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Abstract: Accurate identification of COVID-19 is now a critical task since it has seriously damaged 
daily life, public health, and the economy. It is essential to identify the infected people to prevent 
the further spread of the pandemic and to treat infected patients quickly. Machine learning tech-
niques have a significant role in predicting of COVID-19. In this study, we performed binary classi-
fication (COVID-19 vs. other types of coronavirus) by extracting features from genome sequences. 
Support vector machines, naive Bayes, K-nearest neighbor, and random forest methods were used 
for classification. We used viral gene sequences from the 2019 Novel Coronavirus Resource Data-
base. Experimental results presented show that a decision tree method achieved 93% accuracy. 
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1. Introduction 
Coronaviruses, known to include some of the largest viral genomes (about 30,000 bps 

in length), are single stranded positive sense RNA viruses [1]. The family of coronaviruses 
contains four genera, which are alphacoronavirus, betacoronavitus, gammacoronavirus, and 
recently defined deltacoronavirus. Although alphacoronavirus and betacoronavirus are able to 
infect mammalian hosts, gammacoronavirus and deltacoronavirus mainly infect avian spe-
cies [2]. Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East res-
piratory syndrome coronavirus (MERS-CoV), which belong to betacoronavirus, are human 
coronaviruses causing highly patogenic aoutcomes. Both coronaviruses can be transmit-
ted to humans due to their zoonotic nature, and cause symptoms of viral pneumonia, 
fever, breathing difficulties, etc. [3]. An unrecognized pneumonia disease, which is 
thought to have originated from a local seafood market in December 2019, caused an out-
break in Wuhan, China. The disease sufficiently diverged from SARS-CoV to be consid-
ered a new human-infecting betacoronavirus, and it was named COVID-19, which has 
been officially named SARS-CoV-2 [1]. 

Sequence alignment methods, such as BLAST [4] and FASTA [5], perform classifica-
tion using viral sequencing techniques. These methods are based on the assumption that 
DNA sequences share common features [6]. Although alignment-based methods are suc-
cessful in detecting similarities, their application can be challenging in most cases [7]. An-
alyzing thousands of complete genomes using alignment-based methods is too expensive. 
To overcome the difficulties of alignment-based methods, alignment-free methods have 
been introduced [8,9]. Recent studies revealed that machine learning techniques have 
been applied successfully for virus classification [10,11]. Reyes, Avino, and Kari [10] pro-
posed an open-source supervised alignment-free method operating k-mer frequencies in 
HIV-1 sequences. They used support vector machines, multilayer perceptron, and logistic 
regression for classification. They demonstrated classification accuracies over 90% in all 
cases for full length genome datasets of hepatitis B, hepatitis C, and influenza A viruses. 
Randhawa, Hill, and Kari [3] proposed a combination of supervised machine learning 
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with digital signal processing for accurate and scalable genome annotation. They mapped 
genomic sequences into discrete values for applying digital signal processing techniques. 
They classified plastic genomes of viruses such as dengue and influenza accurately. Reyes 
et. al. [12] proposed an alignment-free method based on intrinsic genomic signatures de-
livering highly accurate real-time taxonomic predictions. They used a decision tree 
method and confirmed this with Spearman’s rank correlation coefficient analyses. 

Wang et al. [13] reported that COVID-19 has extremely low CG abundance in its open 
reading frame. They found that CG reduction in COVID-19 can be achieved by mutating 
C/G into A/T. Based on this idea, in this study, we used CpG island features to predict the 
COVID-19 virus. We applied four machine learning techniques—support vector ma-
chines, naive Bayes, k-nearest neighbor, and random forest. Results were evaluated on the 
2019 New Coronavirus Resource (2019nCoVR) repository [14]. 

2. Material and Method 
In this section, first, we explain how genome sequences were retrieved. Second, we 

explain how distinguishing features were extracted. Finally, we overview the machine 
learning algorithms that we used for prediction of COVID-19. 

2.1. Dataset 
The 2019 Novel Coronavirus Resource (2019nCoVR) by China’s National Center for 

Bioinformation [14] collects public coronavirus sequences from various databases, includ-
ing NCBI, NMDC, GISAID, and CNCB/NGDC. We downloaded 1000 available COVID-
19 sequences on August 2020. For non-COVID-19 sequences, 2019nCoVR includes alpha-
coronavirus, betacoronavirus-1, human coronavirus 229E, human coronavirus HKU1, and hu-
man coronavirus NL63 species. We downloaded all available 334 human coronavirus se-
quences not including COVID-19 on August 2020. Properties of the sequences are also 
given in Table 1. All sequences were complete genome sequences that were about 30 kbp, 
and host was chosen as Homo sapiens. 

Table 1. Sequence properties. The 2019 Novel Coronavirus Resource (2019nCoVR) naming con-
vention was used. 

Human Coronaviruses The Number Sequences Label 
SARS-CoV-2 1000 1 

Alphacoronavirus 88 0 
Betacoronavirus-1 140 0 

Human Coronavirus 229E 27 0 
Human Coronavirus HKU1 18 0 
Human Coronavirus NL63 61 0 

2.2. Feature Extraction 
The choice of the differentiable features is a critical step to improve recognition per-

formance depending on the characteristics of the COVID-19 virus. By using the assump-
tion that SARS-CoV-2 exhibits a strong absence of CpG [13,15], we proposed the use of 
CpG island features [16,17], extracted by using Equations (1) and (2). 

CGp = p(C) + P(G)  (1)

CpGo = 
( )

( ) ( )
p CG
p C p G

 (2)

where p(C), p(G), and p(CG) are percentages of C, G, and CG in a sequence. Thus, for a 
given sequence, we presented the two CpG island features. Figure 1 illustrates an example 
of computing the features from a sequence. 
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Figure 1. CpG island features. The values of C, G, and CG are 13, 20, and 3, respectively. Thus, CGp = p(C)+ p(G) = 0.55, and 
CpGo = p(CG)/(p(C)p(G)) = 0.05. 

2.3. Machine Learning Algorithms 
The classification was performed to classify the given human genome sequences into 

COVID-19 or not. Various machine learning techniques can be used to achieve classifica-
tion. Support vector machines, naive Bayes, K-nearest neighbor, and random forest were 
used for performing this task. 

2.3.1. Support Vector Machines 
The support vector machine (SVM) method is a supervised nonparametric statistical 

learning technique. Therefore, it does not make any assumption on the underlying data 
distribution. It has various advantages, such as the sparsity of the solution, global optimi-
zation, solid theoretical foundation, generalization, and nonlinearity. In the original for-
mulation of SVMs, the method finds an optimal separating hyperplane using a broad set 
of observations with known labels (i.e., training set) by maximizing the margin between 
two classes. The term optimal separating hyperplane refers to the decision boundary min-
imizing misclassifications. The subset of data that lie on the margin is called a support 
vector. New unlabeled data are allocated to a class based on their geometric position rel-
ative to the classifier function. In practice, data points belonging to different class mem-
bers may overlap one another, which makes linear separability difficult. The soft margin 
method and the kernel trick are used by adding slack variables to solve the inseparability 
problem [18]. 

2.3.2. Naive Bayes 
Naive Bayes (NB) is a frequently used machine learning classification algorithm 

based on Bayes’ theorem, which provides evaluation of explicit probabilities for any hy-
pothesis. The theorem states that: 

( | ) ( )( | )
( )

p T h p hp h T
p T

=   (3)

where P(h) denotes prior probability of hypothesis h, P(T) is prior probability of training 
data T, P(T|h) is probability of T given h, and P(h|T) is probability of h given T. In order 
to choose the acceptable hypothesis the most probable one is selected. 

2.3.3. K-Nearest Neighbor 
K-nearest neighbor (KNN) is known as one of the simplest nonparametric classifiers. 

It is a lazy learning algorithm and it does not require any learning process. KNN assigns 
a new observation into a class with the majority of votes based on k-nearest neighbors 
[19]. In this step, a Euclidean-like distance is used. Optimum amounts of k-values can be 
defined using a cross-validation technique. 

2.3.4. Random Forest 
Random forest (RF) classifier is an ensemble machine learning algorithm that is used 

for classification and works similarly to a decision tree. It uses the bootstrap aggregating 
method for training. The overall prediction can be done by averaging predictions of all 
the individual trees. When feature vectors are given as an input, random forest algorithm 
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creates a forest from a subset of randomly selected data with the help of various decision 
trees. Next, the algorithm sums up the votes of the decision trees to determine the predic-
tion of COVID-19 or not.  

3. Results 
We were interested in the effectiveness of CpG island features in COVID-19 classifi-

cation. After CpG island features were extracted using Equation 1 and Equation 2, they 
were classified by using the machine learning techniques, which were support vector ma-
chines, naive Bayes, k-nearest neighbor, and random forest. Weka-3-8-4 tool [20] was used 
to perform machine learning classifications. The numerical results were obtained by using 
a computer with Linux operating system, 16 GB RAM, and 2.7 GHz processor. Perfor-
mance of each classifier was measured in terms of precision, recall, F-measure, and accu-
racy. The tenfold cross-validation strategy was applied and results are reported in Table 
2. Moreover, Figure 2 visualizes precision, recall, F-measure, and accuracy values. The 
maximum classification accuracy was 93%, which was obtained using random forest with 
CpG island-based features. The machine learning models used in this study with the pro-
posed features predicted COVID-19 sequences in high accuracy. This underlines the effi-
ciency of the proposed method. 

Table 2. COVID-19 classification results (10-fold cross-validation). 

Method Precision Recall F-measure Accuracy 
Support Vector Machine 0.869 0.873 0.868 0.87 

Naive Bayes 0.882 0.885 0.879 0.88 
K-Nearest Neighbor 0.927 0.926 0.926 0.92 

Random Forest 0.93 0.93 0.93 0.93 

 
Figure 2. Evaluation of machine learning methods. 

4. Conclusions 
In this study, we classified COVID-19 cases from human genome sequences using 

four machine learning methods—support vector machines, naive Bayes, k-nearest neigh-
bor, and random forest. Experimental results showed k-nearest neighbor and random for-
est methods with genome-based features gave remarkable results by reaching 92% and 
93% accuracy, respectively. In future studies, we will compare COVID-19 sequences com-
ing from humans to other types of coronavirus sequences, such as those coming from 
musculus, and propose a similarity-based feature. 
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