (x))xj, Vo € Py (D). (13)

The L*(I) space is the set of all measurable functions that are essentially bounded.
That is, functions g that are bounded almost everywhere on a set of finite measures. The
essential supremum norm is used to define the norm of this space and is given as

18]lee = ess sup|g(x)].
xel

Definition 4. Let A(z) = (aj (z))mxn be an (m x n) matrix function with z € I, we consider
the non-negative real-valued function

m n
=Y. ) |ij(2) (14)
i=1j=1
and the norms
X 1/2

IAllas o= (1@ Prreaz)

I (15)
|A||o := esssup|A(z)].

zel

Proposition 1. It holds for any y(pe*) € B, (A),m > 1and M+1>m >¢q >0

M‘] (1+m)/2|‘am{lp pe }||X1<+ml1+m, (16)

M (1+M—m)!
HDlog( I]’i/[’?plp) HXK+[7/’7+’7:P S c T

and it takes the form
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||D10g( I;\(/,Ir]’plp) ||Xx+q,r]+q,p S CMq7m|‘aT{l/J(p ex)}||xk+m,r]+m, C~ 1, forﬁxed m M >> 1 (17)

In case of g = 0,1, we can write

[ — Iyl yene < M (7 {p(p €") } [ s, (18)
19:(9 — L")l gene < M [03 {p(0 ) } ] yetmarom, (19)

where FFP = x (1 - log(%)>K+1 (log<%) ) 'Hl.

Lemma 1. Forany x,n € (—1,—1) and for all (x) € Bijg(l), P(&) = 0 for some & € 1, it
holds that
[9lleo < V2lI0xplIFeRo 19155 (20)

Proposition 2. For«,n € (—1, _E]'
1§ — I lloo < M2 |08 (0 %) || wimnim, Vip(pe¥) € By, (A), m>1.  (21)
Lemma 2.

(logM) —1<xn<-3,

M
K,1,0 R K,W,P
1Ty \Im-—glgfjglh,- )I—{ O(MF+Y), (22)

i = max(x, 1), otherwise,

where {h;.(’"’p (x)}M i2o are the logarithmic Lagrange interpolation functions that related to Ay (x).

3. Non-Polynomial Spectral Collocation Scheme

To begin with, we rewrite the differential Equation (1) in the following equivalent
compact integral form

O = 0+ 1y [ (B4 G606 T e (oL @)

where .
d(t) = [(Pl,qu,.-.,qvm]T ,
G(t) =[g1,82,---,8m] -

In the following, we will make some useful transformations, which in turn are the
basis for the numerical solution scheme and its numerical analysis. In order to convert the
integral interval (p, t) to I, we consider

B(s,p) = B(t,p)B(r,p),

) (,,)ﬁ(ffp)
s=s(tr) = — .
P o

Hence, the system (23) becomes

or

D(t) = @, + (/3(;('5)) /1 (1 B(r,0) 'G(s(t, ), D(s(t, r)))?. (24)

The non-polynomial spectral collocation scheme for (24) consists of finding ¢, n(t) €
Pll\(;g(l), m=1,2,...,M, such that
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(1) = @+ IR (B 17 (1= Bl o)) NG s(t ), D (s(t 7)) (25)
where
ON(t) = [p1N, P2 - PmN]

and I;( ’;Z,’p is the log J-Gauss interpolation operator in the z-direction. For simplicity, we will
consider the trial functions as

N
oun(t) = Y g (1), m=1,..., M. (26)
Accordingly,
0,0,0 ;k—1,0, 700 10,
IthI:N P (B(t,0)) gm(s(t,7), P (s Z(;)ZUZJ Pz (r), m=1,..., M. 27)
i=0]

A straightforward calculation by using (27) and (7) gives
1 o0, k [ - k=1 10,
Ty en” [(ﬁ(up)) / 1= Bl ) S gu(s( ), @ (s(t, 1))

- ZZUW ") [ r *1(1—ﬁ(r,p))"*l«%’}"l’o”’@df 8)

10]

_ 1 00,0 _
= ) va,og t), m=1,..., M

K,0 _KH,0 N . . . .
Let { Xyt xy } o be the weights and the nodes of Gauss type logarithmic Jacobi
p:
interpolation. A direct application of (27) and (13) yields

i i (,B(tg/ofpl P)) Kgm (s (t(,),'o 0 g 1,0, p) Dy (s ( (;)70 3 g 1,0,p) ) )%?,O,p (tg,O,p)X(;,O,pngl,o,p. (29)

Hence, we deduce that

N
Y i (1) = 9oy (1) + 2 om0, (8). (30)

(K +1) =
Comparing the coefficients of (30), we obtain

_ T Um,0,0
Pm0 =P T Tl 1)’

Om,i,0 .
=m0 1< i< N, m=1,..., M.
Pmi = Tl +1) SEs "

(31)

4. Auxiliary Lemmas

Herein, we derive the rate of convergence of the scheme (25) in the Liolo,p—norm.
Accordingly, we introduce some lemmas.
Letr; " be the log J-Gauss nodes in I and s; HI = s( riP ) The mapped log [-Gauss

interpolation operator xIS,ZZP :C(p,x) — PN (p, x) is defined by

T ( ;"’W) — u (s;‘f’”?), 0<i<N. (32)
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Hence,
xf:ﬁ,pu(sf’”’p) = u(sf’”’p) = u(s(x, r?’”’p)) = If”%(s(x, r;c/”’p)), (33)
and
TP u (s = TP u(s(x,r . 34
X=s,N ( ) N ( ( )) ﬁ(r,p)zg((:f))) ( )
Moreover, the following results can be easily derived:
o -1 710, - —17x-10,
[ 5 B LI glo)ds = (B ) [ (0= Bl o) T T (ol
K N x—1,0 x—1,0
s e .
j=
_ K N x—1,0,0 x—1,0,0
= (B(x,0))" Y (s 07 )"
j=0
Similarly,
g k—1( k=10, 2 ko o/ k—10p)  K—1,00
[ s ) T (N 0e)) ds = (Blup) Lo (5T e
=0
Then, forany 1 <s < N + 1, we have
* 1 x—1 Fx—1,0,0 2
; s (B(x,s)) ’(I_XIS,N )(p(s)‘ ds
_ - -1, 2
= (B(x.p)" [0 = plr o) (T T ) pls( )| ar
! R (37)
< N (B(x,p)" [ 17 (1= Brp) " (B(r, )" | Ditg (s )|
X B 2
= N2 [T (Bs)) T (B 0))" Dl )] .
where 7 is the identity operator.
Lemma 3. The following estimate holds for the error function en(x) = ®(x) — Py(x)
3
HeNHXO,O,P < ZHE]'HXO,O,;)/ (38)
j=1
where
0,0,0
E; =®(x) - I,/y P(x),
_ 000 [* ~x-1,0,0
Ey =177\ R(x,s)(Z =Ly ") Gls,@(s))ds,
[
000 [F =xk—1,0,0
Es=1.N [ R(xs) I y""(G(s,®(s)) = G(s, Pn(s)))ds,
vp
— x—1
and R(X,S) = (Rij) with Rij = 51(ﬁ1~(+§))5i]‘, i,j=1,..., M.
Proof. 00 00
lenllone < @~ Zerf@| ,,, + [T @ — @] - (39)
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It is clear from (23) that
TN ®(x) = @ + F(l,c)fff?f / T (B(x,9) Gl (5))ds, (40)
and 1 0,0,0 * -1 k—1 Fx—1,0,0
Dy (x) :CIDP—I—me/N /p sTH(B(x,8))" Iy TG(s, Pn(s))ds. (41)
Subtracting (40) from (42) yields
T ®(x) — Py(x)
1 X . e (42)
= o T [ 5 B9 (G5 @(6)) — TN G (s 0 (5)) s,
which has the form
1 K— Y
T D(x) — Dy (x) = o OO/P/ s 1(B(x,5)) 1(I—XIS,N109)G(S,CI>(S))LZS
(43)
T [T B0 9) LIS (G5, (6)) — Gls, @ (s))ds:
T(x) N Jp

O
Assume that the Nemytskii operator [ for f is given as
Fg)(x) := f(x, ¢(x)).

5. Convergence Analysis

5.1. Convergence Analysis in Lio,olp—Norm

Theorem 1. Let ®(t) and Py (t) be the solutions of systems (23) and (25), respectively. Let
®(x) € Byg (1), F: Byd (I) — B, "010( Jwithl <m < N +1and N > 1. Then, we have the
following estimate

[® — @nlyon0 < N (I Dlg®lRoms + ID{GC @O Prvnorny ). 44)
Proof. Using Proposition 1, we obtain

IErllon, = ||@ — 203

< N[ Dji®|[3mmp < NT"[YD(0 ") || - (45)

XU,O,p - -

Using the log J[-Gauss integration formula gives

x ~p
12| 000 = ‘zg;?f /p R(x,s)(l'—xI;Nl’O’p)G(s,dD(s))ds

XO'O'p

:' T [ R (T T sl 000

XO,O/p

[ M 00 ¥ 10, 1/2
= /IXO’O’p (kZ: IX:I\}p/p Rkk(X,s)(I IK p)gk(s D(s ))ds) dx]

=1

]

B N M 27 1/2
0,0, j 0,0, x—1,0,
= 2 X] () (Z /p ] Rkk(xj p,S) <I — xQ’O’pI:,N p)g,{(S,@(S))dS) ]

IN

1/2
N M K00F ? M
0,0, 0,0, Fx—1,0,
LA PZ( /p " R P,s>(z—xgo,pfé‘,N P)gk<s,<1><s>>ds> ,;(”2]



Fractal Fract. 2024, 8, 262 9of 16

Using the Cauchy-Schwarz inequality leads to the following estimate:

IEa | 00
N 000 [5 " 5 0,0 ~x 2 12
<C|L L [T Raa 9 ds [T R0 (T a0 T )se(s,009) d]
j=0k %
0.0, 2 1/2
<clL X (o) [T (pne) | (T TP acts ote)| s
- =0k=1 ] /N 0 ] x].” s,N
1/2 0,0 1/2
N K M x;P Kk—1 2
(L (o)) (L[ et (eee) | (2 B Jas o) ds ) ao
j=0 k=1"F
1/2 0,0 1/2
N K x; P x—1 2
§C<ZX,°-'O”’(I3( ?O'P,p>)> ( [ (ees) (z— 00 Zon” P)G<s,c1><s>> ds)
j=0

1/2
<N [ZXOOP( 50) [ s (Bens) 1<ﬁ<s,p>>’“\Dl’zg,scw,cb(s))]st]
< N DiagG - @()) i e

An estimate for the term [|E3|[ 00, can be obtained by using the log J-Gauss integration
formula to give

B3| 005 = H OOP/ I P (G(s,®(s)) — G(s, n(s)))ds

Xaap
1/2

2
~ T /, x””*(ZIﬁ:&"’ /p s (B(x, ) I (g5, @ (5)) gk<s,<1>N<s>>>ds> dx]

0,0, 1/2

[N x M - )
= el Z A00P (/ s (B(x,8)) ! 2xq,o,plgjlro,p(gk(s,cb(s))—gk(s,q>N(s)))ds> ]

k=1

Using the Cauchy-Schwarz inequality, we obtain

1/2

2
) ds]
(47)

XQ,U,p 0,0,0

N ;
< [L [T s ey as [ s1<ﬁ<x,s>>“<

M

Y oneZon ™ (85, 2(5)) = g5, Pn (6))

k=1
2
) ds

and using the logarithmic Jacobi-Gauss quadrature Formula (35), we obtain

0,0,0 M 1/2

<1 [Zx (ros) [ <t (E

k=1

20 TN (815, B(6) — k(s O (9)))

| Es||

0,0,0

1 N 00 0,0,0 2
<
“T(xk+1) ];)KXJ (ﬁ(xl ,p))

y ZXK 10p<2’g ( ( IS 10p),®(5(x?09,r2 109))) —gk<s(x?0p Ty 10p),<I>N<s(x?Op, g mp)))’) 1

Using the Lipschitz condition, we obtain

X

(48)

1/2
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B3 om0
2 1/2
L N 0,0,0 0,0p x—1,0,0 OOp K 1,00 OOp K 1,0,0 (49)
STt 1) jZKXI (ﬁ(x/ ) Z ZX ’(( "1 )) (PNfi(S(xJ " ))‘ ’
and using (36), we obtain
B3 | 00¢
0,00 M 2 1/2
L 0,0,0 0,0,0 K[ 1 00,0 -1 Fx—1,0,0
< Fem | 5 (] >)/p (B(x7%,5)) (;X?OPISN (ils) = pnils >>)ds}
50
[ Esll 000 (50)
1/2 00, 2 1/2
L N o, 0,0, x 5 0,0, k1 (M x—1,0,0
sr(KH)(gm«, #(B(x; P,m)) 0“5N</p S (P0) | LloeTon Y i(s) — (e || s |

0,0,0 . 0,0,0 K . .
For any x;"" € I, let fx) = (,B(x]. ,p)) . We note that f(x) is a convex function of

k. Hence, by Jensen's inequality for all « € (0,1)

flr) = (1 =x)f(0) + xf(1).
The above inequality yields

R CE R I W (RS CE )

j=0

SK{1K+K/IS_1(logz)dx] SK(l*g) < %

Hence, by using the above inequality and the triangle inequality, we deduce that

0,0,0 M
L A 0,0, x—1
||E3HX0,O,,D < VaT(x+1) 013],%\] (/p s 1<.B(xj P,s)) (Z

i=1

L 5 00, A
< Ve o (/p o) (Bl

K00F M ) o\ 172
+ (/p/ 571(13( ?O/P ) (Zlqu —on,i( )) ds>

i=1

Xj M 2
<cN7T™ 02?%\1 (/,D (IB(SIP))m <l;‘Dﬂ1)g,s(Pi(s)‘> ds)

0,0,0 2
L x; B ]
*mwm(/ (e ) (zm ~ g >|) ds)

< eN™"|| Dji® || 3mme +

(51)

1/2

2
00 T (9i(s) — gnals)) D ds)
]

By 1/2
) ds)

Zin " ils) — gils)

(52)
1/2

1/2

S P
\/EF(K + 1) N Xm,m,p.

Hence, a combination of (45), (46), (52) and the Lipschitz constant L < I'(x + 1) leads to the
desired result. [
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5.2. Convergence Analysis in L*~Norm

Theorem 2. Let ®(x) be the exact solution of Equation (23) and @y (x) be its approximate solution.
Assume that x € (0,1), ® € Bgf @ (I). Then, we have the following estimate:

_ 1
1 — @l 000 < N[O @(pE") 12172 + N2TMIDIG G, R()) |2t

1m m 2 m 2 (53)
+CN2 ||D10gq)||Xm’m’P +CN ||3N||Xm,m,p.
Proof. It follows from (38) that
0,0, 00 3
IEnllo < [@ - TR+ |20 —an|| < Yl (54)
j=1
Then, we have
\E1|=H (=239
_ I— OO,p ’
00 (55)
<ZHI— Mg,
0,0, 0,0,
—ZHgk_ 1/2¢Nk+1 NI, 1/24’ x,Npngoo

Using the Jacobi—Gauss interpolation error estimate (see [20] page 133), for any gx €
H;?—l/z,—l/z withl <m < N +1,

12— 1
Hgk —Ix,ll\]/z' Uzngoo < eN27"[0Y (e[| -1/2-172, (56)

where c is a positive constant independent of m, N and gi. Then, we obtain

00, 00,
=280 < (00 28] ) e - 2ok
57
< NI Y gl va ©7
k=1
= N (06 1 v
Next, by Lemma 2, we obtain
IEy| — OOrP/ R(x,8)(T —Z5y"") G(s,®(s))ds
0
1 o(), k1 Fxk—1,0,0
- 7o / )Y (2T ) sl () ds
P k=1
< 1 ’IO/O/P max /xs’l(lB(x s))’ci1 %(I— Tﬁl'o’p) (s, P(s))ds
- F(K) N oo xel |Jp ! =1 TSN 8k

X
<cN? max/ s7H(B(x,s))" !
xel Jp

< ¢ N2 max /px s (B(x,5)) g ) (I - xi§§l'0'p)gk(s,¢(s))ds‘-

xel
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By the Cauchy-Schwarz inequality and (36), we have

[Ep| < ¢ N2 max {/x sV (B(x,s)) ds
P

xel

2
/p (Z!( 50 ) gels, (s >>]> ds}
2 712
<cN%1§1§Ix[/pxs ! (Z‘( AN 1Op)gk(s D(s ))’) ds]

scN%—mmaxst—l(ﬁ(x,s))”m1(1og ) ‘Dlogs (s, ®(s ))fdsr

xel

1
2

(58)

1
< eN2TDR G, @O et

Similarly, using Lemma 2 leads to

Bl = [T [ R(us) WZi(G(s,@(5)) ~ Gls, @n(s)))ds
ko1 M
= (B8 [} (7Be) T LT el 906)) — s ()i
< cHIOOpHoomalx /xs (x,5))* 2 N lOP (g (s, P(s)) — gk (s, Pn(s)))ds
xe 0

M
YT (gk(s, @(5)) — gils, @n(s)))ds

xel =1

< cN? max /x s (B(x,s))
0

1 x -1 42
< ¢NZ max / s H(B(x,8))"
7P k=1

I (3105, @(s)) = gils, P (s))ds -

Applying the Cauchy-Schwarz inequality and (36), we obtain

|E;| < cNZ max {/x sV (B(x, ) ds
P

xel
X M 2 %
X/ (8 (Z Ioy LOP (g (s, ¢(S))—gk(S/¢N(S)))’> ds]
4 k=1
< ¢N? r?g}([(ﬁ(x,p))"

1
2 2
1,0, 1,0, —1,0, —1,0, -1,0,
xz(z\g ©, (s 0) - gilsy (s} p))\) X, p].

Further, by the triangle inequality, (35) and (36), we deduce that
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1 N
|Es| < ¢N2 max {(ﬁ(xfp))x B (

X
< ¢N? max / sTH(B(x,s)) !
xel Y

X
< ¢N? max / sTH(B(x,s)) !
xel Y

x 2 1% (59)
+/ sT1(B (Zldh — ¢n,ils )|> ds]
0
) N\ 1/2
< cNimr?g;((/p (B(s,p)) ( ’Dlogs(”l( )D ds)
b N\ 1/2
-l-cN%r?ng (/p s 1 (ZM’Z — oni )> ds)

S CN%_m ||Dirgg<D||§'cm,m,p + CNm ||3N||§(m/m,p.

Hence, a combination of (54), (57), (58) and (59) yields (53). O

6. Numerical Results

In this section, we introduce two numerical examples to illustrate the effectiveness of
the proposed method.

Example 1. We consider the following coupled system:

HDf g1 (t) = g1(t, p1(t), 2(t)), x € (0,1),
CHDE@y (1) = ga(t, 1(t), @2(t)), & € (0,1), (60)
¢1(1) = ¢2(1) = 0.

For this problem, the exact solution is given as
g1(t) = (log )™,

@2(t)

)3+K

(logt
and

gi(t, @1, 92) = F(ﬁ(;'{) (l0g )" — 93 + ((log)*+*)’,

g2t @1, 1) = 1"(;1(1—)1() (logt)® — @3 + ((logt)3+’<)3,

In Tables 1 and 2, we report the Li 001 and L errors for different values of . It is clear
that with increasing N, the errors are decreased.
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Table 1. The errors for ¢, with the fractional orders ¥ = 0.4, 0.8 for Example 1.

Li 001 -ETTOTS L*-Errors
N Kk =04 x = 0.8 Kk = 0.4 x = 0.8
5 1.1x107° 15x%x107° 52 x 107> 7.0 x 107>
10 1.9x 108 6.4 x 107 1.8 x 1077 6.0 x 1078
15 4.4 x 10710 1.0 x 10710 6.1 x 1079 1.4 x 1077
20 5.3 x 10712 1.1 x 10710 3.8x 10710 1.0 x 10710

Table 2. The errors for ¢, with the fractional orders ¥ = 0.4, 0.8 for Example 1.

Li 001-Errors L*-Errors
N Kk =04 x = 0.8 k=04 x = 0.8
5 13 x107° 1.0x 1075 7.6 x 1073 54 x107°
10 1.1x 1077 3.0x 108 12 x10°° 33x1077
15 57 x 107 1.1x 1077 1.5x 108 1.8 x 1077
20 83 x 101 1.1 x 10710 59 x 1010 29 x 10710
Example 2. We consider the following coupled system:
CHDf (1) 1t @1(t), @2(t)), x€(0,1),
HDF o (t) = go(t, 1(1), 92(1)), x € (0,1), (61)

and

¢1(1) = ¢2(1) = 0.

For this problem, the exact solution is given as

1(t) = (logt)’ +2(logt)*,

¢2(t) = —(log1)* +2(log 1)*,

s1(t, 91, 92) = F(E(E)x)

(t, 91, ¢2) = —HI;(E)K)(Iog HAr 4 ri{%(log £)37r — go% + ((log 1)+ 2(log t)3)2.

(log t)>™* + 2r(4) ] (log )3~ — 2 + (—(log £)* +2(log t)3)2,

r(4—«

In Tables 3 and 4, we report the Li 001 and L errors for different values of . It is clear
that with increasing the number of bases functions, the errors are decreased.

Table 3. The errors for ¢, with the fractional orders ¥ = 0.4, 0.8 for Example 2.

Li 001-ETTOTS L*-Errors
N x =04 xk = 0.8 k=04 x = 0.8
5 45 %1077 71 %107 22 %1076 1.8 x 1076
10 6.1 x 1077 1.6 x 108 3.7 x 1078 44 x 1078
15 43 x 10710 1.6 x 1072 2.6 x107°? 43 %1077
20 6.2 x 10~ 1 29 x 10710 38x 10710 7.8 x 10710
25 1.3 x 10711 7.6 x 10711 83 x 10~ 1 2.0x 10710
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Table 4. The errors for ¢, with the fractional orders ¥ = 0.4, 0.8 for Example 2.

Li 001 -ETTOTS L*-Errors
N Kk =04 x = 0.8 Kk = 0.4 x = 0.8
5 59 x 1077 42 %1077 32x10°° 7.7 x 1077
10 8.2 x 1077 94 x107° 5.7 x 1078 1.7 x 108
15 5.7 x 10710 89 x 10710 4.0 x107°? 1.6 x 10710
20 83 x 101 1.6 x 10710 59 x 10710 29x 10710
25 1.8 x 10711 42 x10~1 12 x 10710 7.6 x 10711

7. Conclusions

We derived a collocation spectral scheme for systems of nonlinear C-H differential
equations. We constructed a non-polynomial spectral collocation scheme, described its
effective implementation, and derived its convergence analysis. In addition, we provided
numerical examples to support our theoretical analysis. The numerical results demonstrate
the accuracy and effectiveness of the proposed scheme. We also conclude that the described
technique produces very accurate results, even when employing a small number of base
functions. In further research, we will consider an efficient spectral collocation method for
nonlinear systems of fractional pantograph delay differential equations.
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