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Abstract: In this paper, we will study a singular problem involving the fractional (q1(x, .)-q2(x, .))-
Laplacian operator in the whole space RN , (N ≥ 2). More precisely, we combine the variational
method with monotonicity arguments to prove that the associated functional energy admits a critical
point, which is a weak solution for such a problem.
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1. Introduction

In this paper, we study the following singular fractional problem:

(Qθ) : (−∆)s
q1(z,.)ψ + (−∆)s

q2(z,.)u + |ψ|σ(z)−2ψ = b(z)ψ−τ(z) − θg(z, ψ), z ∈ RN ,

where N ≥ 2, θ is a positive parameter, 0 < s < 1, δ, σ and g are continuous functions that
satisfy some hypotheses described later in Section 3. The operator (−∆)s

qi(x,.) is given by

(−∆)s
qi(z,.)ψ(z) = p.v.

∫
Ω

|ψ(z)− ψ(χ)|qi(z,χ)−2(ψ(z)− ψ(χ))

|z − χ|N+sqi(z,χ)
dχ, z ∈ RN .

qi ∈ C(R×R, (1, ∞)), where i will denote (throughout this paper) the integers 1 or 2. It is
noted that the operator (−∆)s

q(z,.) is a generalization of the operator (−∆)s
q(z); moreover,

regarding the manipulation of this operator in the weak formulation of the proposed
problem, it seems that it is more complicated than the fractional q(z)-Laplace operator.

Problems involving the non-local fractional operator (−∆)s
q(z,.) have received more

interest throughout recent years. This is due to their several applications in different fields.
To be more precise, this operator appears, for example, in electrorheological fluids (see
the paper of Ruzicka [1]); in elastic mechanics (see the work of Zhikov [2]); and in image
processing (see the monograph of Chen et al. [3]).

Problems like (Qθ) have been extensively considered by several authors, about this
operator and other particular cases of it, of which we cite as examples the papers by
Chammen et al. [4,5], Azroul et al. [6], Bahrouni [7], Bahrouni and Rǎdulescu [8], Kefi
and Saoudi [9], Fan and Zhang [10,11], Ghanmi and Saoudi [12,13], and Rǎdulescu and
Repovš [14]. More precisely, Chammem et al. [4] considered the following singular problem:{

(−∆)s
f1(z,.)ψ + (−∆)s

f2(z,.)u + |ψ|q(z)−2ψ = h(z)ψ−τ(z) + θk(z, ψ), in Ω,
ψ = 0, on ∂Ω,

(1)

where θ ≥ 0; the functions fi, q are continuous with values in (1, ∞); and the function γ
is continuous with values in (0, 1). The author used the variational methods and com-
bined them with some monotonicity arguments to prove that the problem (1) admits a
nontrivial solution.
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Recently, by combining the variational method with monotonicity arguments,
Chammem et al. [4] proved some existing results related to the following problem:

(−∆)s
f1(z,.)ψ + (−∆)s

f2(z,.)ψ + |ψ|q(z)−2ψ = h(z)ψ−τ(z) + θk(z, ψ) in Ω,

ψ = 0, on ∂Ω,

where fi : Ω × Ω → (1, ∞), q : Ω → (1, ∞)), γ : Ω → (0, 1) are continuous functions
and θ ≥ 0.

After that, Chammem et al. [15] used diverse versions of the mountain pass theorem
to prove several results associated with the following problem:{

ζ1ψ + ζ2ψ = h(z, ψ) + ϵk(z, ψ), in Ω,
ψ = 0, in RN\Ω,

(2)

where ϵ > 0 is a positive parameter and the non-local operator ζi is defined by

ζiψ(z) =
1
2

∫
RN

(ψ(z + t) + ψ(z − t)− 2ψ(z))Ki(t)dt, (3)

where Ki : RN \ {0} −→ (0, ∞) is assumed to satisfy some important assumptions.
Under supplementary hypotheses on the nonlinearities h and k, the authors proved that
problem (2) has a nontrivial solution. Moreover, the multiplicity of solutions is also studied
for the problem (2).

There are presently too many papers that have studied problems with regard to the
q(x)-Laplace operator, of which we cite as examples the papers by Alsaedi et al. [16–18]
(several variational methods), Chammem et al. [4,5] (variational method, monotonicity
arguments and the method of Nehari), Ghanmi and Saoudi [12,13] (variational method
combined with the method of Nehari), Giacomoni and Saoudi [19] (variational and sub-
super-solution methods), Kefi and Saoudi [20] (monotonicity arguments method), and
Saoudi and Ghanmi [21] (variational techniques). Meanwhile, the problems involving the
operator (−∆)s

q(z,.) in the whole space RN are more complicated than the problems in a

bounded domain. In particular, the embedding Λ into Lδ(z)(RN) is only continuous for
1 < τ− ≤ δ(z) < q∗s (z), which causes the verification of the compactness of the Palai–Smale
sequences to become difficult. Consequently, we managed to use the space RN

loc, where Λ,
Lδ(z)(RN), q∗s (z), and RN

loc are defined in Section 2.
Very recently, Ge and Gao [22] proved the existence of a solution for the following

p(., .)-Laplacian equation in the whole space:

(−∆)s
p(z,.)u + |ψ|p(z)−2u = θω1(z)|ψ|q(z)−2u − ω2(z)|ψ|r(z)−2u, in RN . (4)

To find solutions for the problem (4), the authors used compactness results (proved
by Ho and Kim (Theorem 3.5 [23])) concerning the compact embedding from the Sobolev
space into the space Lδ(z)

loc (RN).
In this work, we extend the above investigations to a singular problem in the whole

space. We note that the singularity and the lack of compactness make the study of the
problem (Qθ) more complicated.

2. Notations and Variational Setting

In this section, we present some necessary properties and important results about
Lebesgue and Sobolev spaces with variable exponents. For interested readers, several results
and other properties can be found in the papers of Fan and Zhao [24], Harjulehto et al. [25],
Mihǎilescu and Rǎdulescu [26], Rǎdulescu and Repovš [14], and Zhang and Fu [27].
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We consider the set C+(RN), constituted by all continuous functions on RN with
values in (1, ∞). For each σ ∈ C+(RN) , the variable exponent Lebesgue space Lσ(z)(RN)
is the set of all measurable function ψ, for which ρσ(.)(ψ) is finite, where

ρσ(.)(ψ) =
∫
RN

|ψ(z)|σ(z)dz.

The space Lσ(z)(RN) is endowed with with the following norm:

|ψ|σ(z) = inf
{

µ > 0 : ρσ(.)

(
ψ(z)

µ

)
≤ 1

}
.

We recall that Lσ(x)(RN) is a Banach space; moreover, if in addition, we have 1 < σ− ≤
σ+ < ∞, then Lσ(x)(RN) becomes reflexive and also separable, where σ+ and σ− are
given by

σ− = inf
z∈RN

σ(z) and σ+ = sup
z∈RN

σ(z).

Also, we recall that if σ′ is such that 1
σ(z) +

1
σ
′ (z)

= 1, then for each φ ∈ Lσ(z)(RN) and

each ψ ∈ Lσ
′
(z)(RN), we have∣∣∣∣∫RN

φψdz
∣∣∣∣ ≤ (

1
σ− +

1
(σ′)−

)|φ|σ(z)|ψ|σ′ (z).

Proposition 1 (see [23,28]). For any φ ∈ Lσ(x)(RN), we have the following:

(1) |φ|σ(z) < 1 ⇔ ρσ(z)(φ) < 1. Moreover, the last equivalence holds true if we replace < with
> or with =.

(2) In the case when |φ|σ(z) > 1, we have the following inequality:

|φ|σ−
σ(z) ≤ ρσ(.)(φ) ≤ |φ|σ+

σ(z).

Moreover, in the case when |φ|σ(z) < 1, then we have the following inequality

|φ|σ+

σ(z) ≤ ρσ(.)(φ) ≤ |φ|σ−
σ(z).

Proposition 2 (see [23]). Assume that σ and θ are measurable functions such that for all z ∈ RN ,
we have

θ ∈ L∞(RN) and 1 ≤ σ(z)θ(z) ≤ ∞.

Then, for any nontrivial function ψ in Lσ(z)(RN), we have

(1) In the case when |ψ|θ(z)σ(z) ≤ 1, we have

|ψ|σ+

θ(z)σ(z) ≤ ||ψ|θ(z)|σ(z) ≤ |ψ|σ−
θ(z)σ(z).

(2) In the case when |ψ|θ(z)σ(z) ≥ 1, we have

|ψ|σ−
θ(z)σ(z) ≤ ||ψ|θ(z)|σ(z) ≤ |ψ|σ+

θ(z)σ(z).

Next, for a continuous function σ on RN and a continuous symmetric function q on
R2N , such that

1 < q− ≤ q(z, t) ≤ q+ < ∞, and 1 < σ− ≤ σ(z) ≤ σ+ < ∞. (5)
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We define the space Λ, by

Λ =

{
ψ ∈ Lσ(z)(RN) :

∫
R2N

|ψ(z)− ψ(t)|q(z,t)

|z − t|N+sq(z,t)
dzdt < ∞

}
.

The space Λ is endowed with the following norm:

||ψ||Λ = |ψ|Lσ(z)(RN) + [ψ]s,q(z,t),

where

[ψ]s,q(z,t) = inf

{
t > 0 :

∫
R2N

|ψ(z)− ψ(t)|q(z,t)

tq(z,t)|z − t|N+sq(z,t)
dzdt ≤ 1

}
.

We recall that Λ is a Banach space; it is, in addition, separable and reflexive.

Theorem 3 (see [23]). Assume that σ is a continuous function on RN and q is a continuous
function on R2N ; satisfying Equation (5) and, in addition, for each (z, t) ∈ R2N , we have

q(z, z) ≤ σ(z), and sq(z, t) < N.

If δ ∈ C+(RN) is such that

1 < τ− ≤ δ(z) < q∗s (z) :=
Nq(z, z)

N − sq(z, z)
, ∀ z ∈ RN ,

then, we have the following important properties:

(i) We have a compact embedding from Λ into Lδ(z)
loc (RN).

(ii) If for all z ∈ RN , we have

q(z, z) ≤ δ(z) and inf
z∈RN

(q∗s (z)− δ(z)) > 0,

then, we have a continuous embedding from Λ into Lδ(z)(RN). So, for each g ∈ Λ, we have

|g|Lδ(z) ≤ C||g||Λ,

for some positive constant C.

Lemma 4 (See [23]). Let ψ ∈ Λ, and put

χ(u) =
∫
R2N

|ψ(z)− ψ(t)|q(z,t)

|z − t|N+sq(z,t)
dzdt +

∫
RN

|ψ(z)|p(z)dz.

If 1 ≤ ||ψ||Λ < ∞, then

||ψ||q
−

Λ ≤ χ(ψ) ≤ ||ψ||q
+

Λ ,

and if ||ψ||Λ ≤ 1 then

||ψ||q
+

Λ ≤ χ(ψ) ≤ ||ψ||q
−

Λ .

In the rest of this work, we assume that the functions qi and σ are continuous with
values in (1, ∞), qi is symmetric and satisfies Equation (5). Also, we assume that the
function q, defined by

q(z, t) = max{q1(z, t), q2(z, t)},

satisfies (5). We assume further that b ∈ L
r(z)

r(z)+τ(z)−1 (RN) ∩ Lr(z)
loc (RN) is almost always

positive for some function r satisfying for each (z, t) ∈ R2N :

q(z, z) ≤ min(r(z), σ(z)) ≤ max(r(z), σ(z)) < q∗s (z), and sq(z, t) < N.
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By a weak solution of problem (Qθ), we determine a function φ ∈ Λ that satisfies for
each ψ ∈ Λ:

0 = −θ
∫
RN

g(z, φ(z))ψ(z)dz

+
∫
R2N

|φ(z)− φ(t)|q1(z,t)−2(φ(z)− φ(t))(ψ(z)− ψ(t))
|z − t|N+sq1(z,t)

dzdt

+
∫
R2N

|φ(z)− φ(t)|q2(z,t)−2(φ(z)− φ(t))(ψ(z)− ψ(t))
|z − t|N+sq2(z,t)

dzdt

+
∫
RN

|φ(z)|σ(z)−2 φ(z)ψ(z)dz −
∫
RN

b(z)|ψ|−τ(z)ψ(z)dz.

Associate to the problem (Qθ), we define the functional Jθ : Λ → R, by

Jθ(ψ) = Φ(ψ)−
∫
RN

b(z)
1 − τ

|ψ|1−τ(z)dz − θ
∫
RN

G(z, ψ(z))dz,

where G(z, t) =
∫ t

0 g(z, s)ds, and Φ is defined on Λ by

Φ(ψ) =
∫
RN

|ψ(z)− ψ(t)|q1(z,t)

q1(z, t)|z − t|N+sq1(z,t)
dzdt +

∫
RN

|ψ(z)− ψ(t)|q2(z,t)

q2(z, t)|z − t|N+sq2(z,t)
dzdt

+
∫
RN

|ψ(z)|σ(z)
σ(z)

dz.

3. Existence Result for Qθ and Its Proof

In this section, we give and prove the main result of this work. Our proofs are based
on the following assumptions.

(M1) The function g : RN × R → R is measurable such that for all (x, y) ∈ RN × R,
we have

g(x, y) ≤ c f (x)|y|β(x)−2y, with

for some non-negative function f in LS(x)(RN), where c > 0, and the functions S, β
are continuous on RN and satisfy

1 < β(x) < q(x, x) <
N
s
< S(x), and q(x, x) ≤ β(x)

S(x)
S(x)− 1

.

(M2) For each t ∈ R, and for each z in some bounded domain Ω, we have g(z, t) ≥ 0.

Theorem 5. Assume that Equation (5) holds. If hypotheses (M1) and (M2) are satisfied, then, for
each θ > 0, problem Qθ admits a nontrivial weak solution.

The proof of Theorem 5 is summarized in three lemmas.

Lemma 6. Under assumption (M1), Jθ is coercive in Λ.
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Proof. Let ψ ∈ F such that ∥ψ∥ > 1, then from Lemma 4, we have

Φ(ψ) ≥ 1
q+

∫
R2N

|ψ(z)− ψ(t)|q1(z,t)

|z − t|N+sq1(z,t)
dzdt

+
1

q+

∫
R2N

|ψ(z)− ψ(t)|q2(z,t)

|z − t|N+sq2(z,t)
dzdt +

1
p+

∫
RN

|ψ(z)|σ(z)dz

≥ 1
q+

∫
R2N

|ψ(z)− ψ(t)|q(z,t)

|z − t|N+sq(z,t)
dzdt +

1
p+

∫
RN

|ψ(z)|σ(z)dz

≥ min
( 1

q+
,

1
p+
)
||ψ||q

−

Λ (6)

Now, the Hölder’s inequality implies that∫
RN

b(z)
1 − τ

ψ1−τdz ≤ 1
1 − τ+

∫
RN

b(z)ψ1−τdz

≤ 1
1 − τ+

|b| r(z)
r(z)+τ(z)−1

||ψ|1−τ | r(z)
1−τ

. (7)

From Proposition 1 and Theorem 3, we obtain∫
RN

b(z)
1 − τ

ψ1−τdz ≤ 1
1 − τ+

|b| r(z)
r(z)+τ(z)−1

max
(
|ψ|1−τ+

r(z) , |ψ|1−τ−

r(z)

)
≤ c1

1 − τ+
|b| r(z)

r(z)+τ(z)−1
||ψ||1−τ−

Λ , (8)

for some positive constant c1.
Next, from hypothesis (M1), Proposition 2, and the Hölder inequality, one has∫

RN
G(z, ψ(z))dz ≤ c

∫
RN

f (z)|ψ(z)|δ(z)dz

≤ c| f |ϵ(z)||ψ|δ(z)|ϵ′(z)
≤ c| f |ϵ(z) max

(
|ψ|δ+

ϵ
′ (z)δ(z)

, |ψ|δ−
ϵ
′ (z)δ(z)

)
. (9)

On the other hand, using hypothesis (M1), we obtain

q∗s (z)− δ(z)ϵ′(z) =
Nϵ(z)(q(z, z)− δ(z)) + q(z, z)(ϵ(z)δ(z)s − N)

(ϵ(z)− 1)(N − sq(z, z))
> 0,

and

δ(z)ϵ′(z) = δ(z)
ϵ(z)

ϵ(z)− 1
≥ q(z, z).

So, Theorem 3 implies the existence of c2 > 0, for which∫
RN

G(z, ψ(z))dz ≤ c2| f |ϵ(z)||ψ||δ
+

Λ . (10)

Therefore, by combining Equations (6) and (8) with Equation (10), we obtain

Jθ(ψ) ≥ min
( 1

q+
,

1
p+
)
||ψ||q

−

Λ − c1

1 − τ+
|b| r(z)

r(z)+τ(z)−1
||ψ||1−τ−

Λ − c2θ| f |ϵ(z)||ψ||δ
+

Λ .

Since 1 − τ− < δ+ < q−, then, we conclude that

lim
||ψ||→∞

Jθ(ψ) = ∞.
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That is, Jθ is coercive.

Lemma 7. Assume that hypothesis (M2) holds. Then, we have a non-negative nontrivial function
ϕ ∈ Λ such that for a small enough t, Jθ(tϕ) < 0.

Proof. Let ϕ be a non-negative function in C∞
0 (RN), such that ϕ ≤ 1 in RN . Let t ∈ (0, 1);

so, by Lemma 4, we obtain

Φ(tϕ) ≤ tmin(q−1 ,q−2 ,p−)

(
1

q−1
[ϕ]

q−1
s,q1 +

1
q−2

[ϕ]
q−2
s,q2 +

1
p−

∫
Ω
|ϕ|σ(z)dz

)
.

Therefore, it follows that

Jθ(tϕ) ≤ tmin(q−1 ,q−2 ,p−)

(
1

q−1
[ϕ]

q−1
s,q1 +

1
q−2

[ϕ]
q−2
s,q2 +

1
p−

∫
Ω
|ϕ|σ(z)dz

)

−t1−τ−
∫

Ω

b(z)
1 − τ

ϕ1−τdz. (11)

We point out that

1
q−1

[ϕ]
q−1
s,q1 +

1
q−2

[ϕ]
q−2
s,q2 +

1
p−

∫
Ω
|ϕ|σ(z)dz > 0.

Indeed, if
1

q−1
[ϕ]

q−1
s,q1 +

1
q−2

[ϕ]
q−2
s,q2 +

1
p−

∫
RN

|ϕ|σ(z)dz = 0,

then, we obtain that [ϕ]s,q1 = 0, and
∫
RN |ϕ|σ(z)dz = 0, which implies that ||ϕ|| = 0, that is,

ϕ = 0 in RN , and we obtain a contradiction.
Since min(q−1 , q−2 , p−) > 1 − τ−, then, from (11), we can see that t satisfies

0 < t < min

1,

 1
1−τ−

∫
Ω b(z)ϕ1−τdz

1
q−1

[ϕ]
q−1
s,q1 +

1
q−2

[ϕ]
q−2
s,q2 +

1
p−
∫

Ω |ϕ|σ(z)dz


1

min(q−1 ,q−2 ,p−)

;

then, we conclude that Jθ(tϕ) < 0.

Next, we set
L+

θ = inf
ψ∈Λ

Jθ(ψ). (12)

Lemma 8. Under assertions (M1) and (M2), there exists ψ∗ ∈ Λ such that

Jθ(ψ∗) = L+
θ < 0.

Proof. Let {ψn} be a sequence that satisfies

Jθ(ψn) → L+
θ , as n → ∞.

From the coercivity of Jθ , we can deduce the boundedness of {ψn} in Λ. Indeed, if
this is not true, without loss of generality, we can assume that ||ψn||Λ → ∞. Therefore, the
coercivity of Jθ implies that

Jθ(ψn) → ∞, as, n → ∞,
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which is a contradiction. Hence, {ψn} is bounded in a reflexive space F. So, by Theorem 3,
there exists a subsequence still denoted by {ψn} and there exists ψ∗ ∈ F such that, as n
tends to infinity, we have

ψn ⇀ ψ∗ weakly in F
ψn → ψ∗ strongly in Lα(z)

loc (RN), 1 ≤ α(z) < q∗s (z)
ψn → ψ∗ a.e in RN .

We begin by proving that

lim
n→+∞

∫
Ω

b(z)|ψn|1−τdz =
∫

Ω
b(z)|ψ∗|1−τdz. (13)

By combining the boundedness of the sequence {ψn} is Λ with Theorem 3, we deduce
that {ψn} is also bounded in Lr(z)

loc (RN). By this fact and using Vitali’s Theorem, it suffices
to ensure the absolute continuity of the following set:{ ∫

RN
b(z)|ψn|1−τdz, n ∈ N

}
.

Let η > 0. Since
∫
RN |b(z)|

r(z)
r(z)+τ(z)−1 dz is absolutely continuous; then, from Proposition 2,

we obtain that for any |Ω′| < η, there exist ξ, µ > 0, such that

|b|µ r(z)
r(z)+τ(z)−1

≤
∫

Ω′
|b(z)|

r(z)
r(z)+τ(z)−1 dz ≤ ηµ.

Consequently, from Equation (8), we obtain∫
RN

b(z)|ψn|1−τ(z)dz ≤ |b| r(z)
r(z)+τ(z)−1

|ψn|χr(z)

≤ η|ψn|χr(z),

where χ = 1 − τ+ if |ψn|r(z) < 1 and 1 − τ− if |ψn|r(z) > 1.
Since r(z) < q∗s (z), |ψn|r(z) is bounded, and then Equation (13) holds true.
Next, we shall prove that

lim
n→∞

∫
RN

G(z, ψn(z))dz =
∫
RN

G(z, ψ∗(z))dz. (14)

Let ε > 0; then, from condition (M1), we deduce the existence of cε > 0 for which
we have

|G(z, ψn(z))| ≤
cε

τ− | f (z)||ψn|δ(z).

By combining the facts that ψn ⇀ ψ∗ in Λ and 1 ≤ ϵ
′
(z)δ(z) < q∗s , with the compact

embedding results, we deduce the existence of a sub-sequence ( denoted also by {ψn}) that

converges strongly to ψ∗ in Lϵ
′
(z)δ(z)

loc (RN). Therefore, there exists h ∈ Lδ(z)ϵ
′
(z)

loc (RN) such
that, |ψn(z)| ≤ h(z). This implies that

|G(z, ψn(z))| ≤
cε

τ− | f (z)||h(z)|δ(z).

So, we obtain∫
RN

|G(z, ψn(z))|dz ≤ cε

δ−
| f |ϵ(z) max

(
|h|δ+

ϵ
′ (z)δ(z)

, |h|δ−
ϵ
′ (z)δ(z)

)
.

Hence, Equation (14) is a consequence from the combination of Proposition 2 with the
Lebesgue-dominated convergence theorem.
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Finally, since ψn → ψ∗ a.e in RN , and by Fatou’s lemma, we obtain

Φ(ψ∗) ≤ lim
n→∞

inf Φ(ψn). (15)

So, by combining Equations (13) and (14) with Equation (15), we deduce that Jθ is
lower semi-continuous. Therefore, using (12), we obtain

L+
θ ≤ Jθ(ψ∗) ≤ lim

n→∞
inf Jθ(ψn) = L+

θ .

which ends the proof of Lemma 8,

Proof of Theorem 5. We begin the proof by remarking that Lemma 8 implies the existence
of a global minimizer ψ∗ for Jθ . Therefore, for each x > 0 and each ψ ∈ Λ, we obtain

0 ≤ Jθ(ψ∗ + xψ)− Jθ(ψ∗).

By dividing the last inequality by x > 0 and by letting x tend to zero, we obtain

− θ
∫
RN

g(z, ψ∗(z))ψ(z)dz

+
∫
RN×RN

|ψ∗(z)− ψ∗(t)|q1(z,t)−2(ψ∗(z)− ψ∗(t))(ψ(z)− ψ(t))
|z − t|N+sq1(z,)

dzdt

+
∫
RN×RN

|ψ∗(z)− ψ∗(t)|q2(z,t)−2(ψ∗(z)− ψ∗(t))(ψ(z)− ψ(t))
|z − t|N+sq2(z,)

dzdt

+
∫
RN

|ψ∗(z)|σ(z)−2ψ∗(z)ψ(z)dz −
∫
RN

b(z)

ψ
τ(z)
∗ (z)ψ(z)

≥ 0.

The fact that ψ is arbitrary in Λ, implies that the last inequality holds if we replace ψ
by −ψ. This means that the last inequality becomes an equality, and consequently, ψ∗ is a
weak solution for problem (Qθ). Finally, since Jθ(ψ∗) < 0, then ψ∗ is nontrivial.

4. Conclusions

In this paper, we have investigated the existence of solutions. More precisely, we have
studied the energy functional in generalized Sobolev spaces with variable exponents and
fractional order and proved that this functional has a global minimizer, which is a weak
solution to the studied problem. Our main tools are based essentially on the combination
of the variational method with some monotony arguments. This is a very interesting study
that we will develop and extend to a double-phase problem in the future, with a singularity
of the Hardy type and with logarithmic nonlinearity.
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