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Abstract: Soft optomechanical sensors have the ability to combine the high tunability and elasticity of
soft polymers with the distinctive optical properties of photonic structures, thus offering unprecedented
opportunities for the development high-performance colorimetric sensors. Herein, we demonstrate for
the first time the use of optomechanical devices made of off-stoichiometry thiol-ene (OSTE), a polymeric
material that features intrinsic redox activity, overcoming some limitations of conventional materials (e.g.,
polydimethylsiloxane or silicon). Remarkably, this work provides the foundation for a new generation
of highly tunable and versatile optomechanical sensors, enabling unexplored functionalities.
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1. Introduction

The interest in so-called soft optomechanical sensors has increased exponentially in
recent years. These systems have the ability to combine the high tunability and elasticity of
soft polymers with the distinctive optical properties of photonic structures, thus offering
previously unimaginable opportunities for the development of new optomechanical sensors
for a variety of applications. Remarkably, soft optomechanical systems can be interrogated
by color imaging, enabling a 2D mapping of the mechanical deformations, and hence
opening the possibility of monitoring a large number of sensors in parallel [1].

In the last years, we have demonstrated the sensitivity of polydimethilsiloxane (PDMS)
optomechanical sensors for detecting photo-induced biomolecular conformational changes,
photothermal and magnetic-induced deformations of bimorph structures, and pressure
changes. However, PDMS and the other materials typically utilized for building optome-
chanical devices (e.g., silicon) present a low chemical reactivity, thus requiring harsh
treatments (e.g., plasma, silanization) for further functionalization. Herein, we demonstrate
for the first time the use of optomechanical devices made of off-stoichiometry thiol-ene
(OSTE), a polymeric material that features intrinsic redox activity, due to the presence of
surface thiol groups. As a proof of concept, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazoliumbromide (MTT) by the mechanical structures is monitored in real time
by color imaging. Remarkably, this work provides the foundation for a new generation of
highly tunable and versatile optomechanical sensors, enabling novel functionalities.

2. Materials and Methods

For manufacturing the OSTE devices, commercial linear (1D) diffraction grating (GT50-
06V Thorlabs (Newton, NJ, USA)) was used as a master mold. First, a PDMS replica was
obtained and the OSTE polymer (OSTE 2020 Litho, Mercene Labs (Stockholm, Sweden)
was spin-coated at 2000 rpms (90 s) over the PDMS mold, achieving a thin layer (~15 µm
thickness) after curing with UV light (60 s, BlueWave QX4, Dymax (Torrington, CT, USA).
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The sensors’ shapes were defined by laser cutting using an Epilog Mini 24 (4% power, 8%
speed). Then, the structures were released with the help of a piece of pressure-sensitive
adhesive, obtaining arrays of suspended bridges with one periodically nanostructured
surface (d = 1600 nm) and dimensions L = 4000 µm, h = 15 µm, w = 50 µm (Figure 1a).
A transparent polymethyl methacrylate (PMMA) microfluidic system (v = 160 µL) was
fabricated by laser cutting, allowing for the fluid management and simultaneous color
imaging of the sensors. The light diffracted by the sensors surface was measured in a
Littrow configuration using a home-made black PMMA structure integrating a collimated
white light source, a beam-splitter and a USB microscope (Dino-Lite, (New Taipei City,
Taiwan) (Figure 1b). Real-time color analysis was performed using the colorevo open-source
code (https://doi.org/10.5281/zenodo.5646732) by pre-selecting one or more regions of
interest (ROIs).
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Figure 1. (a) Image of the OSTE optomechanical bridges and optical microscopy image (50×) of the
periodical surface structure. (b) Color imaging setup. (c) Working principle of the sensors. (d) Color
changes during the reduction of MTT for pristine sensors and sensors coated on one side with PEI.

3. Discussion

As illustrated in Figure 1c, the soft polymeric devices presented structural color due to
their periodical surface nanostructure, featuring mechanochromic properties according to
the diffraction equation. The intrinsic reductive activity of the OSTE devices was evaluated
using MTT as an oxidant, since our previous studies indicated that this polymer is able to
reduce MTT, producing a purple formazan end-product. As already reported, the redox
activity of the OSTE polymer is derived from the excess thiol groups within the polymer
matrix [2]. The bending response after the addition of MTT (10 mM) was monitored by
color imaging in pristine bridges and bridges coated on one side with a layer of branched
polyethylenimine (PEI, MW~25.000). As plotted in Figure 1d, the pristine bridges did
not show any color evolution (in Hue color scale (H)), which is most likely due to the
fact that the reaction was occurring on both sides of the suspended structures, producing
null-effective surface stress. In contrast, the bridges coated on one side with PEI displayed
steady color changes, showing a linear time-dependent response, which may be attributed
to the difference in the surface stress between both sides of the bridges. These results
highlight the potential of these novel optomechanical structures as functional transducers
for a variety of applications.
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