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Abstract: In this paper, we ponder a kind of discrete-time fractional-order complex-valued fuzzy BAM
neural network. Firstly, in order to guarantee the quasi-projective synchronization of the considered
networks, an original quantitative control strategy is designed. Next, by virtue of the relevant
definitions and properties of the Mittag-Leffler function, we propose a novel discrete-time fractional-
order Halanay inequality, which is more efficient for disposing of the discrete-time fractional-order
models with time delays. Then, based on the new lemma, fractional-order h-difference theory, and
comparison principle, we obtain some easy-to-verify synchronization criteria in terms of algebraic
inequalities. Finally, numerical simulations are provided to check the accuracy of the proposed
theoretical results.

Keywords: quasi-projective synchronization; complex-valued; fractional-order; fuzzy BAM neural
networks; quantized control

1. Introduction

Artificial neural networks are mathematical models used to distribute parallel informa-
tion processing by imitating behavioral characteristics of biological neural networks. Due
to their associative memory functions, powerful fault tolerance, and optimized computing
functions, neural networks (NNs) have been widely applied in many fields involving image
recognition, signal processing, fault diagnosis, as well as biological mathematics [1–4]. In
real-life applications, many adverse factors may influence the dynamic behaviors of NNs.
For example, time delays [5], due to the limited switching speed of the amplifier, often
lead to oscillation and instability phenomena in NNs. Another example is the existence
of uncertain factors, such as parameter uncertainty and random disturbance, which make
the dynamic behaviors of NNs more complicated and increase the research difficulty of
NNs. To better study these NNs with the above elements, in 1996, Pecora and Carroll first
proposed fuzzy NNs [6], which led to further research on NNs.

Based on the special memory advantage and heritability of fractional calculus, frac-
tional differential equations have become useful tools to accurately describe varieties of
practical complex problems. As we all know, the origin of fractional calculus is a problem
statement, which was posed in 1695 by a correspondence between the German mathemati-
cian Leibniz and the French mathematician L’Hopital. The Riemann derivative [7] and
Caputo derivative [8] are two common types of fractional-order derivatives. The Caputo
derivative is sought-after by a lot of scholars because it has the same initial condition as the
integer-order one. Moreover, it can also efficaciously reflect the physical facts of models.
Through the unremitting efforts of researchers, some relevant results of fractional calculus
were successively put forward [9,10], providing strong support for in-depth discussions
of fractional-order systems. Later, scholars utilized inequality techniques, differential in-
clusion theory, the M-matrix, and other methods to explore the dynamical behaviors of
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fractional-order NNs. Some excellent results were obtained, such as dissipativity and con-
tractivity [11], existence and uniqueness [12], stabilization [13], and synchronization [14].

The dynamical behaviors of chaotic systems that achieve consistent behaviors over
time are referred to as synchronization. Since similar clustering behaviors exist in nature,
this has sparked curiosity among researchers about synchronization problems. With a deep-
ening understanding of synchronization, various synchronization types have been raised
triumphantly, such as quasi-synchronization [15], finite-time synchronization [16], Mittag-
Leffler synchronization [17], and so on. In the above discussion, quasi-synchronization is
diffusely praised because of its relatively broad conditions. A quasi-projective synchroniza-
tion is a special form of quasi-synchronization owing to the existence of its projection factor,
which can accelerate the communication speed. Therefore, quasi-projective synchronization
is sought after by academics and numerous excellent conclusions have been published
in different journals [18,19]. Meanwhile, scholars have found that the synchronization of
chaotic systems cannot be achieved without any affection from external forces. This discov-
ery led to the development of various control strategies to meet different synchronization
requirements, such as pinning control [20], linear control [21], intermittent control [22],
etc. Concurrently, some undesirable phenomena, such as the waste of resources and the
associated increase in costs, have emerged in the process of signal transmission due to the
limited capacity and bandwidth of the communication channel. In response, some effective
quantized controllers have been proposed in [23,24].

The associative memory function of NNs is divided into auto-associative memory
and hetero-associative memory; Hopfield NNs represent auto-associative memory. A
BAM NN (BAMNN) is a continuous improvement of the Hopfield NN, which was first
proposed by Kosko in 1987 [25]. One advantage of BAMNN is its ability to associate
complete patterns stored in memory with incomplete patterns. This improvement has
attracted many academics to research BAMNNs in full swing, significantly accelerating
their development [26,27]. Note that the above discussions are based on the continuous-
time framework. With the development of science and technology, we discovered that it
is not precise enough to use continuous-time models to solve real problems, because the
analysis and processing of some problems need to be completed after discretization [28–30].
Therefore, it is time to incorporate discrete-time correlation theory into NNs. Over time,
many excellent discrete-time conclusions have been drawn [31–33]. In [33], the authors
discussed synchronization issues for a class of discrete-time fractional-order complex-
valued NNs.

Based on the above discussion, it is evident that there is still relatively limited research
on complete synchronization in discrete-time fractional-order BAMNNs, let alone quasi-
projective synchronization; this motivated us to conduct research. To make our model
more general and valuable, we consider the quasi-projective synchronization of a class
of discrete-time fractional-order complex-valued fuzzy BAMNNs (DFCFBAMNNs). The
main highlights of this paper are as follows: (1) Compared with models in [26–28,30–32],
our model is more general as it integrates fuzzy logic, fractional difference operators,
and plurality into BAMNNs. (2) In order to better deal with the time-delay term of the
considered networks, a new lemma is brought forward that can avoid the use of inequality
scaling or the design of a special controller. (3) To chase the target of synchronization,
a novel quantized controller is designed. (4) Simple and easy-to-verify synchronization
criteria are given.

The rest of this paper is arranged as follows. In Section 2, the model description and
some preparatory knowledge are given. Effective criteria for quasi-projective synchroniza-
tion in DFCFBAMNNs are presented in Section 3. In Section 4, numerical simulations
are provided to illustrate the availability of theoretical results. A succinct discussion is
presented in Section 5.

Notations: C
0 ∇α

h denotes the Caputo h-discrete fractional difference with order α (0 < α < 1),
then R+, R, C, and Cn denote the set of positive real numbers, real numbers, complex
numbers, and n-dimensional complex vectors. zi(t) = zR

i (t) + zI
i (t)i, i =

√
−1, zi(t)
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denotes the conjugate of zi(t), |zi(t)| =
(

zi(t)zi(t)
) 1

2
stands for the module of zi(t), z(t) =(

z1(t), z2(t), · · · , zn(t)
)T

∈ Cn, ∥z(t)∥2 =
( N

∑
i=1

zi(t)zi(t)
) 1

2
denotes the two-norm of z(t),

[d] denotes the great integer less than d, (hN)b = {x|x = b, b + h, b + 2h, · · · }, (hN)c
b =

{x|x = b, b + h, b + 2h, · · · , c, }, where c − b = kh.

2. Preparatory Knowledge and Model Description

In this part, we recall common definitions, lemmas, assumptions, and other condi-
tions that will be used later, and a new lemma is proved to establish the quasi-projective
synchronization criteria of DFCFBAMNNs.

Definition 1 ([29]). The backing difference ς(t) on (hN)0 is defined as

∇hς(t) =
ς(t)− ς(t − h)

h
.

Definition 2 ([29]). The α-th order h-rising function is defined by the following:

γα
h = hα Γ( γ

h + α)

Γ( γ
h )

,

where h > 0, 0α
h = 0.

Definition 3 ([29]). The α-th order fractional h-monomial Ĥα(t, 0) is written as follows:

Ĥα(t, 0) =
tα
h

Γ(α + 1)
= hα Γ( t

h + α)

Γ( t
h )Γ(α + 1)

.

Definition 4 ([5]). Let ς(t) : (hN)0 7→ R and α > 0. The α-th order h-sum with a basing point of
0 is given by

C
0 ∇−α

h ς(t) =
∫ t

0
Ĥα−1(t, ξ(s))ς(s)∇hs, t ∈ (hN)h,

by convention C
0 ∇

−α
h ς(0) = 0 and ξ(s) = s − h.

Definition 5 ([5]). The Caputo nabla fractional difference of ς(t) ∈ (hN)0 and n − 1 < α < n of
α (α ∈ R+) is expressed as

C
0 ∇α

hς(t) = 0∇
−(n−α)
h ∇n

h ς(t), t ∈ (hN)nh,

when 0 < α < 1, and we have the following:

C
0 ∇α

hς(t) = 0∇
−(1−α)
h ∇hς(t), t ∈ (hN)h.

Definition 6 ([29]). The discrete Mittag-Leffler function is stated as follows:

Eh
α,b(c, t) =

∞

∑
k=0

ck tkα+b
h

Γ(αk + b + 1)
.

For b = 0, we have the following:

Eh
α,0(c, t) = Eh

α,0(c, t) =
∞

∑
k=0

ck tkα
h

Γ(αk + 1)
,

in which 0 < α < 1, b ∈ R and |c| < h−α.
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Lemma 1 ([30]). For the arbitrary two complex numbers, υ, ν, and arbitrary real number ι > 0,
we obtain the following:

υν + υν ≤ ιυυ +
1
ι

νν.

Lemma 2 ([34]). Let 0 < σ < h−α, the Eh
α,0(−σ, t) is monotonically non-increasing and

0 < Eh
α,0(−σ, t) ≤ 1 for t ∈ (hN)0.

Lemma 3 ([5]). For |σ| < h−α, 0 < α < 1, we have the following:

C
0 ∇α

hEh
α,0(−σ, t) = −σEh

α,0(−σ, t), t ∈ (hN)h.

Lemma 4. Let x(t) : (hN)0 −→ R+ be a function meeting

C
0 ∇α

hx(t) ≤ −bx(t) +
n

∑
i=1

cx(t − τi(t)), t ∈ (hN)h, (1)

where 0 < b, c < h−α, nc < b and 0 ≤ τi(t) ≤ τ, then we obtain the following:

x(t) ≤ kEh
−α,0(−σ́, t), k > 0, 0 < σ́ < h−α.

Proof. We consider a continuously differentiable function of σ, as follows:

H(σ) = σ +
n

∑
i=1

cEh
α,0(−σ, t − τi(t))

Eh
α,0(−σ, t)

− b,

and according to Lemma 2 and Definition 6, we have the following:

H(0) =
n

∑
i=1

cEh
α,0(0, t − τi(t))

Eh
α,0(0, t)

− b = nc − b < 0,

and

H(b) = b +
n

∑
i=1

cEh
α,0(−b, t − τi(t))

Eh
α,0(−b, t)

− b =
n

∑
i=1

cEh
α,0(−b, t − τi(t))

Eh
α,0(−b, t)

> 0.

According to the zero-point existence theorem of continuous functions, there is a

σ́ ∈ (0, b), and H(σ́) = σ́ +
c

n
∑

i=1
Eh

α,0(−σ́,t−τi(t))

Eh
α,0(−σ́,t)

− b = 0, i.e.,

−σ́Eh
α,0(−σ́, t) = c

n

∑
i=1

Eh
α,0(−σ́, t − τi(t)))− bEh

α,0(−σ́, t). (2)

Let us consider the comparison system of (1) as follows:

C
0 ∇α

hµ(t) = −bµ(t) +
n

∑
i=1

cµ(t − τi(t)), t ∈ (hN)h, (3)

it has the same initial value as (1). Using Lemma 3 and (2), we obtain the following equation:

C
0 ∇a

hEh
α,0(−σ́, t) = −σ́Eh

α,0(−σ́, t) = −bEh
α,0(−σ́, t) +

n

∑
i=1

cEh
α,0(−σ́, t − τi(t)),
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it is not hard to see that Eh
α,0(−σ́, t) is the solution of (3), in view of the fractional comparison

principle, we obtain
x(t) ≤ kEh

α,0(−σ́, t), t ∈ (hN)h.

Corollary 1. Let x(t) : (hN)0 −→ R+ be a function satisfying

C
0 ∇α

hx(t) ≤ a − bx(t) +
n

∑
i=1

cx(t − τi(t)), t ∈ (hN)h, (4)

where 0 < a, 0 < b, c < h−α, nc < b and 0 ≤ τi(t) ≤ τ, then we obtain the following:

x(t) ≤ kEh
−α,0(−σ́, t) +

a
b − c

, k > 0, 0 < σ́ < h−α. (5)

Proof. The upper formula hints that

C
0 ∇α

h

(
x(t)− a

b − c

)
≤ −b

(
x(t)− a

b − c

)
+

n

∑
i=1

c
(

x(t − τi(t))−
a

b − c

)
,

then according to Lemma 4, we obtain the following: x(t)− a
b−c ≤ kEh

−α,0(−σ́, t), i.e.,

x(t) ≤ kEh
−α,0(−σ́, t) +

a
b − c

, t ∈ (hN)h.

Remark 1. In [14], the authors successfully extended the Halanay inequality to the continuous-time
fractional-order case, which is a huge improvement for solving continuous-time fractional-order
NNs with time delays. On this basis, this paper further popularizes the Halanay inequality to
discrete-time fractional-order situations, which is of great significance to research on discrete-time
fractional-order NNs with time delays.

Consider a general DFCFBAMNN as follows:

C
0 ∇α

hxi(t) = −aixi(t) +
M
∑

l=1
bil fl(yl(t)) +

M∧
l=1

cil fl(yl(t − τ(t)))

+
M∨
l=1

dil fl(yl(t − τ(t))) + Ii, t ∈ (hN)h,

C
0 ∇α

hyl(t) = −δlyl(t) +
N
∑

i=1
βligi(xi(t)) +

N∧
i=1

γligi(xi(t − τ(t)))

+
N∨

i=1
θligi(xi(t − τ(t))) + Il , t ∈ (hN)h,

(6)

with the following initial condition:{
xi(p) = Φi(p), p ∈ (hN)0

−τ , i ∈ N ,
yl(p) = Ψl(p), p ∈ (hN)0

−τ , l ∈ M,

here, ai, δl ∈ R+ denote the neuron’s self-inhibition rates, x(t) = (x1(t), x2(t) · · · xn(t))T denotes
the i-th state variable vector in the X-layer; similarly, y(t) = (y1(t), y2(t) · · · ym(t))T represents
the l-th state variable vector in the Y-layer; bil and βli stand for the synaptic connection strengths
without delay;

∨
and

∧
denote fuzzy OR and fuzzy AND operations; cil and γli denote elements

of the fuzzy feedback MIN template; similarly, dil and θli denote fuzzy feedback MAX templates;
Ii, Il ∈ R denote external inputs of the X-layer and Y-layer; fl(·), gi(·) : C → C denote the
activation functions, τ(t) denotes the time delay and contents 0 ≤ τ(t) ≤ τ.
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Definition 7 ([35]). For the arbitrary appropriate cone ℑ ⊆ Rn, the partial relation acquired by ℑ
in Rn is stipulated as follows:

(1) ϵ ⪰ ε ⇔ ϵ − ε ∈ ℑ,

(2) ϵ ≻ ε ⇔ ϵ − ε ∈ int ℑ,

where the interior of ℑ is represented by int ℑ.

Remark 2. For arbitrary ϵ, ε ∈ C, ϵ = ϵ1 + ϵ2i, ε = ε1 + ε2i, ϵ − ε = ϵ1 − ε1 + (ϵ2 − ε2)i. The
magnitude on different relationships of ϵ and ε can be determined according to the following rules:
(1) If ϵ1 > (<)ε1, ϵ2 ̸= ε2, then ϵ ≻ (≺)ε; (2) if ϵ1 > (<)ε1, ϵ2 = ε2 or ϵ1 = ε1, ϵ2 > (<)ε2,
then ϵ ⪰ (⪯)ε; (3) if ϵ1 = ε1, and ϵ2 = ε2, then ϵ = ε.

Remark 3. In DFCFBAMNN (6), fuzzy AND operator and fuzzy OR operator can be understood
as follows:

M∧
l=1

cil fl(yl(t)) = min
1≤l≤M

{
cil fl(yl(t))

}
,

M∨
l=1

dil fl(yl(t)) = max
1≤l≤M

{
dil fl(yl(t))

}
.

Assumption 1. For arbitrary µ, ν ∈ C, there exist real numbers ıl , ȷi > 0, such that

| fl(µ)− fl(v)| ≤ ıl |µ − v|,

|gi(µ)− gi(v)| ≤ ȷi|µ − v|.

Assumption 2. For arbitrary fl(·), gi(·) : C → C and Ii(·), Il(·), there exist real numbers
℘ fl

,℘gi , l fi
, lgl ∈ R satisfying

| fl(·)| < ℘ fl
, |gi(·)| < ℘gi ,

|Ii(·)| < l fi
, |Il(·)| < lgl .

Remark 4. Assumption 1 is the Lipschitz condition, which is a prerequisite for the existence and
uniqueness of solutions to fractional-order neural networks. Assumption 2 is given for the needs of
the theoretical results. In the future, we will explore quasi-projective synchronization criteria with
low conservatism, weakening or removing Assumption 2.

The controlled DFCFBAMNN is given as follows:

C
0 ∇α

h x̆i(t) = −ai x̆i(t) +
M
∑

l=1
bil fl(y̆l(t)) +

M∧
l=1

cil fl(y̆l(t − τ(t)))

+
M∨
l=1

dil fl(y̆l(t − τ(t))) + Ii + ui(t), t ∈ (hN)h,

C
0 ∇α

h y̆l(t) = −δl y̆l(t) +
N
∑

i=1
βligi(x̆i(t)) +

N∧
i=1

γligi(x̆i(t − τ(t)))

+
N∨

i=1
θligi(x̆i(t − τ(t))) + Il + ul(t), t ∈ (hN)h,

(7)

with the initial condition:{
x̆i(p) = Φ̆i(p), p ∈ (hN)0

−τ , i ∈ N ,
y̆l(p) = Ψ̆l(p), p ∈ (hN)0

−τ , l ∈ M.
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Definition 8 ([19]). DFCFBAMNNs (6) and (7) can achieve quasi-projective synchronization, if
there exist r and a small error bound η > 0 satisfying

lim
t→∞

(
||x̆(t)− rx(t)||2 + ||y̆(t)− ry(t)||2

)
≤ η,

r ∈ C is projective coefficient. When r = 1, DFCFBAMNNs (6) and (7) can achieve quasi-
synchronization, we can define the error signals of (6) and (7) as follows:

ψi(t) = x̆i(t)− rxi(t), φl(t) = y̆l(t)− ryl(t). (8)

By counting the Caputo difference of (8), we have the following:

C
0 ∇α

hψi(t) = −aiψi(t) + (1 − r)Ii(t) + ui1(t)

+
M
∑

l=1
bil

(
fl(y̌l(t))− fl(ryl(t))

)
+

M
∑

l=1
bil

(
fl(ryl(t))− r fl(yl(t))

)
+

M∧
l=1

cil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M∧
l=1

cil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
, t ∈ (hN)h,

C
0 ∇α

h φl(t) = −δl φl(t) + (1 − r)Il(t) + ul2(t)

+
N
∑

i=1
βli

(
gi(x̌i(t))− gi(rxi(t))

)
+

N
∑

i=1
βli

(
gi(rxi(t)) + rgi(xi(t))

)
+

N∧
i=1

γli

(
gi(x̌i(t − τ(t)))− gi(rxi(t − τ(t)))

)
+

N∧
i=1

γli

(
gi(rxi(t − τ(t))) + rgi(xi(t − τ(t)))

)
+

N∨
i=1

θli

(
gi(x̌i(t − τ(t)))− gi(rxi(t − τ(t)))

)
+

N∨
i=1

θli

(
gi(rxi(t − τ(t))) + rgi(xit − τ(t)))

)
, t ∈ (hN)h,

(9)

with initial value {
ψi(p) = Φi(p)− rΦ̆i(p), p ∈ (hN)0

−τ , i ∈ N ,
φl(p) = Ψl(p)− rΨ̆l(p), p ∈ (hN)0

−τ , l ∈ M.

We designed a quantized state feedback controller, as follows: ui1(t) = −pi

(
ℓ
(
ψR

i (t)
)
+ iℓ

(
ψI

i (t)
))

,

ul2(t) = −ql

(
ℓ
(

φR
i (t)

)
+ iℓ

(
φI

i (t)
))

,
(10)

where pi, ql are positive control gains, ℓ(·) : R → 𭟋, 𭟋 = {±si : si = ζ is0, i = 0,±1,±2 · · · }⋃{0} with s0 > 0, the quantizer ℓ(·) can be described as follows:

ℓ(ϵ) =


si, if 1

1+Π si < ϵ < 1
1−Π si,

0, if ϵ = 0,
−ℓ(−ϵ), if ϵ < 0,
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in which 0 < ζ < 1 stands for the density of the quantizer, and Π = 1−ζ
1+ζ denotes the

parameter of the quantizer, si represents the level of the quantizer. There exists a Filippov
solution ξ̂ ∈ [−Π, Π) such that ℓ(ϵ) = (1 + ξ̂)ϵ. To put it simply, we have the following

abbreviation: ϕ(t) =
(

ψ1(t), ψ2(t) · · · , ψn(t), φ1(t), φ2(t) · · · , φm(t)
)T

.

3. Main Results

In this part, we receive some standards for DFCFBAMNNs (6) and (7) to achieve quasi-
projective synchronization based on the discrete-time fractional-order Halanay inequality.

For the sake of convenience, we introduce notations as follows:

λ = Mℑ1 +ℑ2 +ℑ3 +ℑ5 +ℑ6 +ℑ7l2
fi

,

λ̆ = Mℑ̆1 + ℑ̆2 + ℑ̆3 + ℑ̆5 + ℑ̆6 + ℑ̆7l2
gl

.

Theorem 1. Under Assumptions 1 and 2, DFCFBAMNNs (6) and (7) realize quasi-projective
synchronization if

0 < Υ, Θ < h−a, (11)

Θ − Υ < 0, (12)

in which Υ = min
{

Ω1, Ω2

}
, Θ = max

{
Ω̃1, Ω̃2

}
, Ω1 = 2ai + 2pi(1 − Π)−

M
∑

l=1
ℑ4|bil |2 −

λ − 1
ℑ̆1

M
∑

l=1
|βli|2 ȷ2i , Ω2 = 2δl + 2ql(1 − Π)−

N
∑

i=1
ℑ̆4|βli|2 − λ̆ − 1

ℑ1

N
∑

i=1
|bil |2ı2l , Ω̃1 =

M
∑

l=1
ȷ2i ×

( 1
ℑ̆2

|γli|2 + 1
ℑ̆3

|θli|2), Ω̃2 =
N
∑

i=1
ı2l (

1
ℑ2

|cil |2 + 1
ℑ3

|dil |2).

Proof. The constructed Lyapunov function

V(t) =
N
∑
i=1

ψi(t)ψi(t) +
M
∑
l=1

φl(t)φl(t). (13)

Calculating the Caputo difference of V(t) derives the following:

C
0 ∇α

hV(t) = C
0 ∇α

h

( N
∑
i=1

ψi(t)ψi(t) +
M
∑
l=1

φl(t)φl(t)
)

≤
N
∑
i=1

(
ψi(t) C

0 ∇α
hψi(t) + ψi(t) C

0 ∇α
hψi(t)

)
+

M
∑
l=1

(
φl(t) C

0 ∇α
h φl(t) + φl(t) C

0 ∇α
h φl(t)

)
.

(14)

It follows from (9) that

N
∑

i=1

(
ψi(t) C

0 ∇α
hψi(t) + ψi(t)C

0 ∇α
hψi(t)

)
=

N
∑
i=1

ψi(t)
{
− aiψi(t) + ui1(t) +

M
∑
l=1

bil

(
fl(y̌l(t))− fl(ryl(t))

)
+

M∧
l=1

cil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M
∑

l=1
bil

(
fl(ryl(t))− r fl(yl(t))

)
+ (1 − r)Ii(t)
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+
M∧
l=1

cil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)}
+

N
∑

i=1
ψi(t)

{
− aiψi(t) + ui1(t) +

M
∑

l=1
bil

(
fl(y̌l(t))− fl(ryl(t))

)
+

M∧
l=1

cil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

M
∑

l=1
bil

(
fl(ryl(t)) + r fl(yl(t))

)
+ (1 − r)Ii(t)

+
M∧
l=1

cil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

M∨
l=1

dil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)}
.

(15)

According to Lemma 1 and Assumption 1, we have the following:

N
∑

i=1

M
∑

l=1
ψi(t)bil

(
fl(y̌l(t))− fl(ryl(t))

)
+

N
∑

i=1

M
∑

l=1
ψi(t)bil

(
fl(y̌l(t))− fl(ryl(t))

)
≤ M

N
∑

i=1
ℑ1ψi(t)ψi(t) + 1

ℑ1

N
∑

i=1

M
∑

l=1
bilbil

(
fl(y̌l(t))− fl(ryl(t))

)
×
(

fl(y̌l(t))− fl(ryl(t))
)

≤ M
N
∑

i=1
ℑ1ψi(t)ψi(t) + 1

ℑ1

N
∑

i=1

M
∑

l=1
|bil |2ı2l φl(t)φl(t),

(16)

and
N
∑

i=1
ψi(t)

M∧
l=1

cil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∧
l=1

cil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∨
l=1

dil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∨
l=1

dil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
≤

N
∑

i=1
ℑ2ψi(t)ψi(t) +

N
∑

i=1
ℑ3ψi(t)ψi(t)

+ 1
ℑ2

N
∑

i=1

M
∑

l=1
cilcil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
×
(

fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))
)

+ 1
ℑ3

N
∑

i=1

M
∑

l=1
dildil

(
fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))

)
×
(

fl(y̌l(t − τ(t)))− fl(ryl(t − τ(t)))
)
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≤ (ℑ2 +ℑ3)
N
∑

i=1
ψi(t)ψi(t)

+
N
∑

i=1

M
∑

l=1
ı2l (

1
ℑ2

|cil |2 + 1
ℑ3

|dil |2)φl(t − τ(t))φl(t − τ(t)).
(17)

According to Assumption 2 and Lemma 1, we obtain the following:

N
∑

i=1

M
∑

l=1
ψi(t)bil

(
fl(ryl(t))− r fl(yl(t))

)
+

N
∑

i=1

M
∑

l=1
ψi(t)bil

(
fl(ryl(t))− r fl(yl(t))

)
≤

N
∑

i=1

M
∑

l=1
ℑ4bilbilψi(t)ψi(t)

+ N
ℑ4

M
∑

l=1

(
fl(ryl(t))− r fl(yl(t))

)(
fl(ryl(t))− r fl(yl(t))

)
≤

N
∑

i=1

M
∑

l=1
ℑ4bilbilψi(t)ψi(t)

+ N
ℑ4

M
∑

l=1

(
fl(ryl(t)) fl(ryl(t)) + fl(ryl(t))r fl(yl(t))

+r fl(yl(t)) fl(ryl(t)) + rr fl(yl(t)) fl(yl(t))
)

≤
N
∑

i=1

M
∑

l=1
ℑ4|bil |2ψi(t)ψi(t)

+ 2N
ℑ4

M
∑

l=1

(
fl(ryl(t)) fl(ryl(t)) + rr fl(yl(t)) fl(yl(t)

)
≤

N
∑

i=1

M
∑

l=1
ℑ4|bil |2ψi(t)ψi(t) + 2N

ℑ4

M
∑

l=1
(1 − |r|2)℘2

fl
.

(18)

In the light of Lemma 1, we obtain the following:

N
∑

i=1
ψi(t)

M∧
l=1

cil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∧
l=1

cil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∨
l=1

dil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
+

N
∑

i=1
ψi(t)

M∨
l=1

dil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
≤

N
∑

i=1
ℑ5ψi(t)ψi(t) +

N
∑

i=1
ℑ6ψi(t)ψi(t)

+ 1
ℑ5

N
∑

i=1

M
∑

l=1
cilcil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
×
(

fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))
)

+ 1
ℑ6

N
∑

i=1

M
∑

l=1
dildil

(
fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))

)
×
(

fl(ryl(t − τ(t)))− r fl(yl(t − τ(t)))
)
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≤ (ℑ5 +ℑ6)
N
∑

i=1
ψi(t)ψi(t) +

N
∑

i=1

M
∑

l=1
( 2
ℑ5

|cil |2 + 2
ℑ6

|dil |2)(1 − |r|2)℘2
fl

. (19)

Due to the boundedness of the external input function and Lemma 1, we obtain the following:

N
∑

i=1
ψi(t)(1 − r)Ii +

N
∑

i=1
ψi(t)(1 − r)Ii

≤
N
∑
i=1

ℑ7ψi(t)ψi(t)I2
i +

N
ℑ7

(1 − r)(1 − r)

≤
N
∑
i=1

ℑ7ψi(t)ψi(t)l2
fi
+

N
ℑ7

(1 − r)(1 − r).

(20)

According to (10), we obtain the following:

N
∑

i=1

(
ψi(t)ui1(t)) + ψi(t)ui1(t))

)
=

N
∑

i=1
−pi

{(
ψR

i (t)− iψI
i (t)

)(
ℓ
(
ψR

i (t)
)
+ iℓ

(
ψI

i (t)
))

+
(

ψR
i (t) + iψI

i (t)
)(

ℓ
(
ψR

i (t)
)
− iℓ

(
ψI

i (t)
))}

= −2
N
∑

i=1
pi

(
ψR

i (t)ℓ
(
ψR

i (t)
)
+ ψI

i (t)ℓ
(
ψI

i (t)
))

= −2
N
∑

i=1
pi

{
(1 − Π)

(
ψR

i (t)
)2

+ (1 − Π)
(

ψI
i (t)

)2}
= −2

N
∑

i=1
pi(1 − Π)ψi(t)ψi(t).

(21)

By integrating the above inequalities, we obtain the following:

N
∑

i=1

(
ψi(t) C

0 ∇α
hψi(t) + ψi(t)C

0 ∇α
hψi(t)

)
≤

N
∑

i=1

(
Mℑ1 +ℑ2 +ℑ3 +

M
∑

l=1
ℑ4|bil |2 +ℑ5 +ℑ6 +ℑ7l2

fi

−2ai − 2pi(1 − Π)
)

ψi(t)ψi(t) + 1
ℑ1

N
∑

i=1

M
∑

l=1
|bil |2ı2l φl(t)φl(t)

+
N
∑

i=1

M
∑

l=1
ı2l (

1
ℑ2

|cil |2 + 1
ℑ3

|dil |2)φl(t − τ(t))φl(t − τ(t))

+
M
∑

l=1
( 2N
ℑ4

+
N
∑

i=1

2
ℑ5

|cil |2 +
N
∑

i=1

2
ℑ6

|dil |2)(1 − |r|2)℘2
fl
+ N

ℑ7
(1 − r)(1 − r)

=
N
∑

i=1

( M
∑

l=1
ℑ4|bil |2 + λ − 2ai − 2pi(1 − Π)

)
ψi(t)ψi(t)

+ 1
ℑ1

N
∑

i=1

M
∑

l=1
|bil |2ı2l φl(t)φl(t)

+
N
∑

i=1

M
∑

l=1
ı2l (

1
ℑ2

|cil |2 + 1
ℑ3

|dil |2)φl(t − τ(t))φl(t − τ(t))

+
M
∑

l=1
( 2N
ℑ4

+
N
∑

i=1

2
ℑ5

|cil |2 +
N
∑

i=1

2
ℑ6

|dil |2)(1 − |r|2)℘2
fl
+ N

ℑ7
(1 − r)(1 − r).

(22)
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By methods like (15)–(21), we obtain the following:

M
∑

l=1

(
φl(t) C

0 ∇α
h φl(t) + φl(t)C

0 ∇α
h φl(t)

)
≤

M
∑

l=1

(
Nℑ̆1 + ℑ̆2 + ℑ̆3 +

N
∑

i=1
ℑ̆4|βli|2 + ℑ̆5 + ℑ̆6 + ℑ̆7l2

gl

−2δl − 2ql(1 − Π)
)

φl(t)φl(t) + 1
ℑ̆1

N
∑

i=1

M
∑

l=1
|βli|2 ȷ2i ψi(t)ψi(t)

+
M
∑

l=1

N
∑

i=1
ȷ2i (

1
ℑ̆2

|γli|2 + 1
ℑ̆3

|θli|2)ψi(t − τ(t))ψi(t − τ(t))

+
N
∑

i=1
( 2M
ℑ̆4

+
M
∑

l=1

2
ℑ̆5

|γli|2 +
M
∑

l=1

2
ℑ̆6

|θli|2)(1 − |r|2)℘2
gi
+ M

ℑ̆7
(1 − r)(1 − r)

=
M
∑

l=1

( N
∑

i=1
ℑ̆4|βli|2 + λ̆ − 2δl − 2ql(1 − Π)

)
φl(t)φl(t)

+ 1
ℑ̆1

N
∑

i=1

M
∑

l=1
|βli|2 ȷ2i ψi(t)ψi(t)

+
M
∑

l=1

N
∑

i=1
ȷ2i (

1
ℑ̆2

|γli|2 + 1
ℑ̆3

|θli|2)ψi(t − τ(t))ψi(t − τ(t))

+
N
∑

i=1
( 2M
ℑ̆4

+
M
∑

l=1

2
ℑ̆5

|γli|2 +
M
∑

l=1

2
ℑ̆6

|θli|2)(1 − |r|2)℘2
gi
+ M

ℑ̆7
(1 − r)(1 − r).

(23)

By combining inequalities (22) and (23), we obtain the following:

C
0 ∇α

hV(t) =
N
∑

i=1
ψi(t)ψi(t) +

M
∑

l=1
φl(t)φl(t)

≤ −
N
∑
i=1

(
2ai + 2pi(1 − Π)−

M
∑
l=1

ℑ4|bil |2 − λ − 1
ℑ̆1

M
∑
l=1

|βli|2 ȷ2i

)
ψi(t)ψi(t)

−
M
∑
l=1

(
2δl + 2ql(1 − Π)−

N
∑
i=1

ℑ̆4|βli|2 − λ̆ − 1
ℑ1

N
∑
i=1

|bil |2ı2l
)

φl(t)φl(t)

+
M
∑
l=1

N
∑
i=1

ȷ2i (
1
ℑ̆2

|γli|2 +
1
ℑ̆3

|θli|2)ψi(t − τ(t))ψi(t − τ(t))

+
N
∑
i=1

M
∑
l=1

ı2l (
1
ℑ2

|cil |2 +
1
ℑ3

|dil |2)φl(t − τ(t))φl(t − τ(t))

+
M
∑
l=1

(
2N
ℑ4

+
N
∑
i=1

2
ℑ5

|cil |2 +
N
∑
i=1

2
ℑ6

|dil |2)(1 − |r|2)℘2
fl

+
N
∑
i=1

(
2M
ℑ̆4

+
M
∑
l=1

2
ℑ̆5

|γli|2 +
M
∑
l=1

2
ℑ̆6

|θli|2)(1 − |r|2)℘2
gi

+
N
ℑ7

(1 − r)(1 − r) +
M
ℑ̆7

(1 − r)(1 − r)

= −ΥV(t) + ΘV(t − τ(t)) + ι,

(24)

where Υ = min
{

Ω1, Ω2

}
and Θ = max

{
Ω̃1, Ω̃2

}
, ι =

M
∑

l=1
( 2N
ℑ4

+
N
∑

i=1

2
ℑ5
|cil|2 +

N
∑

i=1

2
ℑ6
|dil|2)×

(1 − |r|2)℘2
fl
+

N
∑

i=1
( 2M
ℑ̆4

+
M
∑

l=1

2
ℑ̆5
|γli|2 +

M
∑

l=1

2
ℑ̆6
|θli|2)(1 − |r|2)℘2

gi
+ N

ℑ7
(1 − r)(1 − r) + M

ℑ̆7
(1 −

r)(1− r).
According to Corollary 1, we have the following:

V(t) ≤ k̂Eh
−α,0(−σ̂, t) +

ι

Υ − Θ
, t ∈ (hN)0,
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where k̂ > 0, 0 < σ̂ < h−α are constants and

lim
t→∞

(||ψ(t)||2 + ||φ(t)||2) ≤
( 2ι

Υ − Θ

) 1
2
.

Hence, DFCFBAMNNs (6) and (7) can reach quasi-projective synchronization.
If fuzzy logic is not considered in this paper, then DFCFBAMNNs (6) and (7) degener-

ate to the following:
C
0 ∇α

hxi(t) = −aixi(t) +
M
∑
l=1

bil fl(yl(t)) +
M
∑
l=1

ρil fl(yl(t − τ(t))) + Ii, t ∈ (hN)h,

C
0 ∇α

hyl(t) = −δlyl(t) +
N
∑
i=1

βligi(xi(t)) +
N
∑
i=1

ϱligi(xi(t − τ(t))) + Il , t ∈ (hN)h,
(25)

and
C
0 ∇α

h x̆i(t) = −ai x̆i(t) +
M
∑
l=1

bil fl(y̆l(t)) +
M
∑
l=1

ρil fl(y̆l(t − τ(t))) + Ii + ui1(t), t ∈ (hN)h,

C
0 ∇α

h y̆l(t) = −δl y̆l(t) +
N
∑
i=1

βligi(x̆i(t)) +
N
∑
i=1

ϱligi(x̆i(t − τ(t))) + Il + ul2(t), t ∈ (hN)h.
(26)

Similar to the proof method of Theorem 1, we obtain Corollary 2.

Corollary 2. Under Assumptions 1 and 2, DFCFBAMNNs (25) and (26) achieve quasi-projective
synchronization if

0 < Υ̃, Θ̃ < h−α, (27)

Θ̃ − Υ̃ < 0, (28)

where Υ̃ = min
{

Ω3, Ω4

}
, Θ̃ = max

{
Ω̃3, Ω̃4

}
, Ω3 = 2ai + 2pi(1− Π)− M

ℑ̆8
ȷ2i −

M
∑

l=1
(ℑ8|bil |2

+ℑ9|ρil |2), Ω4 = 2δl + 2ql(1 − Π)− N
ℑ8

ı2l −
N
∑

i=1
(ℑ̆8|βli|2 + ℑ̆9|ϱli|2), Ω̃3 = M

ℑ̆9
ȷ2i , Ω̃4 = N

ℑ9
ı2l .

Remark 5. Compared with the linear controllers in [19,26,30], the controller in this paper quantifies
the signal before it is transmitted, which not only reduces the cost but also decreases the waste of
resources in practical applications. At the same time, compared with the hybrid controller composed
of the open loop control and adaptive feedback control proposed in [32], the quantitative control in
this paper is easy to operate, so the controller in this paper is more practical.

Remark 6. In fact, due to the associative memory characteristics of BAMNNs, they hold high
research value. However, there are still relatively few articles related to synchronization research
of BAMNNs within the discrete-time fractional-order framework. Compared to continuous-time
models [20,26,27], this paper studies the synchronization problem of BAMNNs under the discrete-
time fractional-order framework. Therefore, the models in this paper are more applicable and flexible.

Remark 7. Compared with the real decomposition approach used in [4,15,17], the direct plurality
approach is adopted herein, which not only reduces the computational complexity but also makes our
results more compact and natural.

4. Numerical Simulations

In this section, numerical simulation results are provided to demonstrate the applica-
bility of Theorem 1. We consider a 4-dimensional DFCFBAMNN, and the drive system is
given as follows:
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C
0 ∇0.9

h xi(t) = −aixi(t) +
2
∑

l=1
bil fl(yl(t)) +

2∧
l=1

cil fl(yl(t − τ(t)))

+
2∨

l=1
dil fl(yl(t − τ(t))) + Ii, t ∈ (hN)h,

C
0 ∇0.9

h yl(t) = −δlyl(t) +
2
∑

i=1
βligi(xi(t)) +

2∧
i=1

γligi(xi(t − τ(t)))

+
2∨

i=1
θligi(xi(t − τ(t))) + Il , t ∈ (hN)h,

(29)

where activation functions f1(p) = f2(p) = g1(p) = g2(p) = 1
2 tanh(p), τ(t) = 0.25 +

[25 sin(10t)] ∗ h, h = 0.01, α = 0.9, Ii = Il = 0 for i, l = 1, 2, ℑk = ℑ̆k =
1
4 for k = 1, 2, · · · , 9,

and other parameters are chosen as follows:

A = (ail)2×2 =

(
0.15 0

0 0.13

)
, δ = (δli)2×2 =

(
0.25 0

0 0.16

)
,

B = (bil)2×2 =

(
−0.1652 − 0.1001i −0.2048 − 0.1010i
−0.1780 − 0.1448i −0.1924 − 0.0114i

)
,

β = (βli)2×2 =

(
−0.0918 + 0.0000i −0.2792 − 0.0000i
−0.2293 + 0.0000i −0.0908 + 0.0000i

)
,

C = (cil)2×2 =

(
−0.0950 − 0.0010i −0.000 − 0.0000i
−0.2778 − 0.0151i 0.0000 + 0.0090i

)
,

γ = (γli)2×2 =

(
−0.3310 + 0.0000i −0.0020 + 0.0000i
−0.1569 + 0.0000i −0.000 + 0.1288i

)
,

D = (dil)2×2 =

(
−0.1952 − 0.1101i −0.0080 + 0.0000i
−0.1528 − 0.0905i −0.0000 + 0.0000i

)
,

θ = (θli)2×2 =

(
−0.1627 + 0.0000i −0.0980 + 0.0000i
−0.2116 + 0.0000i 0.0000 + 0.0098i

)
, the initial values of (29) are

Φ(p) = [−0.7448 + 0.8282i, 0.0659 − 0.2778i]T , Ψ(p) = [−0.001 − 0.0010i,−0.0010i]T for
p ∈ (0.01N)0

−0.5. Figure 1 shows the time evolutions of the real and imaginary parts
of the X-layer and Y-layer neurons of DFCFBAMNN (29), respectively. Figure 2 shows
phase trajectories of the X-layer and Y-layer neurons x1(t), x2(t), and y1(t), y2(t) of DFCF-
BAMNN (29).
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Figure 1. Trajectories of the X-layer and Y-layer neurons of DFCFBAMNN (29).
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Figure 2. Phase portraits of the X-layer and Y-layer neurons of DFCFBAMNN (29).

The corresponding response system is given as follows:

C
0 ∇0.9

h x̆i(t) = −ai x̆i(t) +
2
∑

l=1
bil fl(y̆l(t)) +

2∧
l=1

cil fl(y̆l(t − τ(t)))

+
2∨

l=1
dil fl(y̆l(t − τ(t))) + Ii + ui(t), t ∈ (hN)h,

C
0 ∇0.9

h y̆l(t) = −δl y̆l(t) +
2
∑

i=1
βligi(x̆i(t)) +

2∧
i=1

γligi(x̆i(t − τ(t)))

+
2∨

i=1
θligi(x̆i(t − τ(t))) + Il + ul(t), t ∈ (hN)h,

(30)

the parameters are the same as (29) and the initial values of (30) are Φ̆(p) = [−0.2428 +
0.8221i, 0.5675 − 0.7618i]T , Ψ̆(p) = [−0.0010, 0.020i]T for p ∈ (0.01N)0

−0.5. Figure 3 reveals
the time track of errors of DFCFBAMNNs (29) and (30) without the controller.
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Figure 3. State trajectories of error modules |ψ1(t)|, |ψ2(t)|, φ1(t)| and |φ2(t)| without the controller.

We set projective coefficients r1 = r2 = 0.06− 0.01i and devise a comfortable quantized
controller as follows:  ui1(t) = −pi

(
ℓ
(
ψR

i (t)
)
+ iℓ

(
ψI

i (t)
))

,

ul2(t) = −ql

(
ℓ
(

φR
i (t)

)
+ iℓ

(
φI

i (t)
))

.
(31)
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We choose p1 = p2 = q1 = q2 = 0.6, ζ i = 0.9i, s0 = 1.3. By a simple calculation, we
can attain the following: ı1 = ı2 = ȷ1 = ȷ2 = 0.5, and ℘ f1 = ℘ f2 = ℘g1 = ℘g2 = 1.6,

l f1 = l f2 = lg1 = lg2 = 0, Ω1 = 2ai + 2pi(1 − Π) −
M
∑

l=1
ℑ4|bil |2 − λ − 1

ℑ̆1

M
∑

l=1
|βli|2 ȷ2i ≈

0.0535 + 0.1882 = 0.2417, Ω2 = 2δl + 2ql(1 − Π) −
N
∑

i=1
ℑ̆4|βli|2 − λ̆ − 1

ℑ1

N
∑

i=1
|bil |2ı2l ≈

0.5452 + 0.0523 = 0.5975, Ω̃1 =
M
∑

l=1
ȷ2i (

1
ℑ̆2

|γli|2 + 1
ℑ̆3

|θli|2) ≈ 0.1456 + 0.0860 = 0.2316,

Ω̃2 =
N
∑

i=1
ı2l (

1
ℑ2

|cil |2 + 1
ℑ3

|dil |2) ≈ 0.0593 + 0.109 = 0.1683. Π = 1−ζ
1+ζ = 1−0.9

1+0.9 = 1
19 , and

h−α ≈ 63. In combination with (11) and (12), the Υ = min
{

Ω1, Ω2

}
= 0.2417, Θ =

max
{

Ω̃1, Ω̃2

}
= 0.2316. By a simple count, we obtain Θ − Υ = −0.0101 < 0, which

fulfills Theorem 1. Therefore, we can conclude that DFCFBAMNNs (29) and (30) attain
quasi-projective synchronization, as portrayed in Figure 4. We can see from Figure 4
that the curves fluctuate in a certain range. Figure 5 shows a variation diagram of the
quantization controller.
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Figure 4. State trajectories of error modules of |ψ1(t)|, |ψ2(t)|, φ1(t)| and |φ2(t)| under the controller (31).
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Figure 5. State evolutions of the quantization controller (31).

5. Conclusions

In this paper, we consider quasi-projective synchronization for a class of DFCF-
BAMNNs with time delays. In order to better deal with time delays, we propose a new
lemma that expands the Halanay inequality to a discrete-time fractional-order case. Com-
pared with the linear controller in [19,26,30], this paper devises a more practical quantitative
controller. Based on the proposed lemma and related properties of complex-valued func-
tions, some original criteria are obtained to fulfill quasi-projective synchronization. Finally,
numerical simulations are given to verify the validity of the theoretical results.
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