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Abstract: Heterocyst-forming cyanobacteria that colonize the drylands contribute to carbon and
nitrogen supplies in nutrient-poor soils. As one of the representative cyanobacteria, Nostoc flagelliforme
adapts well to the arid environment in the form of filamentous colonies (or filaments). To date, the
adaptive changes, either genetic or micromorphological, that occur within single colonies of dryland
cyanobacteria remain largely unclear. In this study, unusual long chains or trichomes of vegetative
cells (not containing heterocysts) were observed within N. flagelliforme filaments. And the overall
heterocyst frequency in the trichomes was counted to be 1.3–2.7%, different from the usually observed
5–10% heterocyst frequency in model Nostoc strains when grown in nitrogen-deprived medium.
Thus, these phenomena seem contradictory to our usual recognition of Nostoc strains. Related
transcriptional and heterocyst frequency analyses suggested no genetically significant alteration in
heterocyst formation and nitrogen fixation in this strain. Also, the amounts of nitrogen sources in
the extracellular polysaccharide (EPS) matrix released by N. flagelliforme cells that may cause the low
heterocyst frequency were assessed to be equivalent to 0.28–1.10 mM NaNO3. When combining these
findings with the habitat characters, it can be envisaged that the released nitrogen sources from cells
are confined, accumulated, and re-utilized in the EPS matrix, thereby leading to the formation of
reduced heterocyst frequency and long-chained vegetative cells. This study will contribute to our
understanding of the distinctive adaptation properties of colonial cyanobacteria in dryland areas.
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1. Introduction

Drylands account for approximately 40% of the terrestrial area and are typically
characterized by organic matter deficiency and water scarcity. Cyanobacteria are pioneer
organisms that colonize dryland soils and contribute to carbon and nitrogen supplies,
as well as water redistribution and soil rehabilitation [1–4]. The predominant forms of
cyanobacteria surviving the drylands are cyanobacterial biocrusts and free-living colonies.
The representative species of the latter are Nostoc flagelliforme (filamentous colony) and Nos-
toc commune (lamellate colony) [5,6]. Two species are genetically close relatives. However,
N. flagelliforme solely grows in arid regions (annual precipitation of <400 mm) and is arising
as a terrestrial model species for scientific research [7,8]. The free-living Nostoc colony
consists of numerous trichomes (chains of cells) encased by the common extracellular
polysaccharide (EPS) matrix. Apart from facilitating the establishment of defined colony
shapes, the EPS matrix and its accommodated compounds provide crucial protection for
Nostoc cells against environmental (abiotic) stresses [9–11]. Thus, the EPS matrix plays a
critical role in the adaptation and evolution of colonial Nostoc in the dryland environment.

In single Nostoc colonies, the EPS matrix usually accommodates ultraviolet-absorbing
molecules (scytonemin and mycosporine-like amino acids) and exoproteins [11–14].
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Other small molecules typically secreted by cyanobacteria, such as amino acids, phy-
tohormones, and vitamins, are also supposed to be first confined in the EPS matrix.
Unusual water uptake and loss (the kinetics are dependent on multiple factors) and
hydrolysis of exoproteins also take place in this matrix [9,11,15]. In addition, we have
recently uncovered a high level of genetic diversity within single colonies (or filaments)
of N. flagelliforme based on single nucleotide polymorphism analysis [12]. Despite the
above progress, distinctive adaptive features evolved in the EPS matrix of terrestrial
colonial cyanobacteria have not been fully revealed.

Many multicellular cyanobacteria produce terminally differentiated nitrogen-fixing
cells called heterocysts. Heterocysts are placed at regular or semi-regular intervals in the
trichomes, and heterocyst frequency is tightly associated with the availability of environ-
mental combined nitrogen [16,17]. In two model cyanobacteria, Nostoc sp. PCC 7120 and
Nostoc punctiforme PCC 73102, heterocysts are regularly separated by 10–20 vegetative cells
(5–10% heterocyst frequency) in the absence of combined nitrogen [18,19]. In symbiosis
with a photosynthetic eukaryotic partner, the heterocyst frequency of N. punctiforme can
be increased to 25–60% [18]. Heterocyst frequency can serve as an excellent marker for
assessing ambient nitrogen availability and associated impacts on Nostoc strains.

In native habitats, N. flagelliforme undergoes periodic rehydration and dehydration,
interrupted by either long- (monthly level) or short-term (daily level) dormancy. Most
of the time, it is dew or moisture from the air (more than 50% relative humidity) that
sustains its slow growth [20]. The soil is extremely nitrogen-deficient, containing less than
0.04% total nitrogen. Under these environmental conditions, this pioneer organism should
possess sufficient nitrogen-fixing capacity by maintaining a high heterocyst frequency to
sustain growth or fertilize the soil. However, because of the arid environmental character,
organic nitrogen sources released from N. flagelliforme cells after nitrogen fixation may be
confined and accumulated in the EPS matrix for a period of time (unless encountering
intermittent rain), which might instead lead to a low heterocyst frequency in the trichomes
of N. flagelliforme. In this study, we aimed to investigate this possibility to gain more insight
into ecologically or genetically distinctive alterations in dryland colonial cyanobacteria.

2. Materials and Methods
2.1. Microscopic Observation

N. flagelliforme samples (filaments) were sourced from different regions in arid
steppes of the west and west-northern parts of China [12]. The regions include Guyuan
City (GY), Jiuquan City (JQ), Zhongwei City (ZW), Siziwangqi County (SZWQ), Huhe-
haote City (HHHT), Yinchuan City (YC), and Guide County (GD) [12]. The filaments
were washed 3–5 times with sterilized water and kept rewetted in darkness for 2–3 days
to allow the softening of the EPS matrix. Then, the filaments were slightly pressed on
temporary microscope slides and subjected to observation under a light microscope
(Axio Scope A1, Zeiss Inc., Oberkochen, Germany) with or without excitation of the
fluorescence (450–490 nm). With the fluorescence excitation, heterocysts show no red
color due to the lack of chlorophyll a [19]. The reliability of distinguishing vegetative
cells and heterocysts under the microscope was also verified in this study (Figure S1).
Heterocyst frequency was measured as the vegetative cell number between adjacent
heterocysts (heterocyst interval) or expressed as the ratio of heterocysts to vegetative
cells in the trichomes except hormogonia.

2.2. Transcriptional Analysis

N. flagelliforme samples were mixed and washed with sterilized water 5 times
and then rehydrated on three conditions (BG110 solution, BG110 + 0.55 mM NaNO3,
BG110 + 0.55 mM NH4Cl). BG110 is a widely used nitrogen-free algal medium [21]. Usu-
ally, the nitrogen fixation of N. flagelliforme could be detected at 1 h after rehydration and
reached a maximum at 8 h [20]. After rehydration for 1 h on three conditions, the values of
the photosystem II activity parameter Fv/Fm of three samples recovered from 0 to 0.13,
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0.17, and 0.16, respectively, and at 4 h, they recovered to 0.24, 0.29, and 0.29, respectively.
The 4 h rehydrated samples were subjected to RNA extraction and quantitative polymerase
chain reaction (qPCR) analysis. The representative heterocyst development and nitrogen
fixation-associated genes as well as their primers for qPCR analysis, are shown in Supple-
mental Table S1. Three independent replicates were conducted. Two reference genes, the
16S rRNA gene and rnpB, were used for normalization. The transcriptional levels of these
genes in two nitrogen source-treated samples (BG110 + 0.55 mM NaNO3; BG110 + 0.55 mM
NH4Cl) were compared against those in the nitrogen-free sample (BG110 solution), and
their relative ratios were calculated (%).

2.3. Testing of Heterocyst Frequency upon Nitrogen Availability

The relationship between the combined nitrogen level and the frequency of heterocyst
formation was tested using a cell suspension culture of N. flagelliforme developed from
natural sample [22]. The cell suspension was inoculated into BG110 solution supplemented
with various concentrations of NaNO3. The final NaNO3 concentrations were respectively
0.07, 0.14, 0.28, 0.55, 0.73, and 1.10 mM, which correspond to 1/256, 1/128, 1/64, 1/32, 1/24,
and 1/16 of the NaNO3 level (1/256 N–1/16 N) in BG11 solution [21]. The cultures were
statically cultivated at 25 ◦C under continuous illumination of 20 µmol photons m−2 s−1

for two weeks. The model cyanobacterium Nostoc sp. PCC 7120, which was cultivated in
BG110 solution at 30 ◦C, was used as a control. For a long-term experiment, cell suspension
of N. flagelliforme was cultivated for 30 days in BG110 solution. These cultures were gently
shaken two times per day. After cell collection, heterocyst frequencies were counted.

3. Results and Discussion

Native habitat and N. flagelliforme filaments are shown in Figure 1A. A single filament
can be recognized as an EPS-encased colony of Nostoc cells. The trichomes within single
colonies of N. flagelliforme were observed under a light microscope (Figure 2A). Vegetative
cells appeared red under the excitation of fluorescence. Mature heterocysts were obviously
larger than vegetative cells and showed no red color under the fluorescence (Figure S1). As
shown in Figure 2A, a few long trichomes of vegetative cells (not containing heterocysts)
were observed within a colony, and one had more than 100 vegetative cells. Further, hetero-
cyst frequencies of trichomes in various N. flagelliforme filaments sourced from different
regions were counted (Figure 2B). A large variation in average heterocyst interval was
observed among these filaments, ranging from 37.1 to 79.2 vegetative cells, corresponding
to 1.3–2.7% heterocyst frequency. Compared to Nostoc sp. PCC 7120 and N. punctiforme
PCC 73102 (5–10% heterocyst frequency), this heterocyst frequency is much lower upon
nitrogen-deficient conditions. These results demonstrate the existence of long-chained
vegetative cells and reduced heterocyst frequency in N. flagelliforme colonies.
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Figure 2. Microscopic observation of the trichomes within a single colony of N. flagelliforme (A) and
the measurement of heterocyst intervals in various natural colonies sourced from different regions
(B). The green arrow points to a very long trichome consisting of only vegetative cells. Observation
was conducted under white light (upper panel in (A)) or under fluorescence (lower panel in (A)).
Vegetative cell size, 4−6 µm. Data shown in (B) are the mean ± SD (n = 116–149). Letters a–g
represent the significant difference at p < 0.05 (Tukey’s multiple comparison test).

Further, the potential molecular or genetic alteration in heterocyst formation and nitro-
gen fixation in N. flagelliforme samples was assessed via transcriptional analysis (Figure 3).
Important marker genes associated with heterocyst development (hetR, patA, and hepA) and
nitrogen fixation (nifH) were used (Table S1). Generally, the transcription of these genes
will be repressed in heterocyst-forming cyanobacteria when they are exposed to combined
nitrogen-replete conditions [16]. Water-washed N. flagelliforme filaments were treated with
nitrate and ammonium solutions for 4 h. As shown in Figure 3, both treatments led to a
reduced transcription of these genes compared to the control (100%). This result indicates a
genetically normal response of N. flagelliforme in response to external nitrogen addition.

The frequency of heterocyst formation in relation to ambient nitrogen availability
was further assessed using a cell suspension culture of N. flagelliforme (Figure 4). In
the BG110 solution, N. flagelliforme trichomes had a heterocyst interval of approximately
15 vegetative cells at the rapid growth phase, similar to that in Nostoc sp. PCC 7120.
With the addition of 1/256–1/64 N levels in BG110 solution, the heterocyst intervals were
enlarged to be approximately 30 vegetative cells. With the addition of 1/32–1/24 N levels,
the heterocyst intervals were enlarged to be more than 60 vegetative cells. At the 1/16 N
level, most of the trichomes had very few or occasional heterocysts, and long trichomes
consisting of more than 100 vegetative cells occurred. Thus, like Nostoc sp. PCC 7120,
heterocyst frequency in N. flagelliforme was still correlated with nitrogen availability, which
is also consistent with the transcriptional analysis result (Figure 3). However, it is worth
noting that in long-term cultivation, N. flagelliforme trichomes had a heterocyst interval of
approximately 30 vegetative cells (3.3% heterocyst frequency) (Figure 4). Relative to 5–10%
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heterocyst frequency in model Nostoc species, this reduced heterocyst frequency might
imply a genetically subtle alteration in nitrogen fixation and homeostasis.
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shown are the mean ± SD (n = 28–30); for others, the data shown are the mean ± SD (n = 46–71). The
rectangle highlights similar heterocyst intervals among the four tests.
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Nitrogen-fixing cyanobacteria can release ammonia, amino acids, or proteins into
the extracellular environment and re-utilize them [11,23–26]. Cyanobacterial extracellular
enzymes with a capacity for EPS degradation have also been identified, and extracellular
organic carbon can be re-utilized [27]. Organic matter excretion is crucial to carbon and
nitrogen cycling in cyanobacterial communities. In native habitats, desert cyanobacteria
utilize early-morning dew and rely on dawn illumination or weak red light for growth [28,29].
After that, they rapidly enter a state of dormancy along with rising temperature and
declining relative humidity. Thus, the time for photosynthesis and nitrogen fixation is very
limited, which may transiently result in relatively excess nitrogen. The dynamics of the
main exoprotein, WspA, in natural N. flagelliforme were analyzed [11]. The dehydration
process induces its biosynthesis, and the rehydration process leads to its secretion and
then hydrolysis. Since the EPS matrix is not an aqueous environment and has an acid-base
buffering capability [30], it is difficult to precisely correlate the amount of EPS matrix-
containing nitrogen sources with the heterocyst frequency of trichomes. Nevertheless,
as implied in Figures 2B and 4, the nitrogen levels in natural filaments (outside of cells)
that may cause the low heterocyst frequency were equivalent to 0.28–1.10 mM NaNO3
(1/64–1/16 N levels). A high EPS matrix-containing nitrogen level (e.g., equivalent to
1/16 N level) will surely lead to the occurrence of long trichomes consisting of only
vegetative cells. Of course, considering potentially uneven moisture absorption in the arid
environment, an uneven allocation of released nitrogen sources in the EPS matrix may also
possibly lead to the occurrence of long-chained vegetative cells.

Environmental abiotic factors such as temperature, light intensity, and mineral nu-
trients can also exert an influence on heterocyst formation or affect its nitrogenase activ-
ity [31–33]. Such impacts were also implied in the fluctuating carbon/nitrogen ratios of
N. flagelliforme cultures under simulated conditions (Figure S2). Studies from biological
soil crusts have shown that the nitrogenase activity varied widely in response to changing
environmental conditions [34,35]. Thus, it cannot simply attribute the nitrogenase activity
or the amount of fixed nitrogen to the number or frequency of heterocyst. Despite all
this, viewed from the perspective of its origin, the dominant factor for determining proper
heterocyst frequency in nitrogen-fixing heterocystous cyanobacteria should still be nitrogen
availability or nitrogen demand. Notably, atmospheric nitrogen deposition is rising as a
new threat to biodiversity and ecosystem function in drylands [36]. The potential impact
or impact extent from this nitrogen input in N. flagelliforme filaments needs to be assessed
in the future.

4. Conclusions

N. flagelliforme is a representative member of dryland soil surface-dwelling cyanobacte-
ria. Beyond expectation, unusually long trichomes of vegetative cells as well as overall low
heterocyst frequency, were observed in its natural colonies. The transcriptional response
of heterocyst development and nitrogen fixation-associated genes upon nitrogen addition
was in line with expectations. The frequency of heterocyst formation was tested to be
proportional to the concentration of external combined nitrogen. Therefore, it is not a
genetically significant alteration in heterocyst formation and nitrogen fixation that results
in these unusual phenomena. It should be attributed to the EPS matrix of N. flagelliforme that
hold-ups released nitrogen sources in the specific terrestrial environment. The re-utilization
of extracellular combined nitrogen will inhibit heterocyst formation and thus lead to the
occurrence of long-chained vegetative cells. The nitrogen levels in the EPS matrix were
estimated to be equivalent to 0.28–1.10 mM NaNO3. Particularly, a downward tendency in
heterocyst frequency was traced in this species, implying a genetically subtle alteration.
Thus, the establishment of the defined colony form strengthens cyanobacterial adaptation
to arid environments, and in turn, it facilitates the genetic alteration of cells in a subtle way.
In the next step, the relationship between heterocyst frequency and nitrogenase activity
in the native environment, the nitrogen cycling and homeostasis in single cyanobacterial
colonies, and even the impact of excessive nitrogen deposition need to be explored. We
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hope this communication will expand our understanding of the special environmental
adaptability of colonial cyanobacteria in dryland areas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nitrogen5010009/s1, Figure S1: The discrimination of proheterocyst,
mature heterocyst, and vegetative cell in a trichome; Table S1: The genes and their primers used for
transcriptional analysis; Figure S2: The C/N ratios in natural colonies and liquid suspension cultures
of N. flagelliforme.
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