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Abstract: Tungsten oxide is one of the most commonly used materials for metal oxide-based gas
sensors. In order to tune the sensing behavior, small clusters of noble metals are often added to the
surface of WO3. Previously, it has been found that in the case of oxidized metal clusters, e.g., Rh and
Pt additives, the Fermi-level pinning mechanism dominates. Unlike other noble metal surface clusters,
gold seems to remain metallic under sensor operation. As a result, the behavior of WO3-based sensors
was found to be significantly enhanced for all reducing gases and decreased for NO2.
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1. Introduction

Metal oxide-based gas sensors are an attractive option for numerous applications as
they are robust, compact, and inexpensive. The major drawback, however, is their inherent
lack of selectivity. Now that computing power is widely accessible and miniaturization
has matured, the use of tiny arrays is a feasible solution for increased selectivity. In order
to create suitable arrays, materials with complementary sensing behaviors are needed.
The sensor response of metal oxides is commonly tuned through the addition of noble
metal surface additives. In the case of oxidized noble metal additives, e.g., Pt, Pd, and
Rh, on common n-type semiconductors, the Fermi-level pinning mechanism has been
found to be dominant [1–4]. The test gas reacts with the oxidized noble metal cluster,
changing the junction between the additive and the metal oxide, resulting in a detectable
resistance change. Au additives are different as the metal state is stable under operational
conditions, making the mechanism different from other noble metals and resulting in
desirable sensor behavior.

2. Materials and Methods

WO3 lamella was prepared according to Kida et al. [5]. Firstly, 191 mL of conc. H2SO4
was added to 409 mL of DI water. Then, 16.40 g of Na2WO4*2H2O was dissolved in 100 mL
of DI-Wasser and slowly dropped into the sulfuric acid solution. The solution was stirred
overnight at 30 ◦C, and afterwards, the precipitate was washed with DI water until the
wash water had a pH of 5.3 (centrifuged at 10,000 rpm for 5 min). The precipitate was then
dried for 18 h at 80 ◦C and calcined for 2 h at 500 ◦C. In order to add the Au surface clusters,
the method of Zanella et al. [6] was used. Firstly, 0.12 g of urea, 0.088 g of HAuCl4*4H2O,
and 1 g of WO3 were dispersed in 100 mL of DI water. The mixture was stirred for 16 h
at 80 ◦C and washed 4 times with DI water (centrifuged at 10,000 rpm for 10 min). The
precipitate was dried at 50 ◦C overnight and calcined at 500 ◦C for 2 h. This resulted in
5 wt% Au loading. The WO3 powders were ground with 1,2-propane diol (Sigma Aldrich;
99.5+% A.C.S. Reagent) into a paste that was screen-printed onto alumina substrates with
interdigitated Pt electrodes and a backside Pt heater (CeramTec Gmbh). After drying at RT,
the sensor was calcined for 10 min at 400 ◦C, 10 min at 500 ◦C, and 10 min at 400 ◦C. Five
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chemically different and application-relevant gases were tested [3]. The gases were supplied
from bottles (Westfalen AG, Münster, Germany) at a constant flowrate of 200 mL/min using
an automated gas-mixing system. The sensors were heated to 300 ◦C, and the resistance
was measured using a Keithley 199 electrometer. The following relationship was used to
calculate the signal for reducing gases (the inverse was used for NO2):

Signal =
Rsyn.air

Rtest gas
> 1 (1)

3. Results and Discussion

The WO3-based samples with the Au additive showed higher sensor signals for all of
the tested reducing gases, see Figure 1a. This stands in stark contrast to the results attained
with other oxidized noble metal additives, where the sensor signal for all the test gases,
except ethanol, became negligible at 5 wt% loading [1–4]. Additionally, unlike other noble
metal additives that cause a significant increase in the sensor’s resistance to nitrogen, the
values for the sensor with Au additives were similar to those of the pristine sample, see
Figure 1b.
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Figure 1. (a) Sensor profile and (b) response to oxygen of the pristine and the 5 wt% WO3 sensor
with Au additive.

It is clear from these results that Au additives in WO3 follow a different mechanism
than other noble metal additives. Catalytic sensitization seems likely. In fuel cells, gold
is known to be a poor catalyst for the oxygen reduction reaction. It could therefore be
possible that the oxidation reaction of the reducing gases is markedly catalyzed, while the
enhancement of the oxidation kinetics is lower. Additional characterization will be carried
out to elucidate the mechanism.
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