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Abstract: Wearable biosensors play a critical role in healthcare monitoring. However, the reliance
of biosensors on batteries has serious drawbacks. Although the human body’s energy can be
converted into electricity with energy harvesters, the hybridisation of multiple energy harvesters
is a prominent way of increasing power output. In this work, a hybrid piezoelectric and reverse
electrowetting (REWOD) energy harvester is proposed. Its main working principle is based on the
presence of an electrical double layer in the REWOD component and coupling with a piezoelectric
nanogenerator via an electret. The proposed energy harvester design was tested numerically and in a
series of experiments.

Keywords: energy human harvesting; reverse electrowetting on dielectric (REWOD); piezoelectric
nanogenerator (PENG); electrostatic microgenerator; continuous monitoring biosensors; wearable
biosensors; radial artery

1. Introduction

Modern healthcare widely employs implantable and wearable biosensors to continu-
ously monitor patients’ physiological data. Biosensors rely heavily on the use of batteries
in their design, which has several drawbacks that can be addressed by using energy har-
vesters. There are multiple potential sources of energy in the human body that can be
effectively exploited by various transducers [1]. As a single targeted energy type might be
insufficient or suboptimal in terms of the power output and availability of energy, several
energy generators are coupled in one hybrid energy harvester that can target multiple
energy sources or scavenge energy from one energy source but with multiple generators.
Biomechanical energy produced by the human cardiovascular system represents a reli-
able source of pulsations produced by the radial artery in particular, which have been
successfully used in numerous energy harvesting applications [2,3].

In the present work, a hybrid piezoelectric nanogenerator (PENG) and electrostatic
energy harvester that scavenges energy from radial artery pressure variation are presented.
Reverse electrowetting on dielectric (REWOD) is implemented through a bubble of con-
ductive liquid which is squeezed in between two electrodes, one of which is coated with
a dielectric material [4]. By modulating the distance between the electrodes, the elec-
trical double layer (EDL) formed at the fluid–electrode surface changes, modifying the
capacitance of the system and thus allowing it to collect the accumulated charge [5]. The
working principle of the designed energy harvester is explained in Figure 1. The electret
on the top of the shared electrode biases the REWOD component and therefore prevents
ions and counterions in the EDL from changing places [6]. The EDL, which forms on top
of the electret, increases the overall capacitance of the system and the maximum charge
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generation. When pressure is released and the harvester moves back to its initial state, the
process repeats itself with electrons moving in the opposite direction.
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Figure 1. The hybrid harvester working principle.

2. Materials and Methods

In this project, the hybrid harvester consists of a commercially available piezoelectric
disc and a customised printed circuit board (PCB) for the REWOD component. The
piezoelectric disk harnesses PZT-5 ceramics that are deposited on top of a brass diaphragm
(CuPbZn). The top part of the piezoelectric material is coated with silver (Ag). The REWOD
component consists of a shared brass electrode coated with an electret and a counter
electrode (Cu). NaCl was used as a conductive liquid.

3. Discussion

The concept of the hybrid piezoelectric/REWOD energy harvester was explored
computationally through simulations with the Multiphysics software COMSOL, where
finite element analysis was employed to better understand the physical behaviour in solid
and liquid phases of the REWOD component. In addition, an experimental setup was
designed and constructed. The piezoelectric component was experimentally assessed
across the range of practically available frequencies (1–2.5 Hz). The effects of material and
geometrical parameters were investigated (Figure 2).
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Figure 2. Empirical data on the influence of piezoelectric material on harvester output. 
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